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Supplementary Table 1. The symbols used in this work and their meanings. 

Symbol Meaning 

Ns The number of selected samples 

NSSN The number of semantically sensitive neurons 

As(z) The weighted average activation of image z 

Ps(z) The semantic probability of image z in semantic space s 

Ne The number of repeated experiments 

p The number of features 

C The number of channels 

H, W The height and width of the feature map, respectively 

Nsp The number of superpixels 

NP The initial population of genomes 

𝑃𝑖=𝑐(𝑧) The output probability of the class c obtained from CNN 

e Spread from the average 

 

 

S.1: Supplementary information for the extraction of common traits 

In this work, a specific genetic algorithm is utilized to obtain the optimal combinations of 

superpixels for each sample. Here, an experiment is conducted to compare the common traits 

extracted from samples with and without experiencing the genetic algorithm, the results of which 

are displayed in Supplementary Fig. 1. From the figure, it is obvious that the common traits 

extracted from the best combinations of superpixels discovered by the genetic algorithm present 

more explicit semantic concepts compared with those without experiencing the genetic algorithm, 

which proves that the genetic algorithm assists to reduce interference and makes the extracted 

common traits more representative. 

From the visualization of the 1
st
, 2

nd
, and 3

rd
 PCs after the row-centered sample compression, 

it is discovered that different PCs present traits at different levels. Considering that the first several 

PCs contain a large number of common traits, it is interesting to visualize the last PC, which is 

shown in Supplementary Fig. 2. Here, we retain 299 PCs from 300 samples and the last PC is the 

299
th
 PC. From the figure, high-heeled shoes and a medicine bottle that constitute the background 

of the main images emerge in the visualization, which implies that the information ratio is closely 

related to the concentration of the common features. 

Here, we also provide the scores of the 1
st
 PC with different Ns utilizing different random 

seeds to select different samples, and the results are shown in Supplementary Fig. 3. From the 

figure, it can be seen that the 1
st
 PC is more stable when the Ns is larger. Furthermore, it is 

discovered that the scores of the 1
st
 PC exhibit a trend of proportional expansion and maintain a 

constant proportional relationship between the scores when Ns increases. This implies that the 

constant proportional relationship determines the content of the common traits, while the 

magnitude of the scores determines the number of common traits presented by the visualization. 
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Supplementary Fig. 1. Comparison between the common traits, including the 1
st
 PC, 2

nd
 PC, and 

3
rd

 PC extracted from samples with and without experiencing the genetic algorithm. The red frame 

refers to the semantic concepts that can be recognized explicitly. 

 

 

Supplementary Fig. 2. Visualization of the last PC (left) in the row-centered sample compression 

and partial enlarged pictures (right). 
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Supplementary Fig. 3. Scores of the 1
st
 PC with different Ns utilizing different random seeds to 

select different samples. 
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S.2: Extension of the proposed row-centered sample compression to general feature maps 

In this work, a row-centered sample compression (RSC) method is utilized to extract and visualize 

common traits of samples from CNN. In this section, the extension of the proposed RSC method 

to general feature maps is investigated. The size of the feature map for each sample is a C H W 

matrix, where C is the number of channels, and H and W are the height and width of the feature 

map, respectively. In this work, the feature map is degenerated to a vector with the length of C 

since the last layer is the global average pooling (GAP). In fact, the RSC method can be extended 

to common feature maps generally. For Ns feature maps extracted from Ns samples, the data matrix 

is Ns×C H W. The RSC for this data matrix can be conducted in the Ns×C submatrix for each 

point in the H W submatrix. For the H W times of the RSC, we uniformly retain k principal 

components and obtain the reduced submatrix with the size of k×C. Finally, we make the k×C and 

H W submatrices concrete to obtain the ultimate k×C H W matrix after the RSC.  

Here, we conduct the RSC on the feature maps of each layer in the network to further explore 

the differences between different layers, and the information ratio of the 1
st
 PC for each layer is 

illustrated in Supplementary Fig. 4. It is found that the information ratio of the 1
st
 PC exhibits a 

trend of first decreasing and then increasing with the deepening of layers. Particularly, the last 

global average pooling (GAP) layer greatly promotes the information ratio of the 1
st
 PC, which 

proves that it can realize dimension reduction, preserve spatial information extracted by the 

previous convolutional layers and pooling layers, and thus concentrate the common traits. 

