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reported fatalities during the COVID-19 pandemic in Sweden. Nowcasting methods
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Abstract

The real-time analysis of infectious disease surveillance data is essential in obtaining
situational awareness about the current dynamics of an adverse health event such as the
COVID-19 pandemic. This analysis, of e.g. time-series of reported cases or fatalities, is
complicated by reporting delays that lead to underreporting of the number of events for
the most recent time points. This can lead to misconceptions by the interpreter, for
instance the media or the public, as was the case with the time-series of reported
fatalities during the COVID-19 pandemic in Sweden. Nowcasting methods provide
real-time estimates of the complete number of events using the incomplete time-series of
currently reported events and information about the reporting delays from the past. In
this paper we consider nowcasting the number of COVID-19-related fatalities in Sweden.
We propose a flexible Bayesian approach, extending existing nowcasting methods by
incorporating regression components to accommodate additional information provided
by leading indicators such as time-series of the number of reported cases and ICU
admissions. We show by a retrospective evaluation that the inclusion of ICU admissions
as a leading signal improved the nowcasting performance of case fatalities for COVID-19
in Sweden compared to existing methods.

Author summary

Nowcasting methods are an essential tool to provide situational awareness in a pandemic.
The methods aim to provide real-time estimates of the complete number of events using
the incomplete time-series of currently reported events and the information about the
reporting delays from the past. In this paper we consider nowcasting the number of
COVID-19 related fatalities in Sweden. We propose a Bayesian approach, extending
existing nowcasting methods by incorporating regression components to accommodate
additional information provided by leading indicators such as time-series of the number
of reported cases and ICU admissions. We use a retrospective evaluation covering the
second (alpha) and third (delta) wave of COVID-19 in Sweden to assess the performance
of the proposed method. We show that the inclusion of ICU admissions as a regression
component improved the nowcasting performance (measured by the CRPS score) of case
fatalities for COVID-19 in Sweden by 4.2% compared to an established method.
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Introduction 1

The real-time analysis of infectious disease surveillance data, e.g. in the form of 2

time-series of reported cases or fatalities, is one of the essential components in shaping 3

the response during infectious disease outbreaks such as major food-borne outbreaks or 4

the COVID-19 pandemic. Public health agencies and governments typically use this 5

type of monitoring to assess the disease dynamics and plan and assess the effectiveness 6

of preventive actions [1, 2]. Such real-time analysis is complicated by reporting delays 7

that give rise to occurred-but-not-yet-reported events which may lead to underestimation 8

of the complete number of reported events [3]. Fig 1 illustrates the problem with data 9

of Swedish COVID-19-related fatalities as of 2022-02-01. While the reported number of 10

fatalities per day suggested a declining trend, data available two months later [4] 11

revealed that the number at the time was actually increasing. 12

Fig 1. Daily COVID-19 fatalities in Sweden. Reported (black bars) and
unreported (grey bars) number of daily fatalities as of 2022-02-01. The reported number
of events show a declining trend when in actuality (known in hindsight) it was
increasing.

Nowcasting methods [5–7] tackle this problem by providing real-time estimates of 13

the complete number of events using the incomplete time-series of currently observed 14

events and information about the reporting delay from the past. The methods have 15

connections to insurance claims-reserving [8] and its epidemiological applications trace 16

back to HIV modelling [3, 9, 10]. Nowcasting methods has been used in COVID-19 17

analysis for daily infections [11–13], and fatalities [14–16]. A Bayesian approach to 18

nowcasting, which constitutes the foundation of our method, was developed by Höhle 19

and an der Heiden [6] and later extended by Günther et al. [17] and McGough et al. [7]. 20

Most nowcasting methods are focused on estimating the reporting delay distribution; 21

however, an epidemic contains a temporal dependence since –depending on the mode of 22

transmission– adheres to certain “laws”, e.g. contact behavior which only changes 23

July 19, 2022 2/14



slowly. Taking the temporal dependence of the underlying disease transmission into 24

account has been shown to improve the nowcasting performance [7, 17]. Another 25

approach to nowcasting, not considering the reporting delay distribution, is to use other 26

data sources that are sufficiently correlated with the time series of interests, e.g. the 27

Machine Learning approach by Peng et al. [18]. 28

Our approach for nowcasting Swedish COVID-19 fatalities is based on a flexible 29

