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SUMMARY
Skin color patterning in vertebrates emerges at the macroscale from microscopic cell-cell interactions
among chromatophores. Taking advantage of the convergent scale-by-scale skin color patterning dy-
namics in five divergent species of lizards, we quantify the respective efficiencies of stochastic (Lenz-
Ising and cellular automata, sCA) and deterministic reaction-diffusion (RD) models to predict individual pat-
terns and their statistical attributes. First, we show that all models capture the underlying microscopic
system well enough to predict, with similar efficiencies, neighborhood statistics of adult patterns. Second,
we show that RD robustly generates, in all species, a substantial gain in scale-by-scale predictability of in-
dividual adult patterns without the need to parametrize the system down to its many cellular and molecular
variables. Third, using 3D numerical simulations and Lyapunov spectrum analyses, we quantitatively
demonstrate that, given the non-linearity of the dynamical system, uncertainties in color measurements
at the juvenile stage and in skin geometry variation explain most, if not all, of the residual unpredictability
of adult individual scale-by-scale patterns. We suggest that the efficiency of RD is due to its intrinsic ability
to exploit mesoscopic information such as continuous scale colors and the relations among growth, scales
geometries, and the pattern length scale. Our results indicate that convergent evolution of CA patterning
dynamics, leading to dissimilar macroscopic patterns in different species, is facilitated by their spontaneous
emergence under a large range of RD parameters, as long as a Turing instability occurs in a skin domain
with periodic thickness.
INTRODUCTION

Skin color patterning in vertebrates, as extensively studied in

zebrafish,1–7 is a self-organized process, i.e., the spatial segre-

gation of chromatophores observed during development does

not follow pre-patterned positional information but autono-

mously emerges from cell-cell interactions among the chro-

matophores themselves.1,8 Because some of these interactions

occur at short ranges and others at long ranges,1,6 the process

can be efficiently described in the reaction-diffusion (RD) math-

ematical framework.1,8–14 In addition, we have demon-

strated12,14 that, in the ocellated lizard (Timon lepidus), reduc-

tion of skin thickness at the borders of skin scales robustly

transforms12,14 the RD color patterning process into a stochas-

tic cellular automaton (sCA) where the neighborhood of mono-

chromatic (either green or black) skin scales defines their color-

flipping probabilities. Furthermore, we have shown15 that the

16-parameter sCA model (8 parameters for the color-flipping

probabilities of green scales with 0–7 green neighbors, and 8

equivalent parameters for black scales) can be mapped to a

simpler 2-parameter Lenz-Ising model16,17 (developed in the

1920s for describing the behavior of ferromagnetic materials),
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which produces the observed steady-state neighborhood dis-

tribution of ocellated lizard adult patterns.

However, it remains unclear if the deterministic and contin-

uous-state RD framework allows capturing features of the

scale-by-scale skin color patterning process beyond those effi-

ciently described with stochastic and discrete-state sCA and

Lenz-Ising models. First, using a deterministic RD model might

seem counter-intuitive because reactions and diffusion can be

argued to be stochastic processes at the microscopic scale.

However, RD is a continuous model that describes how com-

ponents’ concentrations at the mesoscopic/macroscopic

scales, i.e., averages of molecule/cell densities at the nano-

scopic/microscopic scales, deterministically vary in time and

space. This is similar to deterministic thermodynamical proper-

ties emerging at the macroscale from statistical mechanical

properties of microscopic entities. Hence, if initial components’

concentrations are identical, RD simulations will always pro-

duce the same single mesoscopic trajectory. Second, as the

RD,1,8–12,14 sCA, and Lenz/Ising models used to describe skin

color patterning all equally ignore the unidentified or unmea-

sured underlying molecular and cellular variables (generally ill-

defined as ‘‘noise’’), it can be argued that the former has no
ber 5, 2022 ª 2022 The Author(s). Published by Elsevier Inc. 5069
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a priori reason to better capture, than the two latter, the dy-

namics of the system. Still, we reason here that RD might pro-

vide an intrinsically better description of the scale-by-scale skin

color patterning process because it implicitly integrates a rela-

tion between the pattern length scale and geometrical parame-

ters (such as scale geometries and their growth), and it allows

to exploit the continuous-state distribution of scale colors

(especially important at initial condition). To test this conjecture,

we investigate here if deterministic RD allows describing indi-

vidual patterning trajectories beyond their statistical properties,

i.e., can RD efficiently predict, in multiple species, the positions

of black and green/yellow scales in individual adult lizards

despite that underlying unknown cellular and molecular vari-

ables are ignored?

We consider RD models that involve time, state, and spatial

discretization at different levels: (1) a discrete RD model in two

dimensions (2D-dRD), which is discrete in space but continuous

in state and time, formally derived from Turing’s spatially contin-

uous RD equations by renormalizing the diffusion term;12 (2) a 2D

continuous RD model (2D-cRD), which is continuous in space,

state, and time; and (3) a bona fide tridimensional cRD model

(3D-cRD14). We have shown12,14,15 that all these RD models

compute dynamics that are either constitutionally (dRD) or effec-

tively (2D cRD and 3D cRD) discretized in space (i.e., scales are

essentially monochromatic at any time point) and near discre-

tized in state and time (i.e., color switching, between green and

black, is not instantaneous but is much faster than the overall

patterning process). These discretizations make the dynamics

particularly suitable to unambiguous quantitative investigation:

as the number of scales and the topology of the lattice are invari-

ants throughout the life of a lizard, one can unequivocally identify

the positions of black scales and green/yellow scales at any

given time point during the post-hatching development of the

animal.

Here, we investigate whether these various stochastic and RD

models of patterning can be generalized to five species,

belonging to five divergent lineages, exhibiting largely different

adult patterns (Figure 1A), but that all convergently evolved dy-

namics of post-hatching scale-by-scale color change: the ocel-

lated lizard (T. lepidus), the Argentine black and white tegu (Sal-

vator merianae), the Gila monster (Heloderma suspectum), the

mangrove monitor (Varanus indicus), and the Standing’s day

gecko (Phelsuma standingi). First, we show that all models pre-

dict neighborhood statistics of adult patterns with similar effi-

ciencies. Second, we show that RD models substantially

improve predictability of actual patterns beyond their statistical

features without the need to parametrize the system down to

its many cellular and molecular variables.18 More specifically,

we show, in all five species, that continuous-state color informa-

tion (i.e., estimates of RD-component concentrations based on

the observed ‘‘greenness’’/‘‘blackness’’ of scales) from real juve-

nile lizards provides a substantial gain in scale-by-scale predict-

ability of their corresponding adult patterns by RD over the sto-

chastic Lenz-Ising and CA models. Third, we show that a

substantial proportion of the residual unpredictability is due to

heterogeneity in the variation of skin thickness among scale bor-

ders and among scales. Fourth, using Lyapunov spectrum ana-

lyses, we show that the uncertainty in color measurement in our

experimental setup is sufficient to explain most, if not all, of the
5070 Current Biology 32, 5069–5082, December 5, 2022
remaining residual unpredictability due to the non-linear dynam-

ical nature of the system.

RESULTS

Acquisition of lizard skin-scale color texture
Using a robotic system19 implementing the photometric stereo

(PS) approach,20 the surface microgeometry (normal map) and

color texture (RGB color albedo) of a large dorsal skin patch (Fig-

ure 1B) were acquired fourteen to forty-five times over a period of

2–4 years (starting from the juvenile stage) in individuals of five

divergent species of lizards (Figure 1A): two ocellated lizards

(TL1 and TL2, about 2,000 scanned scales each), two Argentine

tegus (SM1 and SM2, about 1,600 scales each), four Gila mon-

sters (HS1, HS2, HS3, and HS4, about 900 scales each), two

mangrove monitors (VI1 and VI2, about 1,400 scales each),

and two Standing’s day geckos (PS1 and PS2, about 3,000

scales each). Scale boundaries were identified as the edges of

the Voronoi diagram (Figure 1C) partitioned using the scale cen-

ters defined by the watershed algorithm applied on the filtered

curvature field derived from the initial normal map. This proced-

ure both identifies scales and determines their neighborhood

connectivity. Matching of scales across time points was per-

formed by using local affine transformations producing a

space-time network of scales (Figure 1D) with associated colors

(albedo was averaged among pixels within each corresponding

skin scale). The space-time network was used for finding optimal

parameters in all stochastic and RDmodels. Additional details on

animals, image acquisition, data processing, scale detection,

scale matching, and iterative addition model parameter optimi-

zation are provided in the STAR Methods and in Tables S1

and S2.

Prediction of neighborhood statistics
Stochastic cellular automaton

Our analyses of time series of ocellated lizard scale-color switch-

ing previously indicated12 that these dynamics can be effectively

described as a stochastic cellular automaton (sCA), i.e., the sto-

chastic automaton dynamically computes the adult labyrinthine

pattern.12 Indeed, the probability of color change of a green/

black scale at each time-discrete iteration of the sCA is a func-

tion of ng/b, i.e., the number of green/black direct neighbors. In

real lizards, any black or green scale can have 0–7 isochromatic

neighbors, such that the sCA model can be defined with 23 8 =

16 parameters. Here, we refine this model by using Bayesian

inference to derive E½p�, the expectation of the sCA probabilities

(STAR Methods; Figure S1A), which are then used as CA proba-

bilistic ‘‘rules’’ to simulate pattern time evolution. Each simula-

tion is iterated until the number of scale-color flips reaches about

the total number of flips observed in the real animal (between ju-

venile and adult stages); note that a perfect correspondence is

usually not observed because one iteration of the sCA involves

the color switch of more than one scale.

We then formulate an objective measure of how different the

neighborhood statistics of each simulated pattern are from those

of a real adult lizard. To this end, we simply calculate the normal-

ized amplitude (E16D) of the combined differences of simulated

versus observed numbers of black and green scales with each

of the 16 possible configurations of isochromatic neighbors.



A

B C D

Figure 1. Acquisition of skin-scale color texture in five lizard species

(A) The five species investigated here (top, image of an adult individual; middle, close up on the adult pattern) belong to divergent squamate lineages (bottom,

phylogenetic cladogram).

(B) A large dorsal skin patch (white outline in left panel) is photographed from different orientations and under different directions of incident illumination to

generate high-resolution microgeometry (normal map, central panels, is shown for the small rectangular region framed in the left panel) and color texture (albedo,

right panels) at multiple time points ti. The individual shown in the left panel is TL1.

(C) The filtered curvature field (shading) allows identifying scale centers that are then used for building a Voronoi diagram, identifying scale boundaries (red lines),

and scale lattice connectivity.