Meanwhile, considering that the information ratio of the 1
st
 PC is closely related to the extraction 

of common traits, the convolutional layer and max pooling layer seem to contribute to 

concentrating the common traits, which may explain the powerful generalization ability of CNNs. 

The trend of information ratio of the 1
st
 PC also provides solid evidence that the shallow layers of 

the CNN acquire simple texture features that have more common traits, the middle layers acquire 

local features that have fewer common traits, and the deep layers acquire overall category 

information, i.e., semantic information, that has more common traits. 
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Supplementary Fig. 4. The information ratio of the 1
st
 PC for each layer in the network (upper) 

and partial enlarged pictures (lower). In the upper part, the label of the x-axis is the layer index, 

and the last layer is the global average pooling (GAP) layer. In the lower part, the label of the 

x-axis is the class of the layer. 

 

S.3: Supplementary information for the statistical explanation of semantic space 

In this work, the distribution is close to part of the normal distribution in the semantic space of 

cats‟ eyes. Here, we provide the probability density distribution plots of the values of the weighted 

average activation As for 3,000 samples of cats and dogs in different semantic spaces, including 

eyes, nose and legs, which are displayed in Supplementary Fig. 5. The respective quantile-quantile 

(q-q) plot, which is a graphical technique for determining if the given distribution is consistent 

with a normal distribution, is used. From the q-q plots, it is discovered that the R
2
 are all above 

0.97, which shows a strong correlation between the distribution and normal distribution in all 

semantic spaces. It is also worth noting that the distributions are consistent with the fitted normal 

distribution in the latter half, which proves that the distributions of semantic spaces are close to 

part of the normal distribution. Moreover, it is interesting to find that the distribution of the 

weighted average activation is actually close to part of the normal distribution and exhibits a slight 

difference. This is because the selected 3,000 samples cannot fully represent the concept of “cat” 

or “dog”, which means that the dataset itself is imperfect. It is also worth mentioning that the 

semantic concepts here can be defined arbitrarily in a way that humans can understand, which 

enhances the interpretability of the CNN.  
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Supplementary Fig. 5. Probability density distribution plots of the values of the weighted average 

activation As for 3,000 samples of cats (a) and dogs (c) in different semantic spaces, including 

eyes (left), nose (middle) and legs (right), where the red curves are the fitted normal distributions 

and the quantile-quantile (q-q) plots of the distribution for cats (b) and dogs (d), including eyes 

(left), nose (middle) and legs (right), and where the red lines are the quantile lines of the fitted 

normal distributions. 
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S.4: Extendibility of the S-XAI to other structures of CNN and multi-classification tasks 

In this section, we will provide more information about the extendibility of the S-XAI to other 

structures of CNN and multi-classification tasks. 

In this work, the VGG-19 network with a global average pooling (GAP) layer is employed 

mainly because the visualization of layers in the VGG-19 network has been proven to be effective 

and recognizable
1,2

. Here, we investigate the extendibility of our proposed S-XAI to other 

structures of CNN. We adopt the S-XAI to AlexNet with a GAP layer, and the results are shown in 

Supplementary Fig. 6. From the figure, it can be seen that S-XAI can also extract the semantic 

space in AlexNet, but accuracy is affected. First, the visualization of common traits extracted from 

AlexNet is so abstract that the semantic information is not explicit enough to be recognized like 

that in the VGG-19 network. In fact, in previous work, the visualization of AlexNet proves the 

existence of the phenomenon of distortion and abstraction
2
. However, the distorted silhouette still 

reveals some common traits that can differentiate cats and dogs. From the probability density 

distribution plot of the values of the weighted average activation and the q-q plot, it is discovered 

that although the distribution deviates more from the normal distribution compared with the 

VGG-19 network, the semantic probability can still represent the probability of the semantic 

concept well, which means that the semantic space is extracted successfully by S-XAI from 

AlexNet. In addition, it is found that the semantically sensitive neurons are similar for the cats‟ 

legs and dogs‟ legs in the semantic space, which makes it difficult to differentiate the cats‟ legs 

and dogs‟ legs in the semantic space. This suggests that AlexNet may not be highly sensitive to the 

legs of dogs and cats, which indicates that the ways of extracting semantic spaces may be different 

in different constructions of CNNs. 