Bayesian hierarchical model that can account for temporal changes in the reporting 30

delay distribution and handle various reporting structures. As an extension to existing 31

methods [6, 17] this method incorporates a regression component of additional 32

correlated data streams. We appraise the following two additional data streams; the 33

time-series of the number of Intensive Care Unit (ICU) admissions and reported cases. 34

The disease stages (infected, hospital, ICU, death) have a time order and the number of 35

new entries in one of the earlier compartments can help estimate what will happen for 36

the later stages. As the additional data streams are assumed to be ahead in time of the 37

fatalities, we use them as leading indicators for the event of interest. 38

In this paper, we present methodological details of our approach and compare the 39

results to existing nowcasting methods to illustrate the implication of incorporating 40

additional data streams associated with the number of fatalities. We show with a 41

retrospective evaluation of our method that nowcasting with leading indicators can 42

improve performance compared to existing methods. 43

Materials and methods 44

Data 45

The surveillance data used for the analysis in this paper are daily counts of fatalities 46

and ICU admissions and reported cases of people with a laboratory-confirmed 47

SARS-CoV-2 infection in Sweden. The chosen period ranges from 2020-10-20 to 48

2021-05-21 and contains 117 reporting days (Tuesday to Friday excluding public 49

holidays). During this period, there were 951 646 reported cases, 4 734 ICU admissions 50

and 8 656 fatalities. The evaluation period covers Sweden’s second (alpha) and third 51

wave (delta) of COVID-19-related fatalities. In addition, this period also covers the 52

introduction of vaccination which meant a change in the association between reported 53

cases or ICU admissions and the fatalities. The times series of the number of reported 54

cases, ICU admissions, and deaths can be seen in Fig 2. The figure shows that the rise 55

and fall of the three time series follow a similar time trend, with some time delay, 56

during the first wave. However, in the second wave, the relative association between the 57

fatalities and the other disease stages becomes less substantial, the main reason being 58

the introduction of vaccination starting 2020-12-27 in Sweden. 59

The data used in our analysis is publicly available from the website of the Public 60

Health Agency of Sweden [4], where new reports have been published daily from 61

Tuesday to Friday (excluding public holidays). The aggregated daily counts are updated 62

retrospectively at each reporting date. As the case fatalities are associated with a 63

reporting delay, this implies that the published time series of reported COVID-19 64

fatalities will always show a declining trend (see Fig 1 for an illustrative example). The 65

reporting delay can not be observed in a single published report but can be obtained by 66

comparing the aggregated numbers of fatalities of each date from previously published 67

reports. 68
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Fig 2. Reported cases, ICU admissions and fatalities with COVID-19 in
Sweden. The period covers the second (alpha) and third (delta) wave and the start of
vaccination in Dec 2020. Each time series is shown with a 3-week centered rolling
average and scaled by its maximum value.

Nowcasting 69

The notation and methodological details of our approach follows closely the notation 70

introduced in Günther et al. [17]. Let nt,d, be the number of fatalities occurring on day 71

t = 0, ..., T and reported with a delay of d = 0, 1, 2, ... days, such that the reporting 72

occurs on day t+ d. The goal of Nowcasting is to infer the total number of fatalities Nt 73

of day t based on the information available on the current day T ≥ t. The sum Nt can 74

be written as 75

Nt =

∞∑
d=0

nt,d =

T−t∑
d=0

nt,d +

∞∑
d=T−t+1

nt,d,

where the first sum is observed and the second sum is yet unknown. This can be 76

illustrated by the so called reporting triangle (Fig 3). Where the upper left triangle are 77

the number of reported fatalities and the lower right triangle is the number of occurred- 78

but-not-yet-reported events with a maximum delay of D days. The upper triangle 79

carries the information about the reporting delay from the past and the lower triangle is 80

what is estimated with the Nowcasting model. 81

We let λt denote the expected value of Nt, and pt,d denote the conditional 82

probability of a fatality occurring on day t being reported with a delay of d days. Then, 83

the number of events occurring on day t with a delay of d days is assumed to be 84

negative binomial distributed 85

nt,d|λt, pt,d ∼ NB(λt · pt,d, ϕ),

with mean λt · pt,d and overdispersion parameter ϕ. Hence, the Nowcasting task can be 86

seen as having two parts; (1) determine the expected value of the total number of 87

fatalities and (2) determine the reporting delay distribution to subsequently predict the 88

nt,d’s and finally compute the Nt’s. 89
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Fig 3. Reporting triangle for day T. Green boxes (solid line) where t ≤ T −D are
the reported number of fatalities on day T (today), considering a maximum delay of D
days. The red boxes (dashed line), corresponding to t > T −D, are the occurred-but-
not-yet-reported number of events of day t+D.

