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1 Priors

The Bayesian hierarchical nowcasting models used in this paper are specified in Eq (1)-(3) in Sec
Materials and Methods. The priors used are found in Table S1.

Table S1. Prior distributions used for the Bayesian hieracical models.

Parameters

σ ∼ N+(0, 0.5)

γd = logit(pd/
∑D

i=d pi), p ∼ Dir(1, ..., 1)
η ∼ N(0, ση), ση ∼ N+(0, 0.5)
ϕ−1 ∼ U[0, 1]
β0 ∼ N(0, 0.2) Only model L(M)
βi ∼ N(0, 0.5) , i = 1, ..., k. Only model L(M) and RL(M)

N+ denotes the half-normal distribution. The common priors are the same for model R, L(M),
RL(M). Model specific parameters β0 is used only in model L(M) and βi, i = 1, ..., k, is used only
in models L(M) and RL(M).

2 Reported and unreported events

The data used for our analysis comes from the public health agency of Sweden [1]. New reports
were available Tuesday throughout Friday (excluding public holidays), which means that there
will be gaps in the reporting triangle as it is presented in Fig 1. The reporting triangle for
reported Swedish COVID-19 fatalities as of 2020-12-30 is shown in Fig S1A. The green upper
triangle are the number of reported reported fatalities and the yellow lower triangle are what is
yet unreported. Fig S1B also shows the number of reported (green) and unreported (yellow)
number of fatalities for the same period of time where we can see that the reported number of
events show a declining trend while the actual number of daily fatalities was at the time
increasing. Any empty element in the reporting triangle in Fig S1A means that there was no
reporting for this reference day and reporting delay. The diagonal lines of empty elements
corresponds to days of non reporting. These days are known to be have zero reporting probability.
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Fig S1. Reporting triangle for Swedish COVID-19 fatalities (A) and reported and unreported
fatalities (B) as of 2020-12-30. The figures show what is reported (green) and unreported
(yellow). The empty elements of the reporting triangle means that there was no reporting for this
day and days reporting delay. The diagonal lines of empty elements represents days when no
reporting occurs. Here non-reporting days are Saturday-Monday and public holidays.

3 Evaluation of nowcasts as of 2020-12-30

In this section we present detailed results of nowcasts evaluated at reference day T=2020-12-30.
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3.1 Cumulative reporting probability

The cumulative reporting probability is the proportion of reported case fatalities until a certain
number of days reporting delay. E.g. if the cumulative probability until 10 days reporting day is
40%, it means that 40% of the cases will be reported within 10 days. In Fig S2, the cumulative
reporting probability is shown for the nowcasts estimates for the three models R, L(ICU), and
RL(ICU) estimated with the information available as of 2020-12-30 together with the empirical
fraction of reported fatalities (known only in hindsight).

Fig S2. The empirical and estimated cumulative reporting probability of the nowcasts as of
T=2020-12-30 for the three models; R, L(ICU), and RL(ICU). For a specific date, the cumulative
reporting probability is the fraction of case fatalities occurring on that date reported within a
given number of days.

The empirical fraction of the reported fatalities shows a clear weekly pattern but with high
irregularities in the reporting from week to week (Fig S2A). One can also note the increase in the
reporting delay over time as there is a bigger fraction of longer delays towards the end of the
observation window. The three nowcasting models manage to capture the overall weekly pattern
as well as the increase in the reporting delay. The cumulative reporting probability is
supplementary to Fig 4 in the sense that it also illustrates the estimated reporting delay
distribution for the period 2020-11-25–2020-12-30, estimated by the nowcast models with the
information available as of 2020-12-30. One can observe that model L(ICU) (Fig S2C)
underestimate the reporting delay for the last week of the observation window, leading to an
underestimation of the case fatalities for this period. In contrast to model R and RL(ICU)
Fig S2B and S2D) that manage to capture the increase in reporting delay to a higher extent. No
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case fatalities were reported within the same day for this period.

3.2 Performance metrics and running times

Nowcasts for reference date T=2020-12-30 for model R, L(ICU) and RL(ICU) are shown in Fig 4.
In Table S2 we present detailed results in the form of the four evaluation metrics described in Sec
Evaluation metrics and running times. We also include results of using reported cases as a second
leading indicator in model L(Cases, ICU) and RL(Cases, ICU).

