GenBank Accession: SPY04274.1; Region 191-450

#### NmNAT nucleotide sequence

ATGTCCCCCAGCCGTTTCAATCAAACGGGCCCCAAAATCGGCCTGAGCGTACGCCTTGCAGAAACC CAAGCTGAAATCGAAGCCGCCCAAAGATTGCGCTATCAGGTTTTTGCCCAAGAGTTGGGGGCGGAA ATCGAAAGCGATGACGGCCGTGATGTCGATCCTTATGATGAGCATTGCCACCACCTGCTTGCCTTCG ACGATGCAACCGGCGAAGTTATCGGCTGCTACCGCCTGATTACCGAAGAAACCGCGAAAAAAGTCG GCGGCTGGTACAGCGAGCATGAATTCGACCATGAGCCTTTGAAAGACATTCTGCCGCAAACCGTCG AACTCGGTCGCGCCTGTACCCACCGGACTACCGCAACGGCGGCTTGGTCATGCTGTTGTGGACCG GTTTGGTCAAATTCATGAAAGACGAAAACCTGCGCTTTATGATTGGTTGCGGCAGTATCGAAATGCG CGACGGCGGCAACGATGCGGCGGGGCCTGTATCATGCTTTGAAAGACAAATACCTCGCTCCGGAACA ATGGCGCGGCAACGATGCGGCGGGGCCTGTATCATGGTTCTGCGGCGGCGCTCGAAAATCCGCCTGT ACCCGCACTGATCAAAGGCTATCTCAAAGCAGGCGCATGGTTCTGCGGCGAGCCTTGCGTCGATGA AGCATTCAACTGCGCGGGATGTGCTGATCATGATGGACATCAGCCACCTTTCCGACCGCTACTTGCAG CGTTTTGCCCCTAAAACCGATTCTCAAAG



Figure S1. Key COSY and HMBC NMR correlations for 1 and 2.

#### N-3-hydroxymyristoyl-L-ornithine (MH+ 359) (MeOD, 600 MHz)

|                      | NH     | αH    | βH           | γH    | δΗ    |                                    |
|----------------------|--------|-------|--------------|-------|-------|------------------------------------|
| N-3-hydroxymyristoyl |        | 2.35  | 3.95         | 1.48  |       | CH2 1.23-1.37<br>Terminal CH3 0.88 |
| Orn                  |        | 4.45  | 1.74<br>1.99 | 1.49  | 2.94  |                                    |
|                      |        |       |              |       |       |                                    |
|                      | CO     | αC    | βC           | γC    | δC    |                                    |
| N-3-hydroxymyristoyl | 172.92 | 43.16 | 68.38        | 36.87 |       | Terminal<br>CH3 12.93              |
| Orn                  | 173.14 | 51.20 | 28.37        | 22.29 | 38.76 |                                    |

### N-3-hydroxymyristoyl-L-lysine (MH+ 373) (MeOD, 600 MHz)

|                      | NH | αH   | βH   | γH   | δΗ |               |
|----------------------|----|------|------|------|----|---------------|
| N-3-hydroxymyristoyl |    | 2.35 | 3.95 | 1.48 |    | CH2 1.23-1.37 |

| Lys                  |        | 4.42  | 1.92<br>1.70 | 1.49  | 1.66  | Terminal CH3<br>0.88<br>εΗ 2.90 |
|----------------------|--------|-------|--------------|-------|-------|---------------------------------|
|                      |        |       |              |       |       |                                 |
|                      | CO     | αC    | βC           | γC    | δC    |                                 |
| N-3-hydroxymyristoyl | 172.92 | 43.16 | 68.38        | 36.87 |       | Terminal<br>CH3 12 93           |
| Lys                  | 173.66 | 51.47 | 30.76        | 22.29 | 26.52 | εC 39.09                        |

**Table S1.** Chemical shifts of natural (bacterially-produced) **1** and **2** as a mixture identified by 1D- and 2D-NMR (gCOSY, gHSQC, gHMBC)





С



Figure S2. NMR spectra of natural 1 and 2 as a mixture (MeOD, 600 MHz)



**Figure S3.** Marfey's analysis of **1** and **2**. Extracted ion chromatograms (*m/z* 385.1466, *m/z* 399.1623) of the Marfey's product of L-ornithine, D-ornithine, L-lysine, D-lysine, hydrolyzed **1**, hydrolyzed **2** are shown, both (**1** and **2**) of which align in retention time with that of the *S*- configuration of their respective amino acid head groups.