Flexible Bayesian Nowcasting 90

As described in the previous section, the nowcasting problem can be seen as a problem 91

of the joint estimation of two models: (1) a model for the expected number of deaths 92

over time, and (2) a model for the reporting delay distribution, which can also vary over 93

time. Therefore, we let our model constitute of two distinct elements; (1) the underlying 94

epidemic curve determining the expected number of fatalities λt and (2) the reporting 95

delay distribution determining pt,d. We will in the following describe the structure of 96

each. 97

Component 1: The expected number of fatalities 98

Let λt = E[Nt] denote the expected total number of fatalities occurring on day t. We 99

specify a baseline model for λt as 100

log(λt)|λt−1 ∼ N(log(λt−1), σ
2), (1)

where t = 0, ..., T and d = 0, ..., D. Time t = 0 is assumed to be the start of the chosen 101

observation period, e.g. the start of the pandemic. This approach to model λt as a 102

Random Walk on the log scale is proposed by McGough et al. [7] and Günther et 103

al. [17]. Here, we will refer to it as model R. 104

An alternative to model R in Eq (1) is to assume that we can predict the total 105

number of fatalities with additional data streams associated with the event of interest. 106

The additional data streams are assumed to be ahead in time compared to the time 107

series of interest, e.g. due to the tracked event of the stream being at an earlier stage in 108

a typical COVID-19 disease progression or because of a smaller reporting delay; e.g. the 109

number of reported cases and hospitalizations, etc. Hence, we can use the additional 110
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data stream as a leading indicator in the Nowcasting model. One approach is to 111

consider the number of fatalities as some time-varying fraction of the numbers in those 112

additional data streams. We denote the i’th of the k leading indicators at time t as mi,t 113

and specify an regression type model for λt as follows: 114

log(λt)|m1,t, ...mn,t ∼ N

(
β0 +

k∑
i=1

βimi,t, σ
2

)
, (2)

where the β0 is an intercept and βi denotes the additive effect of the i’th stream on the 115

log of the mean of λ. With this model specification, we assume a strong association 116

between the case fatalities and the k data streams suitably measured some days earlier. 117

We will refer to this model as L(mi). 118

Furthermore, we propose another approach combining the random walk component 119

of the model in Eq (1) and the additional data streams of Eq (2). Here, we let the 120

leading indicators be the relative change in e.g. case reports or hospitalizations. In 121

other words, we assume that if there is an increase in the leading indicator, we also 122

expect an increase in the number of fatalities. An increase in case reports is not 123

expected to give an instant increase in the number of deaths but rather with some time 124

delay, so as for the model in Eq (2), the leading indicators need to be specified with a 125

suitable time delay. We specify this alternative model for λt as 126

log(λt)|λt−1,m1,t, ...,mn,t ∼ N

(
log(λt−1) +

k∑
i=1

βimi,t, σ
2

)
, (3)

where the βi’s are again considered as regression coefficients for the leading indicator 127

mi. This approach combines an established method [17] with additional information 128

that is informative of the events of interest. We note that when the β-coefficients of this 129

model are zero, this model becomes identical to the model specified in Eq (1). This 130

model will be referred to as RL(mi). 131

Component 2: The reporting delay distribution 132

The model for the reporting delay distribution at day t is specifying the probability of a 133

reporting delay of d days for a fatality occurring on day t. We denote this conditional 134

probability 135

pt,d = P (delay = d|fatality day = t).