Table S2. Results of retrospective evaluation and running times of nowcasting
COVID-19 related fatalities in Ssameweden of one specific reporting date
2020-12-30.

Score R L(ICU) RL(ICU) L(Cases, ICU) RL(Cases, ICU)

CRPS 8.49 14.64 8.00 9.15 8.04
logS 4.25 4.84 4.15 4.19 4.13
RMSE 11.57 19.86 11.00 13.86 11.14

Cov. 75% PI 100% 42.9% 100% 85.7% 85.7%
Cov. 90% PI 100% 71.4% 100% 100% 100%
Cov. 95% PI 100% 85.5% 100% 100% 100 %

Running time (sek) 107 62 288 601 374

CRPS is the continuous ranked probability score, logS is the log score, and RMSE denotes the
root mean squared error of the posterior median. Additionally, we provide coverage frequencies
of 75%, 90% and 95% credibility intervals in the estimation of the daily number of case fatalities.
The scores are averaged over nowcasts for day T, ..., T − 6, T=2020-12-30.

The results for this reporting date entail similar performance of model R and RL(ICU) and
RL(Cases, ICU). The scores are similar and all three models have satisfactory PI coverage.
Model L(ICU) has low of CRPS compared to model R and RL(ICU) but, as also could be seen in
Fig 4, a low PI coverage. A low coverage means that the predictions of this model can not be
trusted. Also the RMSE is large which indicate that there is a large deviation of the posterior
mean from the observed value. Because of the low PI coverage and high RMSE we consider the
performance poor of model L(ICU) for this reporting date. Model L(ICU) was the fastest model
with 62 s compared to model R 102 s and model RL(ICU) 288 s. Adding reported cases as a
second leading indicator increased running times for both model L and RL and there was no
observed improved predictive performance when including the second leading indicator.

These results are just for one single reporting date which does not give a complete picture of
the model performance. In Table 1 we average the evaluation metrics over all reporting dates in
the evaluation period giving a more solid foundation to base any conclusion about the model
performance on. Yet since we illustrate the results for these nowcasts in Fig 4 we also present the
corresponding numerical results given by the scoring metrics and the PI coverage.

4 Regression coefficients

The estimated regression coefficients for model L(ICU) and RL(ICU) for each reporting date T in
the evaluation period is shown in Fig S3. The regression coefficient is not time-varying for a
single estimated nowcast but is reestimated at each reporting date. In the beginning of the
evaluation period, the intercept β0 of model L(ICU) is stable at a low level and the regression
coefficient β1 is increasing as both ICU admissions and case fatalities are increasing. In Jan 2021
when the vaccination is introduced, the association becomes less strong and the β1 coefficient is
decreasing and instead we see an increase of the intercept. When the ICU admissions start to rise
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again due to the delta wave, the association also rises, but this time on false premises since the
association now is less strong, resulting in the bad performance of this model in the period of
2021-02-15–2021-03-15. Eventually, the new association are captured by the model and the final
two weeks of the evaluation period the model has a stable intercept β0 and a low estimate of β1.

Fig S3. Estimated regression coefficients for L(ICU) and RL(ICU. The solid lines are the
median of the posterior predictive distribution of β0 and β1 and the shaded areas indicate the
equal-tailed point-wise 95% Bayesian prediction interval.

The estimated regression coefficient β1 of model RL(ICU) (Fig S3C), where the leading
indicator is the weekly change in ICU admissions, is more constant until the introduction of
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vaccines. After that both ICU admission and fatalities drop, and the estimated association stays
positive. During the delta wave, the case fatalities continue to decrease while the ICU admissions
start to rise, hence the estimated negative association during April 2021. The final two weeks of
the observation period, the median of the posterior distribution of β1 is centered around zero.

5 Multiple data streams

In addition to using ICU admission as a single leading indicator, we also use reported cases and
the combination of reported cases and ICU admissions as leading indicators. In Fig S4, the result
of the model RL(Cases) and RL(Cases, ICU) is shown.