(D) Matching of scales across time points produces a space-time network of scales; white lines show one scale with one of its six neighbors shifting color from

green to black between time points t1 and tn.

See also Figure S6.
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More technically, we compute, for each simulated adult pattern,

the L2 -norm of the 16-dimensional difference error vector (E16D)

of nearest-neighbor configuration statistics in comparison with

the single observed adult pattern:
E16D =
1

ns

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX7
i = 0

ðnsimðGreen; iÞ � nobsðGre

vuut
where ns is the number of scales whereas nðGreen; iÞ and

nðBlack; iÞ are, respectively, the number of green and black

scales with i isochromatic neighbors; superscripts sim and obs

denote the simulation and observation, respectively.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
en; iÞÞ2 + ðnsimðBlack; iÞ � nobsðBlack; iÞÞ2
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Figure 2. Prediction of neighborhood statistics in ocellated lizard individual TL1

(A) Projections on the principal component planes PC1-PC2 (top) and PC1-PC3 (bottom) of the 16D nearest-neighbor error vectors (in comparison with the

observed adult pattern, black star) of patterns simulated with sCA (red ellipse and red shading), Lenz-Ising (blue), and dRD (yellow) models; interactive 3D graphs

in PC1-PC2-PC3 space available as Data S1. Red ellipse, blue ellipse, and yellow spot show adult patterns simulated from the observed juvenile pattern (black

diamond), whereas red, blue, and yellow shadings show adult patterns simulated from random patterns (gray area) as initial condition. The green spot shows the

adult dRD-pattern simulated from the juvenile colors shown in (B) (rightmost panel). Ellipses and border of shadings indicate 1% density isolines.

(B) Different initial conditions used for simulations; their localization in PC1-PC2-PC3 space is shown with the corresponding geometrical symbols.

(C) Adult patterns simulated with different initial conditions (i.c.): juvenile (juv.) pattern (=scale colors thresholded to green or black) and juvenile colors (col.) are

both shown in (B). Similar results are obtained for individual TL2 (Figure S2; Data S2).

See also Figure S1 and Table S4.
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We then use principal component analysis (PCA; Figure 2A) to

identify the 3 largest modes (PC1, PC2, and PC3, corresponding

to the 3 eigenvectors with largest eigenvalues) that are jointly

capturing >90% of the variance of all error vectors. Performing

5,000 simulations, each starting from the real observed juvenile

pattern (black diamond in Figures 2A and 2B), indicates that

the sCA model is robust: multiple runs starting from this same

initial condition evolve into a population of simulated adult pat-

terns (one example is shown in Figure 2C) whose E16D values

are restricted to an ellipsoid (red ellipses in Figure 2A; mean

E16D ± SD = 0.037 ± 0.012) that also contains the zero-error co-

ordinate (0,0,0) of the PC1-PC2-PC3 space, i.e., the position of

the observed adult pattern (black star in Figures 2A and 2C).

We then produce 5,000 random patterns that span all length

scales (from one skin scale to about one-fourth of the length of

the analyzed dorsal skin patch) and are characterized by a large

range of initial E16D values (gray area in Figure 2A). Remarkably,

the 5,000 simulations initiated from these random patterns (one

simulation for each random pattern) show that the very large

spread of initial conditions evolves into a population of patterns

that are restricted to an area (red shading in Figure 2A; mean

E16D ± SD = 0.065 ± 0.05) slightly larger than, but that strongly
5072 Current Biology 32, 5069–5082, December 5, 2022
overlaps with, the patterns (red ellipses) simulated from the juve-

nile pattern. Very similar results are obtained for the second ocel-

lated lizard individual analyzed here (TL2; Figure S2).

Lenz-Ising model

The Lenz-Ising model16,17,21 is a statistical mechanical model

developed for describing the states of magnetic materials as a

lattice of sites, each with one of two possible orientations (+1

or �1) of electronic/nucleic magnetic dipole moments. The

model requires only two parameters: J, which defines how

much neighbors with the same orientation are favored (J> 0,

ferromagnetic materials) or disfavored (J < 0, antiferromagnetic

materials), and B, which correspond to an ‘‘external’’ magnetic

field favoring one or the other state (depending on the sign of

B). We have recently shown15 that the time evolution of the

Lenz-Ising model in thermal equilibrium effectively describes

the dynamics of scale-by-scale skin color patterning of the ocel-

lated lizard when we treat green and black scales as if they

were +1 and �1 dipoles, respectively. More technically, the

late-time probability distribution of patterns is equivalent to

the canonical probability distribution of the antiferromagnetic

Ising model at finite temperature (1=kBT > 0) with black scales

being favored.15 Hence, the Lenz-Ising model is the simplest
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formalism (2 parameters instead of the sCA 16 parameters)

describing the skin color pattern self-organization in the ocel-

lated lizard.15

Similar to the sCA analyses above, we perform simulations us-

ing the Lenz-Ising model with bB and bJ parameters and dy-

namics,15 optimized for each individual (Figures S1B and S2B).

The 5,000 Lenz-Ising simulations starting from the real juvenile

pattern (black diamond) and the 5,000 simulations starting

each from one of the random patterns (gray area) generate pop-

ulations of E16D nearest-neighbor errors (Figure 2A, blue ellipses

with mean E16D ± SD = 0.048 ± 0.016 and blue area with mean

E16D ± SD = 0.091 ± 0.058, respectively) very similar to those ob-

tained with the sCA model (red ellipses and red shading). These

results indicate that, for ocellated lizards, the sCA and Lenz-Ising

models exhibit similar performances in robustly predicting the

nearest-neighbor statistics, hence the general labyrinthine

look, of real adult patterns (Figure 2C).

Optimized reaction-diffusion models

RD models, first introduced by Turing,9 compute the concentra-

tions of diffusing and reacting molecular species (RD compo-

nents) through time and space. In the framework of skin color

patterning, ‘‘diffusion’’ should be understood as ‘‘effective diffu-

sion’’22 of signals originating from short- and long-range cell-cell

contacts.1 Note that the long-range interactions involve macro-

phage-like cells6 that recognize and drag plasma membrane

blebs on xanthoblasts, generating and extending thin cellular

projections (airinemes), before performing a randomwalk and ul-

timately depositing the airineme vesicle on the surface of amela-

nophore at a distance up to several xanthoblast-body lengths. It

is likely that these cell-cell interactions have the capacity of

generating long-ranged gradients (i.e., larger than the typical

1 mm skin scale of an adult ocellated lizard).

Here, we use a three-component (u; v;w) 2D continuous RD

(cRD) model, initially developed to study skin color patterning

in zebrafish.1 The components u and v represent the densities

of melanophores and xanthophores (and their corresponding

short-range factors), respectively, whereas w represents a

long-range factor with diffusion coefficient Dw much larger

than Du = Dv. We previously adapted this model for describing

skin-scale color change dynamics in the ocellated lizard12 and

extended it to 3D14 to take into account variation of the domain

thickness. Here, we develop a new implementation of the 3D-

cRDmodel in which skin geometry is represented as a curvilinear

3D grid (more accurate than the rectilinear grid used in Fofonjka

and Milinkovitch14) yielding lower errors in computing compo-

nents’ concentrations, hence allowing for the use of more effi-

cient coarse-grain grids (STAR Methods).

Simpler modeling of the scaled skin color patterning process

in 2D (i.e., in the plane of the skin) rather than in 3D can be

achieved12 by taking into account the reduction of skin thickness

at scale borders through scaling of the continuous RD diffusion

coefficients (by a factor P) at the one-dimensional edges of the

2D scales. Beside this 2D continuous model (2D-cRD), we also

introduced a discrete RD model (2D-dRD) where each scale is

represented by a single node.12 This discretization is justified

by the 3D geometry of the skin: as scale skin is much thicker

than interscale skin, the concentrations of morphogens within

a given skin scale tend to spatially homogenize, hence, each of

these concentrations can be represented by a single value (i.e.,
the average concentration within the corresponding skin scale).

This assumption is validated by bona fide 3D-RD simulations14

indicating that scales tend to effectively change color as a whole

entity, rather than exhibit sustained gradients. We have previ-

ously shown how to renormalize the diffusion termwhen deriving

the 2D-cRD model for regular hexagonal lattices.12 Here,

we generalize the 2D-dRD model by deriving the discrete RD

equations for arbitrary polygons in order to simulate the ocel-

lated lizard skin color change dynamics on realistic (non-strictly

hexagonal) lattices of skin scales. Details on the derivations of

the 2D-cRD and 2D-dRD models are provided in the STAR

Methods.

Furthermore, we suggest here improvements of the 2D-cRD

and 2D-dRD models to increase their predictive power by (1)

integrating growth of the domain in which patterning is taking

place, (2) considering continuous variation of color states, and

(3) optimizing RD parameters using Bayesian machine-learning

global minimization based on a Gaussian process regression

approach. To this end, we first assume that scales grow isotropi-

cally following a logistic function (parameters fitted using mea-

surements from real lizards) that we then integrate in the RD

equations. Second, using linear stability analysis close to the ho-

mogeneous steady state (HSS), we develop transformation func-

tions to transfer juvenile scale CIELAB color information to the

space of RD variables and use PCA to perform transformations,

at later (post-juvenile) time points, from the u; v;w RD space to

the CIELAB color space. Additional details on the growth-inte-

grated RDmodels, transformation functions, linear stability anal-

ysis, PCA, and Bayesian optimization are given in the STAR

Methods.

We then run 2D-dRD simulations from the same initial condi-

tions as for the sCA and Lenz-Ising simulations. The 5,000 2D-

dRD simulations starting each from one of the random patterns

(gray area in Figure 2A) generate a population of patterns exhib-

iting error vectors (orange shading; mean E16D ± SD = 0.11 ±

0.029) similar to those obtained with the stochastic models

(sCA and Lenz-Ising; red and blue shadings, respectively).

When using the same single observed juvenile pattern (black dia-

mond; Figure 2A) as that used for sCA and Lenz-Ising simula-

tions (i.e., with scale colors thresholded to green or black by

applying K-mean clustering), the resulting dRD-simulated adult

pattern (yellow spot; Figure 2C) exhibits a nearest-neighbor error

vector (E16D = 0.074; yellow spot; Figure 2A) situated in the same

region of the PCA graph. However, one of the interests of RD is

the possibility to exploit the information included in the contin-

uous-state values of scales at the observed initial condition:

the dRD simulation starting from these real colors of the juvenile

pattern (top right image in Figure 2B), instead of a thresholded

initial pattern with only two states, produces a pattern (green

spot in Figures 2A and 2C; E16D = 0.033) that is closer to the

observed adult pattern. Note that sCA and Lenz-Ising simula-

tions cannot be performed with juvenile continuous color values

as initial condition because these are intrinsically two-state

models. Very similar results are obtained for the second ocel-

lated lizard individual (TL2; Figure S2C).