Similarly to Günther et al. [17], we model the delay distribution as a discrete time 136

hazard model ht,d = P (delay = d|delay ≥ d,Wt,d) as 137

logit(ht,d) = γd +W ′
t,dη, (4)

where d = 0, ..., D − 1, ht,D = 1, γd is a constant, Wt,d being a vector of time- and 138

delay-specific covariates and η the covariate effects. It can be shown how the reporting 139

probabilities are derived from Eq (4) [17]. We are using linear effects of the time on the 140

logit-scale with break-points every two weeks before the current day to allow for 141

changing dynamics in the reporting delay distribution over time. We also use a 142

categorical weekday effect to account for the weekly structure of the reporting. 143

Inference and implementation 144

Inference for the hierarchical Bayesian nowcasting model is done by Markov Chain 145

Monte Carlo using R-Stan [19] extending the work of Günther et al. [17]. In order to 146

ensure reproducibility and transparency, the R-Code [20] and data used for the analysis 147

is available from https://github.com/fannybergstrom/nowcasting_covid19. 148
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Results 149

Application to fatalities 150

We apply the nowcasting methods to reported COVID-19 fatalities in Sweden and let 151

the number of reported cases and COVID-19 associated ICU admissions act as two 152

leading indicators. The reporting of ICU admissions is also associated with a reporting 153

delay but considerably shorter than the fatalities. We use model R as a benchmark 154

model and compare it the two alternative models using leading indicators; model L 155

where we let the leading indicator be the number of COVID-19-related ICU admissions, 156

and model RL including both the random walk component and leading indicator here 157

being the relative weekly change in ICU admissions. We denote the leading indicator 158

models as L(ICU) and RL(ICU). For the leading indicator time series, we use a seven 159

day centered rolling average to avoid the weekday effect of the reporting. The 160

pre-specified lag between the fatalities and leading indicators is determined by fitting a 161

linear time series model given the two model specifications of models L and RL and 162

choosing the lag providing the best fit. The period chosen for the time series model is 163

2020-04-01–2020-10-19 to use the information available only prior to the evaluation 164

period. We use 18 days lag for the reported cases and 14 days for the ICU admissions. 165

The reporting probability is set to be zero on non-reporting days (Saturday–Monday 166

and public holidays). For practical and robustness reasons, we use a maximum 167

reporting delay of D = 35 days. For the fatalities reported with a longer than the 168

maximum, we set their delay to the upper limit of 35 days. There were 116 case 169

fatalities reported with a delay longer than 35 days during the evaluation period. 170

Retrospective nowcasting evaluation 171

We use a retrospective evaluation in order to assess the performance of the Nowcasting 172

models. The model-based predictions are compared to the (now assumed to be known) 173

final number of COVID-19-related reported fatalities in Sweden. The samples from the 174

posterior predictive distribution for the total number of reported COVID-19 fatalities 175

N̂t are extracted for each reporting date of the evaluation period. As in Günther [17], 176

we use the following four metrics to quantify the model performance; 1) continuous rank 177

probability score (CRPS), 2) log scoring rule (logS), 3) root mean squared error 178

(RMSE), and 4) the prediction interval (PI) coverage being the proportion of times the 179

true number of fatalities is contained within the equitailed PI. The RMSE is calculated 180

with a point estimate being the median of the posterior predictive samples of N̂t, while 181

the scoring rules CRPS and logS assess the quality of the probabilistic forecast by 182

considering the full posterior distribution of N̂t [21]. For the scoring rules, a low score 183

indicates a better performance. 184

Nowcasts and the estimated reporting delay for a specific reporting date 185

T=2020-12-31, is shown in Fig 4. In the left column, the black bars are the number of 186

fatalities reported until day T and the red dashed line is the true number, only known 187

in retrospect. The solid lines are the median of the posterior predictive distribution of 188

N̂t and the shaded areas indicate the equitailed point-wise 95% Bayesian prediction 189

interval, estimated with information available at the reporting date. The right column 190

shows the daily empirical and estimated number of days of reporting. The solid lines 191

are the estimated and empirical median days of reporting delay and the shaded area is 192

between the 5% and 95% quantile of the reporting delay. The lower bound indicate the 193

number of days until 5% of the total number of fatalities will be reported and the upper 194

bound is within how many days 95% will be reported. The empirical median and the 195

respective quantiles are calculated with data available in hindsight and the estimated 196