**Figure S4.** The  $\Delta \delta_{S-R}$  in ppm for the MTPA esters of compounds 1 and 2.



Figure S5. Extracted ion chromatogram of crude *Nm*NAT extract, synthetic, and co-injection of crude and synthetic 1 and 2.

N-3-hydroxymyristoyl-L-ornithine (MH+ 359) (DMSO, 600 MHz)

|                      | NH     | αΗ    | ßH            | vH    | δΗ    |                                    |
|----------------------|--------|-------|---------------|-------|-------|------------------------------------|
| N-3-hydroxymyristoyl |        | 2.16  | 3.72          | 1.30, |       | CH2 1.20-1.32<br>Terminal CH3 0 82 |
| Orn                  | 7.84   | 4.02  | 1.58,<br>1.72 | 1.55  | 2.74  |                                    |
|                      |        |       |               |       |       |                                    |
|                      | CO     | αC    | βC            | γC    | δC    |                                    |
| N-3-hydroxymyristoyl | 171.13 | 44.10 | 67.95         | 37.34 |       | Terminal<br>CH3 14.40              |
| Orn                  | 173.92 | 52.51 | 29.27         | 24.26 | 38.99 |                                    |

# N-3-hydroxymyristoyl-L-lysine (MH+ 373) (DMSO, 600 MHz)

|                      | NH     | αH    | βH            | γH    | δΗ    |                                       |
|----------------------|--------|-------|---------------|-------|-------|---------------------------------------|
| N-3-hydroxymyristoyl |        | 2.17  | 3.73          |       |       | CH2 1.20-1.32<br>Terminal CH3<br>0.82 |
| Lys                  | 7.95   | 4.11  | 1.66,<br>1.52 | 1.30  | 1.49  | εН 2.72                               |
|                      | СО     | αC    | βC            | γC    | δC    |                                       |
| N-3-hydroxymyristoyl | 171.33 | 43.98 |               | 36.87 |       | Terminal<br>CH3 14.45                 |
| Lys                  | 174.20 | 52.05 | 31.13         | 22.66 | 26.91 | εC 39.11                              |

Table S2. Chemical shifts of synthetic 1 and 2 identified by 1D- and 2D- NMR (gCOSY, gHSQC, gHMBC)





В



С



D



Figure S6. NMR spectra of synthetic compound 1 (DMSO, 600 MHz)







С





Figure S7. NMR spectra of synthetic compound 2 (DMSO, 600 MHz)

А



В



С



D



Figure S8. Extracted ion chromatograms of all identified *N*-acyl ornithines and lysines from *Nm*NAT expression in *E. coli* 

|       |            |          |                |             | <u>.</u>   |           |
|-------|------------|----------|----------------|-------------|------------|-----------|
| Head  |            |          | Retention Time | Theoretical | Observed   |           |
| Group | Acyl Chain | Compound | (min)          | m/z         | m/z        | Ppm error |
| Orn   |            |          |                |             |            |           |
|       | OH-C14:0   | 1        | 17.177         | 359.2904    | 359.2934   | 8.349792  |
|       | OH-C15:0   | 3a       | 18.294         | 373.3061    | 373.30857  | 6.616554  |
|       | OH-C16:0   | 4a       | 19.411         | 387.3217    | 387.3246   | 7.487316  |
|       | OH-C17:0   | 5a       | 20.678         | 401.3374    | 401.33806  | 1.644502  |
| Lys   |            |          |                |             |            |           |
|       | OH-C14:0   | 2        | 17.31          | 373.3061    | 373.3086   | 6.696917  |
|       | OH-C15:0   | 3b       | 18.41          | 387.3217    | 387.3234   | 4.389116  |
|       | OH-C16:0   | 4b       | 19.511         | 401.3374    | 401.33929  | 4.709255  |
|       | OH-C17:0   | 5b       | 20.778         | 415.353     | 415.3536   | 1.444554  |
| Orn   |            |          |                |             |            |           |
|       | C14        | 6a       | 19.027         | 343.2955    | 343.29833  | 8.243627  |
|       | C16        | 7a       | 21.561         | 371.3268    | 371.3279   | 2.96235   |
| Lys   |            |          |                |             |            |           |
|       | C14        | 6b       | 19.261         | 357.3112    | 357.3132   | 5.597362  |
|       | C16        | 7b       | 21.778         | 385.3425    | *385.34231 | -0.519019 |