Comparable neighborhood predictions of stochastic and

RD models

The analyses above indicate that, for ocellated lizards, simula-

tions initiated from the observed juvenile pattern, and run
Current Biology 32, 5069–5082, December 5, 2022 5073
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using any of the above models, generate simulated adult pat-

terns with neighborhood statistics, hence, qualitative looks

(Figures 2C andS2E), remarkably similar to those of the real adult

pattern. In other words, although RD can exploit the information

associated with the continuous color values observed in juve-

niles, it does not perform spectacularly better than sCA and

Lenz-Ising two-state models for predicting the neighborhood

statistics of adult patterns.

Prediction of neighborhood statistics in other species

Our analyses indicate that both stochasticmodels (sCAandLenz-

Ising) are robust in all four additional species in predicting neigh-

borhood statistics (Figure 3): performing 5,000 simulations, each

starting from the real observed juvenile pattern (black diamond),

generates a population of simulated adult patterns that are

restricted to zones (Figure 3A, red and blue ellipses for sCA and

Lenz-Ising, respectively) close to the zero-error coordinate (0,0)

of the PC1-PC2 plane, i.e., close to the position of the observed

adult pattern (black star). Note, however, that different species

exhibit different lengths of E16D trajectory between juvenile and

adult patterns because juveniles are closer to the HSS in some

species (e.g., ocellated lizard) than in others (e.g., Gilla monster

and mangrove monitor), such that they differ in their typical num-

ber of post-hatching scale-color flips. Regarding Lenz-Ising opti-

mization,ouranalyses indicate that themodel isantiferromagnetic

for the gecko (as in the ocellated lizard), i.e., favoring labyrinthine

patterns inwhich direct neighbors tend to exhibit opposite colors,

and ferromagnetic for the tegu, i.e., favoring theexistenceof larger

areas of isochromatic scales, whereas it is virtually on the bound-

ary between ferromagnetic and antiferromagnetic in the Gila

monster and mangrove monitor (Figure S3A).

Aswith the ocellated lizard (Figure 2), the dRD simulations initi-

ated from either the thresholded yellow/orange versus black ju-

venile pattern or the real juvenile colors (Figure 3B, first and sec-

ond column of images, respectively) produce adult patterns

exhibiting a low nearest-neighbor error (yellow and green spots,

respectively), indicating that RD is an excellent neighborhood

configuration predictor in all species analyzed here, despite

the substantially different motifs of their patterns. Also similar

to the ocellated lizard, the error vectors generated in the four

additional species with 2D-dRD simulations (orange areas in Fig-

ure 3A) starting from 5,000 random patterns are not particularly

better than those obtained with the sCA and Lenz-Ising models

(red and blue areas, respectively). Very similar results are ob-

tained for the additional individuals analyzed here for the four

species (SM2, PS2, HS2, HS3, HS4, and VI2; Figure S3B).

Prediction of individual scale-by-scale patterns
We define for all models the ‘‘scale-by-scale error’’ between a

simulated and observed pattern as

E
ðkÞ
sbs =

1

ns

Xns
i = 1

kCsim
i ðtkÞ � Cobs

i ðtkÞk
kCbðtkÞ � CgðtkÞk

where ns is the number of scales;Ci denotes the color of the i
th

scale; superscripts sim and obs denote the simulation and obser-

vation, respectively; tk denotes the time point; andCg andCb are

the green and black state colors, respectively. For dRD analyses,

Ci are computed according to Equation 31 (STAR Methods),

whereas Cg and Cb are mean values computed by K-mean
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clustering in which scale colors are defined in CIELAB coordi-

nates. For sCA and Ising simulations, Ci , Cg , and Cb are all re-

placed by the scalars representing the binary (‘‘green’’ or

‘‘black’’) state of scales.

Stochastic versus deterministic models

Stochastic models (sCA and Lenz-Ising) are susceptible to

generating substantial errors in the prediction of individual

scale-by-scale patterns despite the fact that they excel in pre-

dicting the bulk statistics inferred from them. Indeed, given

enough iterations of the sCA process or long enough thermaliza-

tion of the Lenz-Ising model, the exact positions of green and

black scales on a simulated adult pattern can, in principle,

greatly differ from those observed on a real pattern, even if the

neighborhood distributions between simulated and observed

patterns are highly similar. We confirm this prediction by

showing that sCA-simulated or Lenz-Ising-simulated patterns

selected for exhibiting very low nearest-neighbor error vectors

in the PC1-PC2-PC3 space (red and blue dots in Figure 4A,

left) do not show Esbs values particularly smaller than those

observed for simulated patternswith largerEsbs errors (Figure 4A,

ellipses in left panel and distributions in central panel). This result

is confirmed by the absence of correlation between sCA- or

Lenz-Ising-associated E16D nearest-neighbor errors and their

corresponding Esbs scale-by-scale errors (Figure 4A, right).

On the other hand, RD models could, in principle, exhibit

increased precision in predicting actual scale-by-scale patterns

(and not only the bulk statistics inferred from them) for three rea-

sons: (1) RD is deterministic; (2) RD integrates an implicit relation

between, on one hand, the pattern typical length scale, and on

the other hand, growth and the geometry of skin scales (i.e., their

sizes as well as their numbers and lengths of edges); and (3) RD

can exploit the information provided by the actual (u; v;w) RD-

component concentrations at initial condition. Note that the (u;

v;w) values can be estimated from the observed ‘‘greenness’’/

‘‘blackness’’ of scales in real juvenile lizards using linear stability

analysis and transformation functions (STAR Methods).

Figures 4A–4C indicate that this conjecture of substantial gain

in scale-by-scale predictability of observed adult patterns by

RD over stochastic models is correct: starting from the same ju-

venile K-mean thresholded (green and black) pattern as for the

stochastic models, RD generates a simulated pattern (yellow

spot in Figures 4A and 4B) with a scale-by-scale error (Esbs =

35:5%) smaller than those obtained with the stochastic models.

Although this improvement is statistically significant

(p < 4.2 3 10�4), its amplitude is somewhat small (Figure 4C).

Conversely, the improvement of scale-by-scale predictability

becomes much more prominent (>15%, p < 9.8 3 10�57; green

spot in Figure 4A) when using the juvenile unthresholded colors

as initial condition. This result is unanticipated as neighborhood

statistics, and not scale-by-scale error, were used as the objec-

tive function during Bayesian optimization of RD parameters.

The same error reduction of about 15% is observed between

stochastic models and the full RD analysis for the second ocel-

lated lizard analyzed here (TL2; Figure S2F).

Residual unpredictability and skin thickness spatial

distribution

Our experimental setup does not provide one key piece of in-

formation relevant to RD: the exact spatial distribution of skin

thickness across the RD field. To quantify how much real skin
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Figure 3. Prediction of neighborhood statistics in four additional species

(A) Projections on the PC1-PC2 plane of the 16D nearest-neighbor error vectors (in comparison with observed adult pattern, black stars) of patterns simulated

with sCA (red ellipse and shading), Lenz-Ising (blue), and dRD (yellow) models in black and white tegu (SM1), Standing’s gecko (PS1), Gila monster (HS1), and

mangrovemonitor (VI1). Red ellipses, blue ellipses, and yellow spots show adult patterns simulated from the observed juvenile pattern (black diamonds), whereas

red, blue, and yellow shadings show patterns simulated from random patterns (gray areas) as initial condition. The green spots show the dRD-pattern simulated

from the juvenile color shown in (B).

(B) Left: observed juvenile patterns and colors. Center: adult patterns simulated with juvenile (juv.) pattern (=scale colors thresholded to green or black) or juvenile

colors as initial condition (i.c.). Right: observed adult patterns. Ellipses and border of shadings indicate 1% density isolines.

See also Tables S3 and S4 and Figure S3.
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geometry deviates from the assumption of identical skin thick-

ness reduction at all scale borders, we perform here 3D geom-

etry reconstruction of a patch of ocellated lizard dorsal skin
using high-resolution episcopic microscopy (HREM14,23). Fig-

ure 5A shows a portion of the HREM-acquired skin 3D domain

(black pixels correspond to melanophores) and the heatmap of
Current Biology 32, 5069–5082, December 5, 2022 5075
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Figure 4. Prediction of scale-by-scale patterns in ocellated lizard individual TL1

(A) Simulated adult patterns with low neighborhood errors do not show particularly low scale-by-scale errors (Esbs) within the distribution of simulated patterns:

red and blue spots indicate zero-error patterns (in the PC1-PC2 plane, left) among the 5,000 simulated with sCA and Lenz-Ising, respectively. Ellipses in left panel

are 1% density isolines of neighborhood error vectors whereas the Gaussian distributions in the central panel are the Esbs probability density functions. The adult

patterns simulated from the juvenile pattern or juvenile colors (yellow and green spots, respectively) exhibit statistically smaller Esbs (p values shown in central

panel) than the sCA and Lenz-Ising probability density functions. Right: no correlation is observed between neighborhood error and scale-by-scale error; red

points and blue points are 5,000 simulations with sCA and Lenz-Ising, respectively.

(B) Simulated adult patterns (corresponding to red, blue, yellow, and green spots in A); scales whose color is erroneous (in comparison with observed adult,

rightmost pattern) are indicated in yellow.

(C) Histogram (mean ± SD) comparing scale-by-scale errors of adult patterns simulated with different models. Similar results are obtained for individual TL2

(Figure S2).

See also Figure S5.
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black pixel positions (dm) with respect to skin thickness (d).

Whereas extraction of the spatial distribution of d is straightfor-

ward, the distribution of dm is obtained by mapping d to the

second-order polynomial fit (orange line in Figure 5A) of 75%

deepest observed black pixel positions for all scales. From

these HREM data, we also extract the mean distance S among

neighboring scales at their highest point, as well as the means

among the top-surface highest point of scales (hc) and among

the heights of edges (he).

We then construct a 3D lattice of super-Gaussian bumps for

which we optimize parameters s and p (cf. equations in Fig-

ure 5B), as well as the standard deviations sc and se, of

bump heights (hc) and scale edge heights (he), respectively,

to obtain a depth-map histogram (i.e., a skin thickness distribu-

tion) highly similar to that observed in the HREM data (Fig-

ure 5C). This lattice allows us to construct 1,000 noisy domains

by sampling hc (for each bump) and he (for each edge) from the

normal distributions Nðhc; scÞ and Nðhe; seÞ. Finally, using the
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mapping dmðdÞ discussed above, we compute the bottom

boundary of each domain by subtracting dm from the top

boundary, hence producing models of the skin domain

restricted to chromatophores (turquoise volume in Figure 5B).