quantities are obtained with the information available at the reporting date. 197
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Fig 4. Nowcasts for a specific reporting date. Left column shows the nowcasts
of 2020-12-30, where the solid lines are the median of the posterior predictive
distribution of N̂ and the shaded area depict the 95% PI. The black bars are what is yet
reported and the red line is the true number, only known retrospectively. Right column
shows quantiles of the estimated and empirical reporting delay distribution. The solid
lines the median reporting the delay in days (for each date) and the lower and upper
bounds are the 5% and 95% quantiles. At the 5% quantile, 5% of the total number of
fatalities occuring on that date are estimated to be reported within the number days
delay, ect. The empirical quantiles are obtained with data available in hindsight.
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We observe an underestimation of the reporting delay for the L(ICU) model for the 198

last days in the observation window (2020-12-25–2020-12-30) resulting in an 199

underestimation of the daily number of fatalities (Fig 4B). We can also note that the PI 200

is more narrow for L(ICU) than for the other two models and that the true number is 201

not always contained in the PI. Model R and RL(ICU) (Fig 4A & C) provide similar 202

results with less underestimation of the reporting delay resulting in a point estimate of 203

the median of the predictive distribution lying closer to the true number compared to 204

model L(ICU). A difference between the performance between R and RL(ICU) is that 205

RL(ICU) provides less wide PI than R. For R and RL(ICU), the true number of daily 206

fatalities is contained in the PI for all days T-t, t = 0, . . . , 35. From the right column of 207

the figure, it can be observed that the 5% quantile of the estimated number of days of 208

reporting delay for all three models are similar to the empirical 5% quantile. Also, the 209

median of the estimated number of days delay follows the corresponding empirical 210

quantity reasonably well. Contrary, the 95% estimated quantiles are farther from the 211

empirical. This indicate that all three models capture the short-term trends such as the 212

weekly reporting patterns well but do not fully capture the changing dynamics of the 213

long reporting delays, i.e. the high spikes in the early observation window and the rapid 214

decrease in the final week. An alternative visualization of the empirical and estimated 215

reporting delay distribution for the three models provided by the cumulative reporting 216

probability is found in S1 Appendix Sec 1. 217

Seen in Fig 4, the PI is increasing as the final date T of the observation window is 218

approaching. As the number of days t since day T decrease, the uncertainty for the 219

nowcast of day T-t increase as the fraction of the reported fatalities will be decreasing. 220

The average score as a function of T-t is shown in Fig 5. For all models and scores, the 221

score is generally a decreasing function of the number of days since day T. Hence, the 222

farther from “now”, the closer are the nowscast estimates of the daily number of 223

fatalities to the true number. The difference in performance for the three models is 224

observable for the two weeks prior to day T. Here, we see that model RL(ICU) has a 225

lower CRPS and RMSE score (Fig 5A & C) and that model R has the lowest logS 226

(Fig 5B). Model L(ICU) has the overall highest values of the scores, hence it has the 227

worst performance of the three models. 228

Fig 5. Mean scores by the number of days since the day of reporting T. The
results are averaged over all reporting dates T in the evaluation period from 2020-10-20
to 2021-05-21.
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The mean overall score and the coverage frequency of the 75%, 90%, and 95% 229

prediction interval of the three models for the nowcasts performed in the evaluation 230

period is found in Table 1. For each reporting day T , we consider the average score of 231

the last seven days; T − 6, . . . , T − 0. Based on the CRPS and RMSE, model RL(ICU) 232

has the best performance, with a decrease of 4.2% and 1.0% respectively compared to 233

model R. Model R has the lowest logS score but only with a slight advantage compared 234

to RL(ICU) (0.02% improvement). Model L(ICU) has the worst performance for all 235

three scores. The coverage of the prediction intervals for models R and RL(ICU) is of 236

satisfactory levels. In contrast, the L(ICU) model has low coverage, indicating that 237

model L(ICU) is less trustworthy.

Table 1. Results of the retrospective evaluation of different nowcasting
models on COVID-19 related fatalities in Sweden.

Score R L(ICU) RL(ICU)

CRPS 11.89 12.01 11.39
logS 4.42 4.51 4.43
RMSE 9.18 9.95 9.09

Cov. 75% PI 76.07% 58.97% 76.07%
Cov. 90% PI 95.72% 76.07% 94.87%
Cov. 95% PI 98.29% 84.61% 99.14%

CRPS is the continuous ranked probability score, logS is the log score, and RMSE
denotes the root mean squared error of the posterior median. Additionally, we provide
coverage frequencies of 75%, 90% and 95% credibility intervals in the estimation of the
daily number of case fatalities. The scores are averaged over nowcasts for day
T − 6, ..., T − 0, with T being all reporting dates in the evaluation period.