| Orn |          |     |        |          |            |           |
|-----|----------|-----|--------|----------|------------|-----------|
|     | OH-C14:1 | 8a  | 16.093 | 357.2748 | 357.2746   | -0.559793 |
|     | OH-C16:1 | 9a  | 18.027 | 385.3061 | 385.3071   | 2.595339  |
|     | OH-C17:1 | 10a | 19.011 | 399.3217 | 399.3218   | 0.250425  |
|     | OH-C18:1 | 11a | 20.111 | 413.3374 | 413.3387   | 3.14513   |
| Lys |          |     |        |          |            |           |
|     | OH-C14:1 | 8b  | 16.193 | 371.2904 | *371.2915  | 2.96241   |
|     | OH-C16:1 | 9b  | 18.127 | 399.3217 | 399.3224   | 1.752973  |
|     | OH-C17:1 | 10b | 19.111 | 413.3374 | *413.3376  | 0.483866  |
|     | OH-C18:1 | 11b | 20.211 | 427.353  | 427.3548   | 4.211975  |
| Orn |          |     |        |          |            |           |
|     | C14:1    | 12a | 17.177 | 341.2799 | 341.28111  | 3.545477  |
|     | C15:1    | 13a | 18.294 | 355.2955 | 355.2959   | 1.125823  |
|     | C16:1    | 14a | 19.411 | 369.3112 | 369.3113   | 0.270774  |
|     | C17:1    | 15a | 21.111 | 383.3268 | 383.3278   | 2.60874   |
|     | C18:1    | 16a | 22.195 | 397.3425 | 397.3426   | 0.251672  |
| Lys |          |     |        |          |            |           |
|     | C14:1    | 12b | 17.293 | 355.2955 | 355.2962   | 1.970191  |
|     | C15:1    | 13b | 18.41  | 369.3112 | *369.31151 | 0.8394    |
|     | C16:1    | 14b | 19.527 | 383.3268 | 383.3275   | 1.826118  |
|     | C17:1    | 15b | 21.311 | 397.3425 | *397.3427  | 0.503344  |
|     | C18:1    | 16b | 22.395 | 411.3581 | *411.3589  | 1.944778  |

**Table S3.** HRMS of all identified *N*-acyl ornithines and lysines from expression of *Nm*NAT in *E. coli*. Ions marked with \* are detected but have inconclusive tandem MS spectra



### OH-C14:0 Ornithine

OH-C15:0 Ornithine



### OH-C16:0 Ornithine















# OH-C15:0 Lysine















## C14:0 Ornithine





239.2369



C16:0 Ornithine







### OH-C14:1 Ornithine





II.

h



OH-C17:1 Ornithine

-H<sub>2</sub>0



### OH-C18:1 Ornithine







OH-C18:1 Lysine





## C14:1 Ornithine













### C17:1 Ornithine





251.236







C16:1 Lysine



**Figure S9.** Tandem MS of 24 of the 30 *N*-acyl amides detected from *Nm*NAT expression. Corresponding structures show deduced structures, where regiochemistry of hydroxyl groups and unsaturation, as well as stereochemistry of points of unsaturation are assumed. The straight acyl chain is also a simplification, as they may occur as branched chain fatty acids.