As these 1,000 domains are all different, but they each exhibit

thickness heterogeneities (among scale centers and among

scale edges) similar to those of real lizards, we can use them

as follows to test for their impact on the predictability of RD

modeling. For each generated domain, we run a bona fide

3D-cRD numerical simulation (parameter values obtained

from Bayesian optimization in TL1; see above) and compare

the resulting adult pattern with that obtained with the simulation

performed on a reference homogeneous 3D domain of 64 iden-

tical super-Gaussian bumps (i.e., with the centers of all bumps

set to hc and all the edges set to he). Note that the 1,000 sim-

ulations, and the reference simulation, are all started from the

colors of a patch of 64 scales observed in TL1 at the juvenile

stage. Figure 5D shows the distribution of scale-by-scale error
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Figure 5. Heterogeneity in skin thickness variation affects RD predictability

(A) Top: ocellated lizard dorsal 3D skin patch reconstructed using HREM; d and dm are, for each value of ðx;yÞ, the skin thickness and black pixel lowest depth,

respectively. Bottom: heatmap of normalized dm versus normalized d; orange dots indicate, for each value of d=maxd, the boundary (yellow arrow) at the 75th

percentile in the corresponding distribution (white profile); orange line, second-order polynomial smooth fit across the orange dots.

(B) Example of an hexagonal 3D lattices of super-Gaussian bumps (mean distance among neighboring scales S is from HREM data; s and p are Gaussian

parameters in the equation on top) with hc (height for each bump) and he (for each edge) are sampled fromNðhc; scÞ andNðhe;seÞ, where hc;e and sc;e are means

and variances, respectively. The skin domain restricted to chromatophores (turquoise) is computed using the mapping dmðdÞ; see text for details.

(C) Histogram of domain thickness of the 3D lattice shown in (B) after optimizing s, p, hc;e, and sc;e to obtain a profile (red) highly similar to the HREM data

histogram (blue).

(D) Histogram of scale-by-scale error (in comparisonwith the pattern simulated with a reference homogeneous 3D domain of identical Gaussian bumps, i.e., sc =

se = 0 ) in adult patterns simulated on 1,000 heterogeneous 3D domains similar to the one shown in (B). The fitted generalized extreme-value distribution (red line)

indicates that heterogeneity in skin thickness variation produces a mean Esbsz8:5%. Inset shows examples of patterns generated with four heterogeneous

domains (red dots indicate scales with wrong color, and numbers refer to their Esbs value in the histogram).
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associated to the 1,000 heterogeneous domains: the mean of

the expected scale-by-scale error exclusively due to heteroge-

neity in skin thickness variation is Esbs = 8:5%. In other words,

given the incomplete information on the thickness variation

among scales and among scale borders, a hypothetical numer-

ical model with perfect intrinsic predictability would, on

average, still not allow predicting exact individual patterns in

ocellated lizards with scale-by-scale error <8.5%. Details on

HREM data acquisition and generation of noisy super-Gaussian

3D lattices are provided in the STAR Methods.
Residual unpredictability and color measurement

uncertainty

In order to generate Turing instabilities, the partial differential

equations used in RD must be non-linear. In the model we use,

the non-linearity resides in the piecewise form of the reaction

terms (Equation 13). Non-linearity could make the dynamical

system sensitive to initial conditions: given that the colors of

the scales cannot be known with infinite precision, the corre-

sponding initial uncertainty in measurement is likely to grow

with time. However, given that it generates Turing instabilities,
Current Biology 32, 5069–5082, December 5, 2022 5077



Figure 6. Scale-by-scale error due to juvenile color measurement

uncertainty

Plot of the scale-by-scale error at the final (adult) time point versus error at

initial condition (i.c.) for the 2,000 simulations shown in Figure S4 (Lyapunov

spectrum analysis). At initial (juvenile) condition, median albedo (red line) or

mode albedo (green) or mean RGB colors (blue) give differences of scale

colors (against mean albedo) that generate 11.3%–20.9%scale-by-scale error

at the adult stage.
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the system we study must also be far from the chaotic regime

where non-linearity would make it irreducibly unpredictable. As

the dRD model exhibits a minimum predictability error of

23.6% in the analyses above, and about 8.5% of it is due to un-

certainty regarding the spatial variation of skin thickness, what is

the cause of the other 15.1%? Below, we show that most, if not

all, of this residual unpredictability is due to uncertainty in color

measurements at initial condition.

One powerful approach to estimate the degree of sensitivity of

a dynamical system is to use Lyapunov spectrum analysis (STAR

Methods), i.e., computing how fast two trajectories divergewhen

they initially differ by an arbitrary small difference. To this aim, we

generate 2,000 ‘‘noisy initial conditions’’ by adding random noise

to the colors of all scales of the observed juvenile lizard and study

their time evolution as 2,000 trajectories in phase space.We then

(1) measure the time evolution of the Euclidean distance

dt = kSt � Sref
t k between the state of each perturbed system

(St ) and the state (Sref
t ) of the reference (i.e., the latter is the tra-

jectory starting from the observed unperturbed juvenile colors)

and (2) use the Lyapunov exponent l as an estimate of the rate

of divergence between the two trajectories (Figure S4).

This analysis allows us to readily quantify the expected error at

the adult stage given a specific uncertainty at the initial condition:

we compute, for each of the 2,000 simulations, the scale-by-

scale color errors, E+
sbs and Ef

sbs, i.e., at the juvenile and adult

stages, respectively. Note that these errors are computed by

comparing each simulation (starting with noisy initial condition)

with the reference simulation (starting with the observed juvenile

colors). Figure 6 shows the variation of Ef
sbs with respect to E+

sbs
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across all 2,000 simulations: a larger initial error generates a

larger error at the adult stage. To estimate the expected scale-

by-scale error at the adult stage given the actual uncertainty in

color measurements at the juvenile stage, we reflect that the co-

lor of each scale is measured as the mean albedo among pixels

within that scale (STARMethods). Although the procedure of us-

ing a single color for the whole scale is justified by the well-

known behavior of the system12,14 (i.e., each of the ðu; v;wÞ com-

ponents tends to spatially homogenize within a scale), using the

mean is arbitrary. Similarly, one could argue that using the mean

RGB color observed on the pictures with homogeneous illumina-

tion is a more direct color measurement. Figure 6 indicates (ver-

tical lines) that using the mode or the median (instead of the

mean) of the PS albedo at initial condition would translate to

an initial difference (E+
sbs) of 2.08% and 3.98%, respectively,

whereas the use of RGB colors would correspond to an interme-

diate E+
sbs value of 3.21%. This range of uncertainties at initial

condition generates a range of scale-by-scale errors in the adult

(Ef
sbs) of 11.3% to 20.9%. Hence, the imprecision in color mea-

surement of juveniles is sufficient to explain most, if not all, of

the remaining residual unpredictability (15.1%) of the actual

adult lizard patterns.

Residual unpredictability in other species

Below, we investigate whether these results in ocellated lizards

can be generalized to the process generating largely different

adult patterns in four other species (Figure 1A): the interrupted

black banding of the Argentine black and white tegu, the low-

contrast highly labyrinthine pattern of the Standing’s day gecko,

the large black-and-orange meanders of the Gila monster, and

the yellow-on-black speckles of themangrove monitor. Remark-

ably, as in the ocellated lizard, RD modeling generates a sub-

stantial gain (over stochastic models) in scale-by-scale predict-

ability of observed adult patterns in these four additional

species. Indeed, starting from the juvenile thresholded (yellow/

orange versus black) pattern, RD systematically generates simu-

lated adult patterns (yellow spots in Figure 3) with a scale-by-

scale error statistically smaller than those obtained with the sto-

chastic models (Figure 7A, yellow bar). Similarly again to the

ocellated lizard, the gain in predictability by the RD model sub-

stantially increases in amplitude and statistical significance

when using the juvenile (un-thresholded) real colors as initial

condition, leaving a residual scale-by-scale unpredictability (Fig-

ure 7A, green bar) of 14.2% for the black and white tegu, 22.3%

for the Standing’s gecko, 12.7% for the Gila monster, and 19.1%

for the mangrove monitor. Using 3D simulations with heteroge-

neous skin geometry variation (Figure 7B) and Lyapunov spec-

trum analyses (Figures 7C and 7D), we show that the residual er-

ror in all species is explained by a combination of uncertainty in

skin thickness spatial distribution and in color measurement at

initial condition: for the ocellated lizard, the mean of the scale-

by-scale errors due to uncertainties in skin geometry variation

and juvenile color measurement (Figures 7B and 7D) is 8.5%

and 16.1%, summing up to 24.6%, i.e., close to the total residual

error of 23.6% (Figure 7A). For the tegu, Standing’s gecko, Gila

monster, and mangrove monitor, these numbers are 7.1% +

7.7% z 14.2%, 5.8% + 6.3% « 22.3%, 7.4% + 4.5% z
12.7%, and 3.1% + 16.2% z 19.1%, respectively. Only for

Standing’s gecko, the means of geometry-induced and of co-

lor-induced errors do not approximately sum up to the observed
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Figure 7. Residual unpredictability and measurement uncertainties

(A) Scale-by-scale errors (mean ± SD) of adult patterns simulated with different stochastic and RD models in five lizard species: green columns represent the

residual unpredictability of the RD model with juvenile (juv.) colors at initial condition (i.c).

(B) Top: distribution andmean (dotted lines) of scale-by-scale error caused by heterogeneity in skin thickness variation (distributions generated as in Figure 5D) in

five species of lizards. Lower panels show the reference hexagonal lattices of 3D super-Gaussian bumps with optimized p and s (p = 1 and s = 0.28S for ocellated

lizard). S = mean distance among neighboring scales on a real skin patch of the corresponding species. Heterogeneity in skin thickness variation generates a

mean unpredictability of 8.5%, 7.1%, 5.8%, 7.4%, and 3.1% in ocellated lizard, tegu, gecko, Gila monster, and monitor, respectively.

(C) Mean and SD of Lyapunov exponent (computed as in Figure S4) for five species of lizards.

(D) Range (circles indicate middle of ranges) of scale-by-scale error (at adult time point) obtained with simulations initiated with juvenile colors differing by a small

amount E+
sbs within the range

h
kCmode � Crefk; kCmedian � Crefk

i
, where Cref, Cmode, and Cmedian are the mean, mode, and median albedos of juvenile colors.