For multi-classification tasks, the rules for generating semantic assessments need to be 

adjusted slightly. Here, we focus on explaining how CNN recognizes specific categories from the 

aspect of semantics. For each category, it is supposed that Nsc semantic concepts can be extracted. 

For each semantic concept, the corresponding semantic probability Pi can be calculated. In this 

work, if the maximum of Pi, Pmax, is larger than 0.5, the assessment is „I am sure it is…‟. If 

0.2<Pmax<0.5, the assessment is „It is probably…‟. If Pmax<0.2, the assessment is „I cannot see…‟. 

For each semantic concept, if the semantic probability Pi>0.5, the description is „vivid‟. If 

0.35<Pi<0.5, the description is „something like‟. If 0.2<Pi<0.35, the description is „perhaps‟. If the 

semantic probability Pi<0.2, no description is displayed. It is worth noting that if the difference 

between the semantic concept with the maximum P and the others is larger than 0.2, the S-XAI 

only outputs the central semantic concept with the maximum P. 
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Supplementary Fig. 6. The results of S-XAI for AlexNet. a, Visualization of the 1
st
, 2

nd
, and 3

rd
 

PCs for cats and dogs with Ns=300, respectively. b, Probability density distribution plot of the 

values of the weighted average activation As for 3,000 samples of cats in the semantic spaces of 

cats‟ eyes (left) where the red curve is the fitted normal distribution curve, and the 

quantile-quantile (q-q) plot of the distribution (right) where the red line is the quantile line of the 

fitted normal distribution. c, Samples located at the left (Peye<0.1) and right (Peye>0.9) ends of the 

distribution, respectively. d, The difference for the cats‟ legs (left) and dogs‟ legs (right), where the 

notations are the first five semantically sensitive neurons. 

 

S.5: Adversarial example identification 

Recently, many studies have been performed on adversarial samples, including L-BFGS
3
, FCSM

4
, 

PGD
5
, etc., the purpose of which is to impose noise that cannot be discerned by human eyes on the 

samples to reduce the confidence of the neural network and induce incorrect assessments, which 

poses a challenge for the neural network to guarantee its safety
6
. Methods of defense against 

adversarial examples have also been extensively studied
7–10

, the most notable of which is 

adversarial training that improves the robustness of DNNs against adversarial attacks by retraining 

the model on adversarial examples
4
. However, it is costly to retrain the neural network.  

In this work, we attempt to understand the adversarial example and identify it from the 

perspective of semantic space. PGD is chosen to attack the CNN as an example. By comparing the 

probability density distribution of natural samples and adversarial samples in the semantic space, 

it is found that the location of adversarial samples is very close to the right end of the fitted normal 

distribution of natural samples, which means that the semantic probability of adversarial samples 

is very close to 1 or even greater than 1. The radar maps of the true sample and adversarial sample 

are provided in Supplementary Fig. 7, which reveals that the semantic probabilities of the 

adversarial examples are unusually large compared with the true samples. This is because in order 

to achieve a high attack success rate, the adversarial samples often contain excessive information 

about the incorrect label, which means that its activation in semantic space is much higher than 

that in natural samples. Therefore, the semantic space can identify adversarial examples to a 

certain extent, the results of which are shown in Supplementary Table 2. The criterion for 

identifying the adversarial example is simple, in which one of the semantic probabilities is higher 

than 0.99 or more than one of the semantic probabilities is higher than 0.9. From the results, the 

accuracy of identification of adversarial examples shows that the stronger is the adversarial attack, 

the higher is the success rate of identification by S-XAI; whereas, the weaker is the adversarial 

attack, the lower is the success rate of identification by S-XAI. This demonstrates that the 

identification of adversarial examples via the semantic space limits the strength of adversarial 

attacks, so that the attacker has to incur a greater cost to find suitable parameters to control the 

strength of adversarial attacks. Considering that the attack methods of adversarial samples emerge 

in an endless stream, the proposed method is not invulnerable. However, because of its low 

defense cost, it is highly suitable to be integrated into defense methods to improve the success rate 

of defense. Overall, the semantic space sheds light on the defense of the adversarial example, and 

better defense techniques may be inspired from semantic space in the future. 
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Supplementary Fig. 7. Assessments given by humans (right), CNN (bottom), and S-XAI (bottom 

right) when identifying the true sample (a) and the adversarial example (b). 