Fig S4. Median of the posterior predictive distribution of N̂T (solid line) and a 95% PI, and the
actual number of fatalities (known in hindsight) for each reporting date T in the evaluation
period.

The predictive performance of models RL(Cases) and RL(Cases, ICU) is worse compared to
model RL(ICU). The association between the reported cases and the case fatalities appears to be
lower than for the ICU admissions, which explains that there is no gain in including the reported
cases as a leading indicator. The time series of reported cases heavily depends on the reporting
capacity and strategy, as well as the propensity of the general public to get tested, which all has
been changing rapidly under the course of the pandemic. The association between the ICU
admissions and case fatalities has been more stable throughout the pandemic (with the exception
of the introduction of the vaccines in Jan 2021) making the ICU admissions a suitable leading
indicator for our application of nowcasting the Swedish COVID-19 case fatalities.
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6 AR(2) model for λt

We investigated if a autoregressive (AR) model of order 2 would improve the predictive
performance of the nowcasts compared to the simple random walk used in model R. In the
comparison we used model R with λt defined as in Eq (1) and a AR(2) model specified as

log(λt)|λt−1, λt−2, β1, β2 ∼ N(β1 log(λt−1) + β2 log(λt−2), σ
2), (1)

where t = 2, . . . , T and βi coefficient of log(λt − i). We denote this model R2.
Models R and R2 are evaluated at 11 reporting dates (every 10th reporting date in the

evaluation period) for this comparison. The numerical results of the scores and PI coverage are
found in Table S3.

Table S3. Results of retrospective evaluation of nowcasting COVID-19 related
fatalities in Sweden of the random walk model R and a second order random walk
model R2.

Score R AR2

CRPS 5.45 6.53
logS 3.29 3.32
RMSE 7.75 9.06

Cov. 75% PI 85.7% 80.5%
Cov. 90% PI 96.1% 90.9%
Cov. 95% PI 98.7% 97.4%

Scores and PI coverage for model R and R2. The evaluation metrics are averaged over nowcasts
for day T − 6, . . . , T − 0 for the 11 various reporting dates T .

For our application it seams that a the AR model for λt does not improve the predictive
performance of the nowcasting but we do not exclude that this could be worth further exploring.

7 Comparison to Bastos et al. (2019)

In this section, we compare our proposed Bayesian nowcasting model with a popular alternative
nowcasting approach based on log-linear models that is strongly related to the so-called
chain-ladder method for loss reserving [2]. The Bayesian nowcasting model used here and
elsewhere [3, 4, 5] employs the approach of splitting the nowcasting problem into two submodels,

one for the expected total number of cases with reference time t, E(Nt) = E(
∑D

d=1 nt,d) = λt,
and the second for characterizing the reporting delay
pt,d = P (reporting delay = d|reference time = t), conditional on the reference time t. Those two
submodels are then combined to specify the likelihood of the observed data, the entries of the
reporting triangle nt,d, via their expected value E(nt,d) = λt × pt,d and all parameters are jointly
estimated via MCMC. In contrast, the chain-ladder based models directly formulate a log-linear
model for the entries of the reporting triangle, E(nt,d) = λt,d. In the simplest case, this log-linear
model is of the form

log(λt,d) = µ+ αt + βd. (2)

In this model αt represents (multiplicative) changes in the expected case counts over time in a
non-parametric way, and the parameters βd characterize a time-constant delay distribution.
Variations and extensions of this model have been used already early for monitoring infectious
disease counts, e.g., by Zeger et al. [6] using a spline for modeling time trends in the overall case
counts instead of the non-parametric effects αt. Recently, Bastos et al. [7] proposed an extended
Bayesian version of the chain-ladder model, that also includes time-delay interaction terms as
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well as seasonal terms and allows the incorporation of covariates in the log-linear model. As this
Bayesian chain-ladder model shows many similarities with our hierarchical Bayesian model with
leading indicators, we set out to compare them in more detail.

7.1 Model without leading indicators

7.1.1 Time-constant delay distribution

We start the model comparison based on a simple nowcasting model assuming a time-constant
delay distribution. In the framework of Bastos et al. [7] we can formulate this model by
specifying the expected number of cases with reference time t and reported with a delay of d time
steps, E(nt,d) = λt,d as in the standard chain-ladder model in Eq (2), as

log(λt,d) = µ+ αt + βd.