Uncertainties in juvenile color measurements generate a mean unpredictability of 16.1%, 7.7%, 6.3%, 4.5%, and 16.2% in ocellated lizard, tegu, gecko, Gila

monster, and monitor, respectively.

(E) RD is robust to parameters variation in all five species: scale-by-scale error (mean ± SD) is computed from 5,000 simulations with parameters uniformly

sampled in a range covering ±10% of the RD parameter normalization factor estimated during Bayesian optimization.
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residual error. Although it could be argued that the latter is

compatible with the ranges of estimated errors (upper bounds

are 14% and 8.1% for geometry- and color-induced errors,

respectively), the result above prompted us to further test the

validity of the current RD model for describing the Standing’s

gecko skin color patterning process. Indeed, performing

Gaussian mixture model clustering with 2–6 clusters (using a

cluster-validation approach24 to evaluate their relative qualities)

identified that the optimal number of color clusters is 2 for all in-

dividuals of all species, except Standing’s gecko for which it is 3

or 4, depending on the individual. Hence, description of the color

change process in Standing’s gecko is likely to require a more
complex RD model in which more than two steady-state colors

are emerging.

Robustness of the RD model

Finally, we conduct in all species a sensitivity analysis in order to

estimate how much perturbations of the RD parameters values

would affect the scale-by-scale error. To this end, we perform

in each species 5,000 ‘‘impaired’’ simulations in which per-

turbed, rather than optimal, parameter values are used: for

each simulation, parameter values are jointly sampled froma uni-

form distribution covering 20% (i.e., ±10%) of the RD parameters

normalization factor (in the covariance function; Equation 32 in

STAR Methods) estimated during Bayesian optimization. We
Current Biology 32, 5069–5082, December 5, 2022 5079
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then compute, for each perturbed simulation, its scale-by-scale

error in comparison with the unperturbed simulation (i.e., with

optimal RD parameters) and fit a gamma distribution to the re-

sulting histogram of errors, from which a mean and standard de-

viation are computed. These analyses indicate that simulations

with suboptimal RD parameter values generate smaller mean

scale-by-scale errors (0.6% < Ef
sbs < 2.8%; Figure 7E) than un-

certainties in skin geometry and in juvenile colors (Figures 7B

and 7D).

DISCUSSION

On evolutionary convergence
Our analyses reveal that two connected spectacular phenotypic

characters associated to skin color, scale-by-scale color pat-

terns and cellular automaton dynamics of patterning, have

evolved independently in multiple divergent lineages of squa-

mates (Figure 1A). This conclusion has important consequences

for our understanding of phenotypic evolution in a develop-

mental context. Indeed, the sequence of events that led to

such convergences is, in principle, easy to understand: all that

is needed for both phenotypic characters to emerge is that a Tu-

ring instability mechanism of skin color patterning occurs in a

skin domain with a periodic thickness (here, caused by skin

scales). Note that two additional requirements must be met.

First, the intrinsic self-organizational Turing length scale of the

color pattern should be larger than the length scale of the thick-

ness period. Second, the relative timings of scale development

and of skin color patterning are important. In principle, scale-

by-scale coloration could occur with both scales developing

before or after skin color patterning. Indeed, even if color

patterning has reached steady state before the onset of scale

development, the pattern should ‘‘snap’’ to the position of scales

if the dynamical system of chromatophore interactions remains

active. On the other hand, if the color pattern gets fixed (because

of the arrest of the underlying microscopic dynamical system)

before emergence of scales, then the newborn will not exhibit

a scale-by-scale color pattern. Such a situation is observed in

ball pythons (Python regius). We therefore conjecture that con-

vergences and reversals of these two phenotypic characters,

hence, the existence of closely related species differing by the

presence/absence of scale-by-scale skin color and/or CA dy-

namics, can easily occur through heterochrony, i.e., by changes

in the relative timings or rates of skin scales development and

skin color patterning.

Prediction of individual scale-by-scale patterns and
their neighborhood statistics
Our results show that, in the case of scale-by-scale skin color

patterning, simple statistical (such as sCA and Lenz-Ising)

models capture well enough the underlying non-linear dynamical

system to predict, with high precision, the time evolution of the

pattern statistical features. Using the assumption that the func-

tions of skin color patterns are associated to their statistical fea-

tures,15 such as their length scale or their general ‘‘look’’ (e.g.,

spots versus stripes versus labyrinths), we argue that statistical

and RD numerical models can capture most of the functionally

relevant behavior of these specificmorphogenetic self-organiza-

tional systems.
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Conversely, we show that (1) the improvement of predictability

of the exact scale-by-scale dynamics of individual animals in

species exhibiting vastly different color patterns is large for

deterministic RDover simpler statistical models and (2) the resid-

ual error in exact scale-by-scale color predictability is explained

mostly, if not entirely, by uncertainties in skin geometry variation

and in color measurements at the initial (juvenile) condition. One

could argue that the higher efficiency of RD is due to the incorpo-

ration of a large number of parameters (overfitting) and/or to fine-

tuning of these parameters. The overfitting argument could hold

for the Lenz-Ising but not for the sCA model as the former in-

cludes only two parameters (J and B), but the latter incorporates

16 parameters, all of which are optimized in our analyses.

Remarkably, parameter fine-tuning can also be ruled out as an

explanation for the efficiency of RD. Indeed, the sensitivity anal-

ysis reported here (Figure 7E) indicates that the high perfor-

mance of RD to predict actual scale-by-scale patterns is robust

to RD model parameter perturbations, hence, does not require

parametrizing the system down to its many nanoscopic/micro-

scopic variables.18

In addition, iterative addition of RD model parameters during

Bayesian optimization (Table S1) identified the necessity to

jointly optimize only 3–5 parameters (Table S2) among a total

of 16 (all others are set to the values of Manukyan et al.12).

This result indicates that the values of the remaining parame-

ters either cannot be optimized beyond those estimated in

Manukyan et al.,12 or are somewhat unimportant. Examples

of the latter are evident in the pairwise parameter gradient plots

of Figure S5: e.g., cw and c2 affect the pattern much more than

c7 (cf. 3rd and 6th graphs on the first line of gradient plots) and,

similarly, the pattern is very sensitive to c3 and relatively insen-

sitive to cu (1st column, 5th row). Note also that obtaining a

given low-error pattern depends on the joint optimization of

multiple parameters such that single-parameter values within

versus among species should not be over-interpreted. For

example, despite that optimized values of the growth param-

eter q (Table S2) differ more between black and white tegus

SM1 and SM2 than between SM2 and VI1 (a mangrove monitor

lizard), simulating the adult pattern of SM2 using the set of opti-

mized parameter values from SM1 (or vice versa) generates an

error (E16D value) smaller than the difference of nearest-

neighbor configuration statistics between the two tegu individ-

uals (Table S3). In other words, the joint set of optimized pa-

rameters of SM1 or of SM2 generate tegu-specific patterns,

whereas the set of parameters of VI1 does not (Table S3). A

similar comparison (Table S4) is performed for one ocellated

lizard (TL1) with an optimized value of the parameter Du;v

(Table S2), closer to that of a tegu (SM1) than to that of another

ocellated lizard (TL2). Hence, interpreting RD parameters in

isolation is difficult because the RD model is phenomenological

rather than built bottom-up from quantified molecular or cellular

processes.

In conclusion, the superior efficiency of RD over stochastic

models in describing the scale-by-scale skin color patterning

process in multiple divergent species of lizards is due to intrinsic

properties of RD, including the ability to exploit mesoscopic in-

formation such as (1) continuous character states (here, scale

colors) and (2) the implicit relation between the pattern

length scale and geometrical parameters (here, growth and
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scale/edge geometries). In other words, spatial discretization of

the RDmodel and/or reduction of its spatial dimensions (from 3D

to 2D) do not affect much its efficiency in predicting scale-by-

scale patterns, whereas discretization of states (to two colors)

in the sCA and Ising models, as well as the inability of these ap-

proaches to incorporate diffusion and growth, generate a larger

negative impact.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Skin biopsies for HREM University of Geneva N/A

Experimental models: Organisms/strains

2 individuals of T. lepidus University of Geneva LLEP_00038; LLEP_00066

2 individuals of S. merianae University of Geneva TMER_0001; TMER_0002

4 individuals of H. suspectum University of Geneva HSUS_001; HSUS_002;

HSUS_003; HSUS_004

2 individuals of V. indicus University of Geneva VIND_0002; VIND_0003

2 individuals of P. standingi University of Geneva PSTA_00021; PSTA_00022

Software and algorithms

MATLAB R2021a (version 9.10) https://www.mathworks.com/

products/matlab.html

N/A

MATLAB Image Processing

Toolbox (version 11.3)

https://www.mathworks.com/

products/matlab.html

N/A

MATLAB Statistics and Machine

Learning Toolbox (version 12.1)

https://www.mathworks.com/

products/statistics.html

N/A

MATLAB Parallel Computing

Toolbox (version 7.4)

https://www.mathworks.com/

products/parallel-computing.html

N/A
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and material should be directed to and will be fulfilled by the lead contact, Michel C.

Milinkovitch (Michel.Milinkovitch@unige.ch).

Materials availability
This study did not generate new materials.

Data and code availability
All data needed to evaluate the conclusions in the paper are present in the paper and/or the supplemental information. Executables

implementing the 2D and 3D RD processes are available at https://github.com/LANEvol/Discrete-RD.git and https://github.com/

LANEvol/RD-Curvilinear.git, respectively, for repeating the numerical simulations presented here.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ocellated lizards, Argentinian tegus, Gila monsters, mangrove monitors and Standing’s day geckos are housed in Milinkovitch and

Tzika’s laboratory, Department of Genetics and Evolution, University of Geneva, Switzerland. Maintenance of, and experiments on

animals were approved by the Geneva Veterinary Cantonal authorities (authorizations GE/82/14, GE/169/17 and GE24/33145) and

performed according to the Swiss law. These guidelines meet international standards.

METHOD DETAILS

Animal scanning and identification of the boundaries and colors of skin scales
Animals were scanned with R2OBBIE-3D, a robotic system19 integrating a six-axis robotic arm, a 36-megapixel digital single-lens

reflex color camera (Nikon D810) and an illumination basket of 30 high-intensity light-emitting diodes (LEDs). For each position of

the camera, 30 images were taken (each with a different LED, i.e., a different lighting direction) and combined to infer the normal

map of the corresponding 3D surface with the photometric stereo (PS) approach.20 Depending on the animal size at the time of scan-

ning (they were scanned 14 to 45 times over a period of 2 to 4 years starting from the juvenile stage), 90 to 780 images were taken as
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the back and flanks were covered by using 3 to 26 different camera positions. The corresponding multiview-PS approach generated

3D models with a resolution of >400 pixels per scale, allowing for the micro-geometry reconstruction of these skin appendages, a

pre-requisite for automated identification of skin scales described below. One advantage of the PS approach is that it produces

both the normal and the albedo of each pixel. We stored the normal vectors of each PS patch as a 16-bits RGB color image in which

each channel contains a component of the normal vector linearly transferred from range (�1,1) to (0,65535).

