Supplementary figures S2. Forest plots for changes in systolic blood pressure, diastolic blood pressure, body mass index and waist circumference.

Systolic blood pressure

	m	Health		C	ontrol			Mean Difference	Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI	
Choi BG et al., 2019	129.5	2.5	44	128.7	2.5	44	13.5%	0.80 [-0.24, 1.84]	-	
Dorje T et al, 2019	122.5	13.2	134	132	19	131	10.0%	-9.50 [-13.45, -5.55]	_ _	
Fang J et al., 2018	135.2	16.1	33	129.6	16.1	34	5.6%	5.60 [-2.11, 13.31]		
Frederix I et al, 2017	131	25	62	129	21	64	5.3%	2.00 [-6.07, 10.07]	-	
Hong et al., 2021	129.17	13.85	30	122.87	10.56	30	7.1%	6.30 [0.07, 12.53]		
Lunde P et al., 2020	140	32	60	145	21	59	4.2%	-5.00 [-14.71, 4.71]		
Maddison R et al., 2019	135.4	18.2	65	132.7	17.4	69	7.3%	2.70 [-3.34, 8.74]	- +	
Santo K et al., 2019	125	17	101	126	19.1	51	7.1%	-1.00 [-7.20, 5.20]		
Skobel E et al., 2017	139	19	19	124	16	42	4.1%	15.00 [5.18, 24.82]		
Snoek et al., 2021	127	16	59	129	17	59	7.4%	-2.00 [-7.96, 3.96]		
Su et al., 2021	118.47	11.24	66	126.2	14.59	58	9.1%	-7.73 [-12.36, -3.10]	_ —	
Yu C et al., 2020	124.7	11.3	493	124.6	12.2	494	13.2%	0.10 [-1.37, 1.57]	+	
Yudi MB et al., 2020	119.3	22.4	83	115.2	23.7	85	6.3%	4.10 [-2.87, 11.07]	+	
Total (95% CI)			1249			1220	100.0%	-0.02 [-2.39, 2.35]	◆	
Heterogeneity: Tau ² = 10.52; Chi ² = 53.85, df = 12 (P < 0.00001); l ² = 78%										
Test for overall effect: Z =		-20 -10 0 10 20 Favours [mHealth] Favours [Control]								

Diastolic blood pressure

	m		C	ontrol			Mean Difference	Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Choi BG et al., 2019	78.7	1.5	44	79.2	1.5	44	18.5%	-0.50 [-1.13, 0.13]	-
Fang J et al., 2018	83.2	12.7	33	81.4	10.9	34	4.3%	1.80 [-3.87, 7.47]	
Frederix I et al, 2017	77	21	62	79	17	64	3.3%	-2.00 [-8.68, 4.68]	
Hong et al., 2021	71.63	10.81	30	68.83	8.35	30	5.3%	2.80 [-2.09, 7.69]	
Lunde P et al., 2020	86	10	48	84	11	54	6.9%	2.00 [-2.08, 6.08]	
Maddison R et al., 2019	79.2	10.5	65	77.7	10.8	69	8.0%	1.50 [-2.11, 5.11]	-
Santo K et al., 2019	80.2	8.7	101	81.1	10.5	51	8.7%	-0.90 [-4.24, 2.44]	
Skobel E et al., 2017	83	7	19	72.6	9.5	42	6.5%	10.40 [6.14, 14.66]	
Snoek et al., 2021	79	9	59	81	9	59	9.0%	-2.00 [-5.25, 1.25]	
Su et al., 2021	73.63	9.23	66	75.9	10.71	58	8.1%	-2.27 [-5.81, 1.27]	
Yu C et al., 2020	79.8	7.9	493	79.7	8.2	494	17.4%	0.10 [-0.90, 1.10]	+
Yudi MB et al., 2020	83.3	18.2	83	82.1	20.3	85	4.1%	1.20 [-4.63, 7.03]	
Total (95% CI)			1103			1084	100.0%	0.62 [-0.71, 1.95]	•
Heterogeneity: Tau ² = 2.3	8; Chi ² =	32.02, (df = 11	(P = 0.0	008); I ^z	= 66%		-	
Test for overall effect: Z =									-10 -5 0 5 10 Favours [mHealth] Favours [Control]

Body mass index

	mHealth			Co	ontro	1		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Barnason S et al., 2019	35.2	6	20	31.3	4.1	21	6.1%	3.90 [0.74, 7.06]	
Choi BG et al., 2019	28.7	0.7	44	30.5	0.7	44	14.3%	-1.80 [-2.09, -1.51]	-
Dorje T et al, 2019	24.9	3.5	134	24.5	3.2	131	13.3%	0.40 [-0.41, 1.21]	- +
Maddison R et al., 2019	29.1	4.5	65	27.9	3.4	69	11.6%	1.20 [-0.16, 2.56]	+
Skobel E et al., 2017	27.3	4.5	19	28.2	3.2	42	8.6%	-0.90 [-3.14, 1.34]	
Snoek et al., 2021	27.9	3.8	59	28.5	4	59	11.4%	-0.60 [-2.01, 0.81]	
Su et al., 2021	24.7	3.6	66	24.5	2.5	58	12.5%	0.20 [-0.88, 1.28]	
Yu C et al., 2020	26.4	12	493	26.3	9.8	494	11.5%	0.10 [-1.27, 1.47]	_
Yudi MB et al., 2020	29.3	6	83	29.7	4.7	85	10.6%	-0.40 [-2.03, 1.23]	
Total (95% CI)			983			1003	100.0%	0.02 [-1.01, 1.05]	•
Heterogeneity: Tau ^z = 1.92	2; Chi ² =	64.8	8, df = 8	3 (P < 0.	.0000)1); I ² =	88%		
Test for overall effect: Z = 0).04 (P =	= 0.97	n.	•					-4 -2 0 2 4 Favours [mHealth] Favours [control]

Waist circumference

	m	Health	1	Control				Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Maddison R et al., 2019	102.9	11.1	65	101.1	10.1	69	33.3%	1.80 [-1.80, 5.40]	
Snoek et al., 2021	101	10	59	105	12	59	30.3%	-4.00 [-7.99, -0.01]	
Su et al., 2021	89.67	9.43	58	91	8.29	58	36.4%	-1.33 [-4.56, 1.90]	
Total (95% CI)			182			186	100.0%	-1.10 [-4.22, 2.03]	•
Heterogeneity: Tau² = 4.27 Test for overall effect: Z = (-20 -10 0 10 20 Favours [mHealth] Favours [Control]						