For estimation of the parameters in a Bayesian context, Bastos et al. [7] propose random-walk
prior distributions that represent a smootheness asumption: αt ∼ N(αt−1, σα),
βd ∼ N(βd−1, σβ), and specify some identifiability constraints.

To compare this model with ours, we derive the expected number of total cases with reference
time t, i.e., Nt =

∑D
d=0 nt,d. In the Bastos et al. [7] model this corresponds to

E(Nt) = λt = E(

D∑
d=0

nt,d) =

D∑
d=0

E(nt,d) =

D∑
d=0

λt,d

=

D∑
d=0

eµ+αt+βd

= eµ+αt ×
D∑

d=0

eβd

To interpret the first-order random walk prior for αt in the context of the expected number of
cases with reference time t, λt, we solve for αt:

αt = log
( λt

eµ ×
∑D

d=0 e
βd

)
= log

(λt

c

)
= log(λt)− log(c).

A first order random walk prior for αt ∼ N(αt−1, σα) implies

αt = αt−1 + ϵt

⇔ log(λt)− log(c) = log(λt−1)− log(c) + ϵt,

with ϵt ∼ N(0, σα), i.e.,
log(λt) ∼ N(log(λt−1), σα).

This corresponds to the prior distribution for λt that we use in our baseline model (called
model R in the manuscript).

7.1.2 Time-varying delay distribution

Our hierarchical Bayesian model allows us to combine the first-order random walk model for
log(λt) with a separate discrete time hazard model for the reporting delay that can be flexibly
specified to account for changes in the reporting delay distribution over time.
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One way to achieve changes in the reporting delay distribution over time in the log-linear
model framework of Bastos et al. [7] is to include time-delay interaction terms γt,d into the model:

log(λt,d) = µ+ αt + βd + γt,d. (3)

Note that Bastos et al. [7] propose a specific prior for modelling the γt,d’s that they refer to as a
first-order random walk on each delay-column, i.e., γt,d ∼ N(γt−1,d, σγ), but the following
derivations are independent of this prior.

Based on Eq (5), one can derive the expected total number of cases with reference time t as:

E(nt) = λt = E(

D∑
d=0

nt,d) =

D∑
d=0

E(nt,d) =

D∑
d=0

λt,d

=

D∑
d=0

eµ+αt+βd+γt,d

= eµ × eαt ×
D∑

d=0

eβd ×
D∑

d=0

eγt,d ,

and we can solve for αt as:

αt = log
( λt

eµ ×
∑D

d=0 e
βd ×

∑D
d=0 e

γt,d

)
= log

( λt

c×
∑D

d=0 e
γt,d

)
= log(λt)− log(c)− log(

D∑
d=0

eγt,d). (4)

The random walk prior for αt corresponds then to

αt = αt−1 + ϵt

⇔ log(λt) = log(λt−1) + log(

D∑
d=0

eγt,d)− log(

D∑
d=0

eγt−1,d) + ϵi. (5)

The model-based expected total number of cases with reference time t, E(nt) = λt, depends
therefore not only on the expected total cases of time t− 1, but also on parameters characterizing
differences in the reporting delay distribution of consecutive time points. There is no clear
separation between a model for the time trend in total counts and the (time-varying) reporting
delay distribution.

7.2 Model with leading indicator

We are now interested in modelling the expected number of cases with reference time t based on
a (log-linear) model with a leading indicator as covariate. For this, we assume that we have some
data on a covariate xt available, which is supposed to be used in modeling λt. When the goal of
the nowcasting is to make inference about the expected number of fatalities at day t, xt could be
the (smoothed) number of reported hospitalizations at day t− l, where l is the average time
between hospitalization and death to capture the time-lag between the leading indicator and the
time-series of interest in the nowcasting application.