We then used the normal map to compute the mean curvature of the skin surface, parametrizing the surface F : R2/R3 with the

variables u and v:

Fðu; vÞ =

0
@ xðu; vÞ

yðu; vÞ
zðu; vÞ

1
A (Equation 1)

where x = u; y = v; z = zðu; vÞ. Normals to the surface are then computed as

n =
Fu 3Fv

kFu 3Fvk (Equation 2)

where Fu = vF
vu and Fv = vF

vv . Substituting Equation 1 into Equation 2 yields

n =
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2u + z2v + 1
p

0
@� zu

� zv
1

1
A (Equation 3)

where zu = vz
vu and zv = vz

vv. If the normal vector isn =

0
@ n1

n2
n3

1
A, according to Equation 3, we canwrite zu = �n1=n3; zv = �n2=n3, we

can compute Fu and Fv as

Fu =

0
BBB@

1

0

� n1

n3

1
CCCA;Fv =

0
BBB@

0

1

� n2

n3

1
CCCA (Equation 4)

and we can write

Fuu =

0
BBB@

0

0

� v

vu

�
n1

n3

�
1
CCCA;Fvv =

0
BBB@

0

0

� v

vu

�
n2

n3

�
1
CCCA;Fuv =

0
BBB@

0

0

� v

vu

�
n2

n3

�
1
CCCA (Equation 5)

where Fuu = v2F
vu2

, Fvv = v2F
vv2

, and Fuv = v2F
vuvv.

We then compute the mean curvature by using the first and second fundamental form, F1 and F2.

F1 =

�
E F
F G

�
;F2 =

�
L M
M N

�

in which

E = Fu$Fu; F = Fu$Fv; G = Fv$Fv

L = Fuu$n; M = Fuv$n; N = Fvv$n
(Equation 6)

After substituting the derivatives of F from Equations 4 and 5 into Equation 6, we have

E = 1+

�
n1

n3

�2

; F =
n2n1

n2
3

; G = 1+

�
n2

n3

�2

L = � v

vu

�
n1

n3

�
n3; M = � v

vv

�
n1

n3

�
n3; N = � v

vv

�
n2

n3

�
n3

(Equation 7)

The mean curvature H is then computed as

H =
EN � 2FM+GL

2
�
EG � F2

� (Equation 8)

By substituting Equation 7 into Equation 8, we compute the mean curvature (from the normal map) as
e2 Current Biology 32, 5069–5082.e1–e13, December 5, 2022
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H = � n3

2

�
n2
3 + n2

1

� v

vv

�
n2

n3

�
+ n3n2n1

v

vv

�
n1

n3

�
� n3

2

�
n2
3 + n2

2

� v

vu

�
n1

n3

�

Figures 1B and 1C show the normal map and the mean curvature for a rectangular patch of skin of an ocellated lizard (TL1) at

different post-hatching developmental stages. We then apply both a Gaussian and a Median filter on the mean curvature field to re-

move very short wavelength noiseswhile preserving the sharpness of scales boundaries. Note that, as the average scale size in pixels

is about s, we find that smoothing is efficiently applied by the Gaussian and Median filters with a variance s = s=10 and window size

w = ðs; sÞT , respectively. Figure 1C shows the mean curvature after applying the two filters. Each local minimum in the filtered cur-

vature field indicates an individual scale. However, the actual centroid of the corresponding scale is not necessarily located at this

minimum because scales in all the species investigated (except Standing’s gecko) are slightly asymmetrical and tend to have their

lowest curvature slightly displaced distally (i.e., caudally). Hence, we use the watershed algorithm to segment the filtered mean cur-

vature grayscale images with the darkest regions representing the local minima. Although the resulting segmentation of scales is

approximate, the centroids of the watershed segments better correspond to the actual center of scales. Proper scale boundaries

(red lines in Figure 1C) are then identified by applying Voronoi tessellation on the centroids of the watershed segments.

After identifying scale borders as described above, scale colors are determined by averaging color across pixels within each scale.

Note that pixels too close to scales boundaries (distance < s=10 ) are excluded to avoid artifactual shading due to the high curvature

of scale borders.

Scale matching
In order to trace, across time points, all scales in the Voronoi meshes generated for each time-point, we first attempt to match all

possible pairs of Voronoi meshes. This is achieved by finding for each scale an affine transformation (allowing for translations, rota-

tions, scaling and shear) which transforms the scale centers between two Voronoi meshes at times r and t. The affine matrixM in 2D

transforms the target coordinates

�
xt
yt

�
into the reference coordinate

�
xr
yr

�
according to

0
@ xr

yr
1

1
A = M

0
@ xt

yt
1

1
A

where M is a 3 3 3 matrix which contains 6 variable coefficients as

M =

0
@m11 m12 m13

m21 m22 m23

0 0 1

1
A

If we know at least three matching points between the reference and the target spaces, we can find M as

M =

0
@ xr1 xr2 xr3

yr1 yr2 yr3
1 1 1

1
A
0
@ xt1 xt2 xt3

yt1 yt2 yt3
1 1 1

1
A

� 1

If we use >3 points to computeM, we obtain an over-determined system yielding a least-square approximation of the affine trans-

formation. After initiating the matching algorithm by manually selecting the centers of at least 3 scales in all time points, the first iter-

ation consists into computing an affine transformation for each scale (independently for each pair of time points) that is a first

neighbor of any of themanually-selected scales, i.e., affinematrices are computed independently for each neighbor scale. The center

of each of these newly-considered scales is then transferred from the source to the target space by using the corresponding affine

matrix. If the distance between a transferred point and a scale center in the target lattice is smaller than ε pixels (i.e., 0.05 times the

average distance between neighboring scales), the two centers are registered as a match between the source and target lattices.

Once all transferred points have been tested, the patch in the source lattice is updated by adding the new matches. The process

is then iterated by finding all first neighbors of scales in the updated patch and computing the corresponding affine transformations.

The affine transformation for each new scale considers at least 3 and at most 10 closest neighbors alreadymatched. Note that points

that have been transferred but not matched at iteration i will necessarily be first-neighbors of the updated patch and will therefore be

transferred again at iteration i+1. These points will be more likely to find amatch in the target lattice because the corresponding affine

matrix will involve more neighbors already matched. The matching algorithm stops when no new match is found.

After matching all pairs of time points, we combine all pairwise matches into a global graph that we term a ‘space-time Voronoi

network’, in which nodes are scales (each scale receives a unique label at each time-point) and edges are matches. Each scale

for which the number of nodes in the global graph equals the number of time-points is selected for the next step. In other words,

the selected connected components should represent the scales for which at least one match exists in each time-point. The final

patch of matched scales generated by the algorithm is a lattice with a jagged boundary and possibly some missing elements inside.

More specifically, remaining unmatched points correspond to real scales that cannot be matched with the use of an affine transfor-

mation. At this stage, we find a very small proportion of these errors (average = 5%) which are then easily corrected individually by

manually identifying the corresponding scale in one time-point such that the matches are automatically generated at all other time-
Current Biology 32, 5069–5082.e1–e13, December 5, 2022 e3
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points using local affine transformations. Next, we correct for errors in connectivity. According to our observations, the number of

scales as well as their connectivity are invariant in time. Hence, the approximately 10% mismatch in connectivity that we observe

between pairs of time-points are errors that should be corrected. For that purpose, we generate a unified space-time Voronoi network

by averaging (after correcting for scaling, translation and rotation among time-points) the centers of each scale across time points.

We exclude shear and anisotropic scaling because they would transform the Voronoi network topology in favor of the reference time-

point. Given these constraints, we can write the transformation as�
xp
yp

�
=

�
s cosðqÞ �s sinðqÞ
s sinðqÞ s cosðqÞ

� 
x

0
t

y
0
t

!
;

 
x
0
t

y
0
t

!
=

�
xt
yt

�
+ t (Equation 9)

in which s is the isotropic scaling factor, q is the rotation angle, t =

�
tx
ty

�
is the translation vector and subscript t and p denote the

coordinates of target scales before and after transformation, respectively. The translation vector t can be easily found from the cen-

troids of the scales as

t =

�
xr � xt
yr � yt

�
, where subscripts r denotes the coordinates of the reference scales and x = 1

N

PN
i = 1xi denotes to the average in

which N is the number of scales. In order to find q and s, we use the least-squares approach to minimize the error function defined as

E =
XN
i = 1

	
ðxr;i � xp;iÞ2 +

�
yr;i � yp;i

�2

(Equation 10)

Substituting Equation 9 into Equation 10 and solving for vE=vq = 0 and vE=vs = 0, we get

q = arctan

�
yrx

0
t � xry

0
t

xrx
0
t + yry

0
t

�
; s =

cosðqÞ�xrx0
t + yry

0
t

�
+ sinðqÞ�yrx0

t � xry
0
t

�
x

0
t
2
+ y

0
t
2

By knowing q, s and t, we can use Equation 9 to transfer all time-points to the reference space and then take, for each scale, its

across-time-point average position. The averaged scale centers are then used to generate the final space-time Voronoi network

(including color of scales) for the corresponding animal. Figure S6 shows the resulting matched scales for 25 time-points of the ocel-

lated lizard TL1.

Stochastic Cellular Automaton
First, we label all the scales in the Voronoi lattice by one of the nearest-neighbor configurations in the set

C = fðS; iÞjS˛ fGreen; Blackg; i˛ f0;1; 2; 3;4;5;6;7g g
where S indicates the state (green or black) of the scale and i denotes the number of isochromatic neighbors. We assume that the

probability p of a scale changing color in the space-time network (Figure 1F) only depends on its nearest-neighbor configuration, i.e.,

p = pðS; iÞ, such that the sCA model can be defined with 238=16 parameters. As frequencies of rare color changes, and/or of

changes that involve rare nearest-neighbor configurations, are poor estimates of the corresponding color-change probabilities p,

we use Bayesian inference to compute the expectation E½p� of these probabilities. Assuming that color change follows a Binomial

distribution with probability of k successes from n trials, the posterior probability of p (assuming flat priors) is

fpjk;n = ðn + 1Þ
�
n
k

�
pkð1 � pÞn� k

with the maximum of that posterior distribution function positioned at

pMAP = argmax
p

fpjk;n =
k

n

i.e., at the corresponding observed color-change frequency. On the other hand, the expectation of p is:

E½p� =
k + 1

n+ 2

The sCA rules are obtained simply by summing up trials and successes across time-points and deriving probabilities for each of the

16 possible configurations. Note that, during numerical simulations, we adapt the number of sCA iterations such that the cumulative

sum of color flips between initial and final time-points is approximately equal to the number of flips observed in the corresponding real

animal. As an example, the time-evolution of neighborhood statistics in two ocellated lizard individuals (TL1 and TL2) are shown in

Figures S1A and S2A.