238

Fig 6 shows the retrospective true number of daily fatalities and the median of the 239

predictive distribution of N̂ and a 95% PI of day T for the three models evaluated on 240

each reporting day in the evaluation period. In Fig 4, this corresponds to the nowcast 241

estimates of the final date T=2020-12-30. We observe a similar performance over time 242

for models R and RL(ICU) (Fig 6A & C) and the more significant deviations from the 243

true number appear mainly on the same reporting dates for the two models. In early 244

Jan 2021, RL(ICU) underestimates the number of daily fatalities, likely due to the rapid 245

decrease in ICU admissions due to the introduction of vaccines at the end of Dec 2020, 246

while the case fatalities were also on a downwards trend but not as steep. Model 247

RL(ICU) stabilizes after approximately two weeks (same as the length of the linear 248

change points) in mid Jan 2021 as the model adapts to the new association between 249

ICU admissions and case fatalities. Model L(ICU) (Fig 6B) does not have the high 250

peaks in the posterior predictive distribution of N̂ as the other two models. However, 251

the deviation of the posterior median compared to the true number is visibly larger. 252

Starting from Dec 2020, we observe an underestimation of the number of fatalities, and 253

from Feb 2021, an overestimation for the following two months. From Apr 2021 until 254

the end of the evaluation period, the three models have a visibly similar performance 255

with a posterior mean close to the true number of daily fatalities and a narrow PI 256

containing the true number. 257

The performance of the alternative models with leading indicators compared to 258

model R can be explained by the estimated association between the fatalities and the 259

leading indicators. The changing dynamics of the association over time are captured by 260

the estimated time-varying β-coefficients of the respective models. Details of the 261

estimated β-coefficients for models R(ICU) and RL(ICU) over the evaluation period are 262

reported in S1 Appendix Sec 2. 263
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Fig 6. Estimated and true number of fatalities with COVID-19 in Sweden.
The estimated number of fatalities are the nowcasts of day T being each reporting date
in the evaluation period from 2020-10-20 to 2021-05-21. The solid lines are the median
of the posterior predictive distribution of the number of daily fatalities N̂T and the
shaded area depict the point-wise 95% PI. The red line is the retrospective true number.

The scores of the three models evaluated at the 117 reporting dates in the evaluation 264

period by the CRPS and LogS is shown in Fig 7. For each reporting day T , we consider 265

the average score of the last seven days; T − 6, . . . , T − 0. For the three models, the 266

scores are generally higher when the number of case fatalities is high. Overall, the 267

performance of model R and RL(ICU) is similar, as could also be observed in Fig 6. 268

From the beginning of the evaluation period until the end of 2020, model L(ICU) has an 269

overall lower score and a more stable performance with less high spikes in the score 270

compared to model R and RL(ICU). During Jan 2021, the performance is similar for 271

the three models, but from Feb to Apr 2021 model L(ICU) performs significantly worse 272

than the other models. The remaining scoring rule, the RMSE, entail similar results (S1 273

Fig). After Apr 2021, the number of daily fatalities has stabilized to a low number and 274
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the score for three models becomes similar until the end of the evaluation period.

Fig 7. Scoring rules. Average CRPS and logS of the last 7 days; T − 6, . . . , T − 0 for
each reporting day T , in the evaluation period.

275

In conclusion, we find that model R and model RL(ICU) performs well over the 276

evaluation period and has a satisfactory level of PI coverage. Furthermore, model 277

RL(ICU) provided the best performance of the three models, indicating that there is a 278

gain (4.2% decrease in CRPS compared to model R) of including leading indicators. 279

Using reported cases or the combination of reported cases and ICU admissions as 280

leading indicators does not improve performance. The results of using these leading 281

indicators are found in S1 Appendix Sec 3. 282

Discussion 283

In the presented work, we provide an improved method for real-time estimates of 284

infectious disease surveillance data suffering a reporting delay. The proposed method 285

can be applied to any disease for which the data can be put the form of the reporting 286

triangle given in Fig 3. We apply the method to COVID-19-related fatalities in Sweden. 287