7.2.1 Time-constant delay distribution

Bastos et al. [7] argue that it is straightforward to include covariates in the log-linear model for
the entries of the reporting triangle. In principle, those covariates can be specific for each entry

9



(i.e., a covariate xt,d, for example when being interested in estimating a week-day effect for a
reporting day t+ d, or specific for the reference time t. The latter is what we are interested in
when using a leading indicator xt for modeling the overall number of cases with reference time t.
Without additional time-delay interaction terms or seasonal effects, this model corresponds to

log(λt,d) = µ+ αt + βd + δxt,

where there are still first-order random walk priors used for the parameters αt, and βd. For the
expected total number of cases with reference time t, we can derive:

λt =

D∑
d=0

eµ+αt+βd+δxt

= eµ × eαt × eδxt ×
D∑

d=0

eβd ,

⇔ log(λt) = µ+ αt + δxt + log(

D∑
d=0

eβd)

= µ∗ + αt + δxt. (6)

The first-order random walk prior for αt ∼ N(αt−1, σα) can also be expressed as

αt = α1 +
∑t

k=2 ϵk, with prior ϵk
iid∼ N(0, σα).

We can rewrite Eq (6) therefore as

log(λt) = µ∗ + αt + δxt

= µ∗ + α1 +

t∑
k=2

ϵk + δxt

= log(λt−1)− δxt−1 + ϵt + δxt

= log(λt−1) + ϵt + δ(xt − xt−1). (7)

This corresponds to a first-order random walk assumption:

log(λt) ∼ N(log(λt−1) + δ(xt − xt−1), σα),

which is close to the model RL(M) from our manuscript, when the leading indicator mi,t is
defined as first-order differences in the (lagged) leading indicator.

7.2.2 Time-varying delay distribution

Now, we are again interested in the inclusion of time-delay interaction terms into the model of
Bastos et al. [7] to account for potential changes in the reporting delay distribution over time.

log(λt,d) = µ+ αt + βd + γt,d + δxt.

Here

λt = E(

D∑
d=0

nt,d) =

D∑
d=0

E(nt,d) =

D∑
d=0

λt,d

=

D∑
d=0

eµ+αt+βd+γt,d+δxt

= eµ × eαt × eδxt ×
D∑

d=0

eβd ×
D∑

d=0

eγt,d ,

10



and

αt = log
( λt

eµ × eδxt ×
∑D

d=0 e
βd ×

∑D
d=0 e

γt,d

)
= log

( λt

c× eδxt ×
∑D

d=0 e
γt,d

)
= log(λt)− log(c)− δxt − log(

D∑
d=0

eγt,d).

The random walk prior for αt corresponds then to

αt = αt−1 + ϵt

⇔ log(λt) = log(λt−1) + log(

D∑
d=0

eγt,d)− log(

D∑
d=0

eγt−1,d) + δ(xt − xt−1) + ϵt. (8)

In this case, the expected number of total cases with reference time t depends again not only
on (differences of) the leading indicator and the expected number of cases for the previous
reference time t− 1, but also on the magnitude of changes in the reporting delay distribution at
consecutive time points.

7.3 Summary of the comparison

Our Bayesian hierarchical nowcasting and the extension of chain-ladder nowcasting by Bastos et
al. [7] show strong similarities. In a simple model with the assumption of a time-constant delay
distribution, the proposed models can be seen as identical with respect to their model for the
expected total case counts for a specific reference time t. This is also true for the model including
a leading indicator, when the leading indicator is defined in a specific way in the context of the
Bayesian hierarchical model. The Bayesian hierarchical model has the advantage that it allows
the direct specification of separate models for (i) the expected total case counts with reference
time t and (ii) the time-varying delay distribution in an intuitive and well-interpretable way.
This allows the user to incorporate knowledge of the reporting process (e.g., weekday effects)
directly in the model for reporting delay distribution. The chain-ladder extension is also able to
incorporate time changes in the delay distribution into the model, either based on time-delay
interaction terms or based on time-delay specific covariates. As we have shown with the
examples in equations (5) and (8), this can, however, have unexpected implications for the
expectation model for the total case numbers per reference time. This makes estimated
parameters also hard to interpret. We think that both modelling frameworks provide sufficient
flexibility to formulate meaningful nowcasting models in many application situations. In concrete
applications, the predictive performance of a model depends on how well specific characteristics
of the reporting process (and potentially the relationship between the leading indicator and the
target time series) can be represented. Here we think that the better interpretability of the
Bayesian nowcasting approach can be very helpful for an adequate model specification.
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