Reaction-diffusion
Following the notation of Manukyan et al.12 and Fofonjka and Milinkovitch,14 we use a RD model with three components u; v;w such

that the three coupled partial differential equations (PDEs) can be written in matrix form as
e4 Current Biology 32, 5069–5082.e1–e13, December 5, 2022
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vtu = FðuÞ � cu+DV2u (Equation 11)

in which

u =

0
@ u

v
w

1
A; FðuÞ =

0
@ Fðu; v;wÞ

Gðu; v;wÞ
Hðu; v;wÞ

1
A; c =

0
@ cu 0 0

0 cv 0
0 0 cw

1
A; D =

0
@Du 0 0

0 Dv 0
0 0 Dw

1
A

and the Laplacian operator can be written in the compact form

V2u = V$ðVuÞ =

0
BBB@

v2xxu+ v2yyu+ v2zzu

v2xxv + v2yyv + v2zzv

v2xxw+ v2yyw+ v2zzw

1
CCCA (Equation 12)

Note that the non-linearity of the reaction terms is due to their step-wise function form:

Fðu; v;wÞ =
8<
:

0 : c1v + c2w+ c3 < 0
c1v + c2w+ c3 : 0% c1v + c2w+ c3 %Fmax

Fmax : Fmax <c1v + c2w+ c3
Gðu; v;wÞ =
8<
:

0 : c4u+ c5w+ c6 < 0
c4u+ c5w+ c6 : 0% c4u+ c5w+ c6 %Gmax

Gmax : Gmax < c4u+ c5w+ c6

(Equation 13)
Hðu; v;wÞ =
8<
:

0 : c7u+ c8v + c9 < 0
c7u+ c8v + c9 : 0% c7u+ c8v + c9 %Hmax

Hmax : Hmax <c7u+ c8v + c9

3D continuous RD (3D-cRD)

The Laplacian operator in Equation 12 is defined in the Cartesian space. We then rewrite the Laplacian operator in curvilinear 3D

space (accurately representing the skin geometry) as follows. We define curvilinear space coordinates yi, parametrized by Cartesian

space coordinates, xi, as

yi = yiðx1; x2; x3Þ
in which i = 1;2;3 is the dimension index. In order to find the equivalent operator in the curvilinear space, we first rewrite the

gradient operator as

Vu =
vu

vxi
ei =

vu

vyi
bi

in which ei are the basis vectors in the Cartesian system and

bi = Vyi =
vyi
vxj

ej = bi
jej

is the covariant basis in the curvilinear system.

Then, the Laplacian of u reads

V2u = V$ðVuÞ = V$

�
vu

vyi
bi

�

= V

�
vu

vyi

�
$bi +

vu

vyi
V$bi

=
v2u

vyjvyi
bj$bi +

vu

vyi

vbi
j

vyk

vyk
vxj

=
v2u

vyjvyi
bj$bi +

vu

vyi

vbi
j

vyk
bk
j

(Equation 14)

The covariant basis components, bj
i, appearing in Equation 14 are computed for all nodes in the structured grid. The nodes located

at the grid borders are named ‘boundary nodes’ whereas all others are ‘interior nodes’. The latter are assumed to be at the center of a
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33333 stencil for which the finite-difference approximation is computed and the discrete Laplacian operator is written in a matrix

form using the local indices of the nodes in the stencil. In order to approximate the covariant basis components of a node, we

take into account the xi and yi variations of all 27 neighbor nodes in the corresponding stencil. More precisely, themetric tensor com-

ponents are the slope of the lines calculated using the least-square linear regression on the 27 data points. For boundary nodes, there

are 22 possible different stencils (all with <27 nodes), but the least-square linear regression remains valid for these boundary nodes.

Then, we use finite-difference formulas to approximate the first, second and cross derivatives appearing in Equation 14. Finally,

Equation 11 is time integrated using the Euler backward scheme. Then, the resulting linear system is solved with a stabilized variant

of the Bi-conjugate gradient method (BiCGSTAB25).

2D continuous RD (2D-cRD)

As the skin domain thickness (h in the Z dimension) is much smaller than its size in the two other spatial dimensions, it is reasonable to

neglect variations of RD variables across Z. This assumption enables reducing the model from 3D to 2D by integrating in the Z di-

rection14 the RD equations (Equation 11) to give

vtu = FðuÞ � cu+
1

h
V$ðhðxÞDVuÞ

in which u = 1
h

R z+ + h
z+

udz and h = 1
Askin

R
Askin

hðxÞdA.
Using a position-dependent diffusion coefficient DðxÞ = hðxÞ=hD, we can rewrite the reduced-order RD equations as

vtu = FðuÞ � cu+V$ðDðxÞVuÞ
Aswe are building a 2Dmodel, we replace hereafter u byu.We can further simplify themodel by assuming that scales are prismatic

(i.e., thickness is reduced only at discrete scale borders). In 2D, this is translated into taking into account the reduction of skin thick-

ness through scaling of the continuous RD diffusion coefficients (by a factor P) at the one-dimensional edges of the 2D scales,12 i.e.,

we introduce a position-dependent diffusion coefficient in the 2D model, with the diffusion matrix reading

DðxÞ =

�
PD x˛ scale boundary
D else

Then, similar to the 3D-cRD case above, we use the finite-difference method to discretize the diffusion term. For that purpose, we

consider that the physical domain is discretized into a square grid with spacing ε. As both the physical and computational domains

are equivalent square grids, the metric tensor simplifies into a unit tensor. Similarly to Manukyan et al.,12 the 2D-cRD equations

become

dui

dt
= FðuiÞ � cui +

1

ε
2

X
j

DðxijÞðuj � uiÞ (Equation 15)

where xij = ðxi + xjÞ=2 and j represents the neighbors of the i th node.

2D Discrete RD (2D-dRD)

We derive here the discrete-RD equations by using the finite-volume method for arbitrary polygons. The governing equations (Equa-

tion 1) are integrated over the skin domain U.Z
U

vtudA =

Z
U

½FðuÞ � cu+V$ðDðxÞVuÞ�dA

Using the Divergence theorem, we obtain

d

dt

Z
U

udA =

Z
U

ðFðuÞ � cuÞdA+

Z
vU

DðxÞ vu
vn

dL

Then we write this integral for a single scale labeled by index i:

Ai

dui

dt
= Ai½FðuiÞ � cui�+PD

X
j

�
vu

vn

�
ij

Lij (Equation 16)

where Ai =
R
Ui
dA, Lij =

R
vUiXvUj

dL, and ui = 1
Ai

R
Ui
udA

are the scale area, the length of the edge between scales i and j, and the area-averaged values of component u, respectively. To

solve Equation 16, we need to compute ðvu=vnÞij, i.e., the diffusion flux exchanged between neighboring scales. Recalling that the

scales boundary thickness is ε, we can approximate the normal-oriented flux as�
vu

vn

�
ij

z
uj � ui

ε
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This approximation implies that the RD component concentrations are changing linearly across interscale edges. Finally, substitut-

ing the normal flux into Equation 16, we obtain the discrete RD equations for arbitrary polygonal scales:

dui

dt
= FðuiÞ � cui +

PD

Aiε

X
j

ðuj � uiÞLij (Equation 17)

Note that, if we assume a regular hexagonal lattice, with edge length S, we have

Ai =
3
ffiffiffi
3

p

2
S2; Lij = S

such that Equation 17 simplifies to the discrete equation derived in Manukyan et al.12:

dui

dt
= FðuiÞ � cui +

2PD

3
ffiffiffi
3

p
Sε

X
j

ðuj � uiÞ (Equation 18)

Enhanced RD
Here we integrate growth of the animal as well as variation of color state at initial condition.

Growth model

We assume growth to change as a logistic function

SðtÞ =
k1

expð � k2t + k3Þ+ 1
(Equation 19)

in which S is the average (across all scales) of edges’ lengths, t is the growth time variable and ki = 1;2;3 are the constants deter-

mined by fitting the logistic curve to the measurements made on the corresponding real animals. Figure S7A shows the measured

scales size as well as the fitted growth functions for the two ocellated lizards (TL1 and TL2). To integrate isotropic growth in the RD

equations, we must take into account the different time-scales of the growth versus RD processes. Here, we consider that they are

related by a rate factor q as

q =
dt

dt

in which t and t denote the time variables of growth and RD processes, respectively. Then, we can rewrite the discrete RD Equa-

tion 17 as a function of t.