Even though fatalities are a lagging indicator to obtain situational awareness about the 288

pandemic and is not without difficulties itself, it is often used as a more robust indicator 289

to assess the burden of disease because it might be less influenced by the current testing 290

strategy. Hence, monitoring the time series of reported deaths has been of importance 291

in the still on-going COVID-19 pandemic. 292

We show that using leading indicators, such as the COVID-19-associated ICU 293

admissions, can help improve the nowcasting performance of case fatalities compared to 294

existing methods. Beyond using reported cases and ICU admissions as leading 295

indicators for the case fatalities, other possible leading indicators are e.g. vaccination, 296

hospitalizations, and virus particles in wastewater [22], or using age-stratified reported 297

cases. However, nowcasting with leading indicators should be made with caution and be 298
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reevaluated as the dynamics between the leading indicator and the event of interest 299

change, which may not be a trivial task during an ongoing pandemic. Furthermore, by 300

re-estimating the association coefficients of the leading indicator at each reporting date, 301

our method captures the changing association between ICU admissions and case 302

fatalities over time. However, we use a pre-specified time lag unknown at the start of 303

the pandemic and might also change throughout the pandemic. A possible extension of 304

our work would thus be to estimate this time lag as a part of the model fitting. 305

The proposed method is flexible in terms of its application and thus can be a helpful 306

tool for future pandemic stress situations. We support this by providing open-source 307

software for the real-time analysis of surveillance data. Weekly updated nowcast 308

estimates of COVID-19 fatalities and ICU admissions in Sweden using our proposed 309

method, model RL, are found at 310

https://staff.math.su.se/fanny.bergstrom/covid19-nowcasting 311

These graphs help provide the desired situational awareness and are to be interpreted as 312

new variants emerge. 313

Supporting information 314

S1 Fig. RMSE. Average RMSE of the last 7 days; T − 6, . . . , T − 0 for each 315

reporting day T , in the evaluation period. 316

S1 Appendix. Complimentary material and results. Sec 1 contains information 317

about the cumulative reporting probability, providing a complimentary picture of the 318

estimated reporting delay. Sec 2 presents detailed results of the estimated regression 319

coefficients of model L(ICU) and RL(ICU) over the evaluation period. Finally, Sec 3 320

covers results of including reported cases and the combination of reported cases and 321

ICU admissions as leading indicators. 322
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COVID-19 pandemic in Bavaria. Biom J. 2020;63(3).

18. Peng Y, Chen X, Rong Y, Pang C, Chen X, Chen H. Real-time Prediction of the
Daily Incidence of COVID-19 in 215 countries and territories Using Machine
Learning: Model Development and Validation. JMIR. 2021;23.

19. Stan Development Team. RStan: the R interface to Stan; 2020. Available from:
http://mc-stan.org/.

20. R Core Team. R: A Language and Environment for Statistical Computing; 2021.
Available from: https://www.R-project.org/.

21. Gneiting T, Raftery A. Strictly Proper Scoring Rules, Prediction, and
Estimation. JASA. 2007;102:359 – 378.

22. Kreier F. The myriad ways sewage surveillance is helping fight COVID around
the world [published online ahead of print, 2021 May 10]. Nature.
2021;10.1038/d41586-021-01234-1.

July 19, 2022 14/14

https://arxiv.org/abs/2006.06840
http://users.ox.ac.uk/~nuff0078/Covid/
http://mc-stan.org/
https://www.R-project.org/


Figure Click here to access/download;Figure;S1_fig.png

https://www.editorialmanager.com/pcompbiol/download.aspx?id=1468938&guid=cc38319f-e8eb-47d7-9763-9aaedbbdfea9&scheme=1
https://www.editorialmanager.com/pcompbiol/download.aspx?id=1468938&guid=cc38319f-e8eb-47d7-9763-9aaedbbdfea9&scheme=1


  

Supporting Information

Click here to access/download
Supporting Information

SI_Appendix_Nowcasting_COVID19.pdf

https://www.editorialmanager.com/pcompbiol/download.aspx?id=1468953&guid=485d037b-1100-4c65-bbb3-a80d3c4f78ca&scheme=1