 

Supplementary Table 2. The success rate of attack by PGD and the success rate of defense by 

S-XAI with different attack strengths. 

Parameters ε=0.05 ε=0.01 ε=0.005 

Success rate of attack 100 100 84 

Success rate of defense 100 38 0 

 

S.6: Supplementary discussions 

Although semantic spaces are successfully extracted in this work, certain shortcomings remain in 

the current research. First, the extraction of semantic space requires masking the semantic 

concepts in samples, which is completed manually. Although we have experimentally proven that 

only 100 masked images are sufficient to extract the semantic space well, manual annotation is 

still a major limitation, especially when faced with large-scale semantic space extraction with 

numerous semantic concepts and categories. Some other techniques, such as semantic 

segmentation or annotation-free techniques, for extracting object parts may assist to solve this 

problem. Second, numerous semantic concepts exist that are difficult to be masked in the image. 

For example, in this work, we use a set of typical semantic concepts to explain the CNN, including 

eyes, nose, and legs. However, certain infrequent semantic concepts, such as paws, beards or tails, 

are difficult to include. 

 

S.7: Details of superpixel segmentation 

The detailed process of superpixel segmentation is provided here. First, the image is converted 

into CIELAB color space [l, a, b]
T
. Then, ks seed points (or cluster centers) are randomly 

initialized by sprinkling ks points on the image on average, which evenly fills the entire image. For 

the 3×3 area centered on each seed point, the gradient value of each pixel is calculated, and the 

point with the smallest value is selected as the new seed point, which aims to prevent the seed 
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point from falling on the outline boundary. Afterwards, distance metrics for all pixels in the 2S*2S 

square area around the seed point are calculated, where S=√
𝑁sp

𝑘𝑠
 and Nsp is the number of image 

pixels. The distance metric D between the pixels i and j is as follows: 
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where dc is the color metric; ds is the spatial metric; and [x, y]
T
 is the pixel position. Since each 

pixel on the image may have several distance metrics calculated by different seed points, the seed 

point corresponding to the smallest distance metric is selected as its cluster center. This process 

will continue until the residual reaches the threshold set beforehand. 

 

S.8: Comparison with existing methods 

As demonstrated in the main text, there are three mainstream ways to interpret CNN, including 

feature visualization, network diagnosis, and structure modification. In this section, we will 

compare our proposed S-XAI with these methods. 

Firstly, feature visualization is the most straightforward way to see what the CNN learns 

when classifying samples. Here, we compare the S-XAI with two mainstream ways, including 

gradient descent with total variance regularization (GDTV) and deep image prior
1,2

, and the results 

are provided in Supplementary Fig. 8. These methods are devoted to visualizing the feature map 

of individual samples to show the feature „seen‟ by CNN. From the figure, it is evident that both 

methods can present vague features, which can interpret CNN to some extent. However, the 

semantic concepts are unclear, and the visualized features are individual traits. In comparison, the 

common traits extracted by S-XAI from CNN are distinct and contain abundant semantic 

information. Secondly, for network diagnosis methods, the semantic information is recessive and 

can only be reflected by diagnosing a pre-trained CNN (e.g., Grad-CAM). In contrast, the 

proposed S-XAI can extract and visualize explicit semantic space, which is straightforward and 

easy to understand. Finally, compared with structure modification methods that adjust the structure 

of CNN for better interpretability, our proposed S-XAI does not need to adjust the CNN structure, 

which is superior regarding practical applications. 
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Supplementary Fig. 8. Comparison with existing CNN interpretation methods regarding 

feature visualization. 
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