### Structural elucidation of 3 and 4

| Compound | Molecular Formula                               | Theoretical m/z | Observed m/z | Ppm error |
|----------|-------------------------------------------------|-----------------|--------------|-----------|
| 3        | C <sub>16</sub> H <sub>31</sub> NO <sub>3</sub> | 286.2377        | 286.2381     | 1.39744   |
| 4        | C <sub>19</sub> H <sub>29</sub> NO <sub>3</sub> | 320.222         | 320.2229     | 2.81055   |

Table S4. Theoretical and observed HRMS values of compounds 3 and 4



Figure S10. HRMS of compounds 3 and 4



Figure S11. Key COSY and HMBC correlations of natural 3 and 4 identified from a mixture



Figure S12. Marfey's analysis for stereochemical elucidation of compounds 3 and 4 (left). Co-injection with synthetic 3 and 4 for validation of structure (right).

|                    | NH     | αH    | βH           | γH    | δΗ             |                                                     |
|--------------------|--------|-------|--------------|-------|----------------|-----------------------------------------------------|
| <i>N</i> -decanoyl |        | 2.26  | 1.64         |       |                | CH2 1.25-1.35<br>Terminal CH3 0.89                  |
| Leu                | 8.05   | 4.62  | 1.74<br>1.60 | 1.73  | 0.97           |                                                     |
|                    |        |       |              |       |                |                                                     |
|                    | CO     | αC    | βC           | γC    | δC             |                                                     |
| <i>N</i> -decanoyl | 174.17 | 36.50 | 25.61        |       |                | CH2 21.86, 29.19-<br>31.86<br>Terminal<br>CH3 14.07 |
| Leu                | 176.39 | 50.93 | 41.16        | 24.91 | 22.65<br>22.83 |                                                     |

| N-decanoyl-L-leuci | ne (MH+ 286) | (CDCl3, 4 | 00 MHz) |
|--------------------|--------------|-----------|---------|
|--------------------|--------------|-----------|---------|

Table S5. Chemical shifts of synthetic 3 as identified by 1D- (<sup>1</sup>H and <sup>13</sup>C) and 2D- (gCOSY) NMR

|            | NH     | αH   | βH    |        |              |       |
|------------|--------|------|-------|--------|--------------|-------|
| N-decanoyl |        | 2.03 | 1.39  | CH2 1  | .08-1.32     |       |
|            |        |      |       | Termir | nal CH3 0.87 |       |
| Phe        | 8.07   | 4.43 | 2.84  | Aroma  | itic         | 12.65 |
|            |        |      | 3.06  | 7.17-7 | .29          | COOH  |
|            |        |      |       |        |              |       |
|            |        |      |       |        |              |       |
|            | CO     |      | αC    | βC     |              |       |
| N-decanoyl | 172.57 | 7    | 35.53 | 25.63  | CH2 22.55-31 | .69   |
|            |        |      |       |        | Terminal CH3 | 14.39 |
| Phe        | 173.69 | )    | 53.77 | 37.24  | Aromatic     |       |
|            |        |      |       |        | 126.77-138.2 | 6     |

### N-decanoyl-L-phenylalanine (MH+ 320) (DMSO, 400 MHz)

Table S6. Chemical shifts of synthetic 3 as identified by 1D- (1H and 13C) and 2D- (gCOSY) NMR





Figure S13. NMR spectra of synthetic compound 3 (CDCI3, 400 MHz)

В



В



А



Figure S14. NMR spectra of synthetic compound 4 (DMSO, 600 MHz)



# B. subtilis inhibition

**Figure S15.** Antibacterial assay of compounds **3** and **4** against *Bacillus subtilis*. IC<sub>50</sub> was calculated as 301.2  $\mu$ M and 153  $\mu$ M for **3** and **4**, respectively, through a variable slope (four parameters) fitting on GraphPad Prism.



**Figure S16.** Cytotoxicity (LDH readout) measurements of compounds **1** and **2** at varying concentrations, and of compounds **3** and **4** at fixed concentration of  $30 \ \mu$ M.