1

q

dui

dt
= FðuiÞ � cui +

PD

AiðtÞεðtÞ
X
j

ðuj � uiÞLijðtÞ (Equation 20)

in which ε, L and A are changing as a functions of t. Knowing the scales growth function SðtÞ from Equation 19, we determine the

growth of all lengths and areas in proportion to the reference time-point geometry such that

εðtÞ = SðtÞ
Sref

εref; LijðtÞ = SðtÞ
Sref

Lij;ref; AiðtÞ =
�
SðtÞ
Sref

�2

Ai;ref (Equation 21)

Here, we assume εref = 1 and select the last measured time-point as the reference geometry. Substituting Equation 21 into Equa-

tion 20 results in a discrete RD (2D-dRD) model integrating growth:

1

q

dui

dt
= FðuiÞ � cui +

�
Sref

SðtÞ
�2

PD

Ai;refεref

X
j

ðuj � uiÞLij;ref

Similarly, we can integrate growth into the 2D continuous RD (2D-cRD) model by using dt = qdt and substituting εðtÞ = SðtÞ
Sref

εref into

Equation 15 to obtain

1

q

dui

dt
= FðuiÞ � cui +

�
Sref

SðtÞ
�2

1

ε
2
ref

X
j

Dðxij;refÞðuj � uiÞ

Juvenile initial condition (IC) and color transformation matrix

Determining the initial condition (corresponding to the juvenile pattern) requires transferring color information to the space of RD vari-

ables. Here, we detail how to obtain the transformation function. First, we linearize the RD equations close to the homogeneous

steady state (HSS). By definition, at HSS the temporal and spatial derivatives in Equation 11 vanish, such that

Fðu�Þ = cu� (Equation 22)
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where the vector u� corresponds to the RD component concentrations ðu�; v�;w�Þ at the HSS. The reaction terms defined in Equa-

tion 13 partition the u; v;w space into 9 linear regions. As we assume that our RD system is initiated by values all located in the central

region, the reaction terms F, G and H read

Fðu; v;wÞ = c1v + c2w+ c3

Gðu; v;wÞ = c4u+ c5w+ c6

Hðu; v;wÞ = c7u+ c8v + c9

(Equation 23)

Substituting Equation 23 into Equation 22, we have0
@ u�

v�

w�

1
A =

0
@� cu c1 c2

c4 � cv c5

c7 c8 � cw

1
A

� 10
@ c3

c6

c9

1
A

In addition, as we assume that the HSS belongs to the central region, valid values of the parameters ðc1;.; c9; cu; cv; cwÞ must

respect

0<c1v
� + c2w

� + c3 %Fmax

0<c4u
� + c5w

� + c6 %Gmax

0< c7u
� + c8v

� + c9 %Hmax

(Equation 24)

such that u� is a point in 3D u; v;w space inside the region delimited by the six planes defined by Equation 24. We then linearize the

governing 2D-dRD equations on the hexagonal lattice: substituting Equation 23 into Equation 18 yields

dui

dt
=

0
@� cu c1 c2

c4 � cv c5

c7 c8 � cw

1
Aui +

0
@ c3

c6

c9

1
A+

2P

3
ffiffiffi
3

p
Sε

D

 X
j

uj � 6ui

!
(Equation 25)

We can then approximate the summation terms in Equation 25 as
P

juj = 6u� and define

b =

0
@ c3

c6

c9

1
A+

4PDffiffiffi
3

p
Sε

u�;M =

0
@� cu c1 c2

c4 � cv c5

c7 c8 � cw

1
A � 4PDffiffiffi

3
p

Sε

to write Equation 25 in a compact form representing a system of linear ordinary differential equations

vtu = Mu+b (Equation 26)

whose solution describing the time evolution of u is

uðtÞ = eMt
�
u+ + M� 1b

� � M� 1b (Equation 27)

in which u+ is the initial condition. We can then use spectral decomposition to rewrite Equation 27 asM = VLV� 1, where L is the

diagonal matrix which contains eigenvalues of M.

L =

0
@ l1 0 0

0 l2 0
0 0 l3

1
A

and V is amatrix in which columns are V = ð v1 v2 v3 Þ, i.e., the eigenvectors ofM. Then, the exponential of thematrixM can be

written as eM = VeLV� 1 which enables us to rewrite Equation 27 as

uðtÞ = VeLtV�1
�
u+ +M�1b

��M�1b

= VeLt

0
BB@

a1

a2

a3

1
CCA�M�1b

= el1ta1v1 + el2ta2v2 + el3ta3v3 �M�1b

(Equation 28)

whereas a1;2;3 are constant coefficients computed as0
@ a1

a2
a3

1
A = V� 1

�
u+ + M� 1b

�

Equation 28 is an approximation of a scale color trajectory in u; v;w space. When t is large enough, the maximum eigenvalue term

(l1) dominates and the trajectory simplifies to the dominating eigenvector line
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uðt0Þ = v1t
0 � M� 1b (Equation 29)

where t0 = el1ta1 can take negative or positive values depending on the sign of a1 which itself depends on the initial value u+. If l1 <

0, the system is stable and the trajectory converges to the steady state u�, whereas, if l1 > 0, the scale color trajectory is directed

towards one of two ‘extremities’ of the dominating eigenvector line, i.e., the 3D points where the line defined by Equation 29 inter-

sects the planes described by Equation 24. Figure S7B shows the color trajectories in u; v;w space starting from different initial con-

ditions. Note that performing this analysis on the RDmodel integrating growth (see previous section) produces the same dominating

eigenvector line.

After performing the linear stability analysis above, we use the dominating eigenvector line Equation 29 to convert the color data of

all juvenile scales to u; v;w space (Figure S7C). Indeed, assuming that juvenile scale colors correspond to color variables close to the

HSS and vary along the dominating eigenvector line, we construct a transformation matrix that converts color data to u; v;w (and vice

versa) as follows. First, we convert both juvenile and adult scale colors fromRGB to CIELAB color space which expresses color along

three axes: perceptual lightness (L*; with black at L*=0 and white at L*=100), unbound green–red opponents (a*; with a*<0 towards

green and a*>0 towards red) and unbound blue–yellow opponents (b*; with blue towards b*<0 and yellow towards b*>0). We use the

CIELAB color space because it was designed to approximate the nonlinear response of the human eye. We then use the K-mean

algorithm to divide color data into two clusters. The cluster centers are denoted by

Cg =

0
@ L

a
b

1
A

g

and Cb =

0
@ L

a
b

1
A

b

where Lg > Lb.

Using Equations 18 and 24, we compute the two extremities of the distribution line as

ug =

0
@ u

v
w

1
A

g

and ub =

0
@ u

v
w

1
A

b

where vg > vb.

We then construct two affine transformation matrices: the first projects every point in color space on the line passing through Cg

andCb whereas the second transfers the projected points to the line passing through ug and ub in u; v;w space. The two correspond-

ing matrices are denoted by T1ðCg;CbÞ and T2ðCg;Cb;ug;ubÞ, respectively. For arbitrary vectors x;x0;y, and y0, the matrices T1 and

T2 read

T1ðx; x0Þ =

�
eðx; x0Þeðx; x0ÞT

	
I � eðx; x0Þeðx; x0ÞT



x

0 1

�

T2ðx; x0; y; y0Þ =

0
@eðy; y0Þeðx; x0ÞTky � y0k

kx � x0k y �
	
eðy; y0Þeðx; x0ÞTky � y0k

kx � x0k


x

0 1

1
A

where eðx;x0Þ = x� x0
kx� x0k.

In order to allow optimizing the initial condition, all the transferred points are moved closer to the HSS by applying T3 which reads

T3ðr;u�Þ =

�
rI ð1 � rÞu�

0 1

�

where r is an adjustable parameter ranging between 0 (the point is moved to the HSS) and 1 (the point is not moved). Finally, the

color of each juvenile scale is converted to the u; v;w space using the combination of the T1, T2, and T3 matrices (see Figure S7C):�
u
1

�
= T3ðr;u�ÞT2

�
Cg;Cb;ug;ub

�
T1

�
Cg;Cb

��C
1

�
(Equation 30)

Color transformation matrix for later time-points

To allow for comparisons between simulated and real patterns at later time points, we define the transformation from the u; v;w to the

color space through Principal Component Analysis (PCA) by finding the eigenvectors and eigenvalues of the covariance matrix

defined as

CovðXÞ =
1

n
ðX � XÞT ðX � XÞ
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where n denotes the number of scales and, given that there are three RD variables (and three color variables), X is a n3 3 data

points matrix. For both color and u; v;w spaces, we can extract three orthogonal eigenvectors of which the one corresponding to

the largest eigenvalue denotes the axis along which the data points exhibit the largest variation. Hence, the eigenvalues and eigen-

vectors form an ellipsoid approximately fitted to the data points: the ellipsoid center is the centroid of the data points; the ellipsoid

axes and radii are the eigenvectors and the square root of eigenvalues, respectively. Hence, the transformation between the color

and u; v;w spaces is defined as the matrix that maps the two ellipsoids from these two spaces. We then assume that (i) the eigen-

vectors of the color and RD variables are the columns of thematrices VC, and Vu, respectively and (ii) the eigenvalues are the diagonal

matrices DC and Du, respectively. Hence, the affine transformation matrix from RD variable to color space reads

TeðC;uÞ =

�
QðC;uÞ C � QðC;uÞu

0 1

�

in whichC andu are the color andRDdata points centroids, respectively, andQðC;uÞ is the rotation and scalingmatrix which reads

QðC;uÞ = VCD
1
2

C

�
VuD

1
2
u

�� 1

Then, the color of each scale is computed as �
C
1

�
= TeðC;uÞ

�
u
1

�
(Equation 31)

Bayesian optimization of RD parameters
We optimize RD parameters using Bayesian Optimization (bayesopt library in MATLAB R2021a with parallel sampling), a machine-

learning globalminimization problem, defined asmin
x˛X

fðxÞ, in which fðxÞ is the objective function. According to Frazier,26 this approach

is efficient in minimising objective functions that are continuous, expensive to evaluate, have less than 20 dimensions and whose

feasible set X is a hyper-rectangle or d-dimensional simplex.

Gaussian process regression

The core of the method is a random Gaussian process (i.e., a generalization of the multivariate normal distribution to infinite dimen-

sions) which enables sampling random functions. Here, we use this process to approximate the objective function. Let’s assume that

we already know a ‘training dataset’ of N outputs of the function fðxÞ as a vector f associated with N input vectors stored in the ma-

trix X:

f =

0
@ fðx1Þ

«
fðxNÞ

1
A;X =

0
@ x1

«
xN

1
A

in which, xi ˛Rd is a row vector containing optimisable variables. We know that the function f is sampled from a Gaussian process

defined as

fðxÞ � GPðmðxÞ; kðx; x0ÞÞ
in whichm and k are mean and covariance functions, respectively. Now, we would like to estimate f� = fðx�Þ at any arbitrary point

x�, i.e., we look for Pðf�jfÞ, the probability of observing f� given the known output vectors f. By definition, any finite sets of data chosen

from the Gaussian process exhibit a normal joint distribution. Since both f� and the output vector f are sampled from the same

Gaussian process, they have a normal joint probability Pðf; f�Þ which reads�
f
f�

�
� Pðf; f�Þ = N

 �
m

mðx�Þ
�
;

 
k kT

�
k� kðx�; x�Þ

!!

in which m is the mean vector and k; k� are covariance block matrices defined as

m =

0
@mðx1Þ

«
mðxNÞ

1
A; k =

0
@ kðx1; x1Þ . kðx1; xNÞ

« 1 «
kðxN; x1Þ . kðxN; xNÞ

1
A; k� =

0
@ kðx1; x�Þ

«
kðxN; x�Þ

1
A

We can compute the conditional probability Pðf�jfÞ as

Pðf�jfÞ =
Pðf�; fÞ
PðfÞ =

Pðf�; fÞR
Pðf�; fÞdf�

It can be shown that Pðf�jfÞ, from which f� can be sampled, is a normal distribution

f� � Pðf�jfÞ = N �mpostðx�Þ; kpost
�
x�; x

0
�
� �

in which
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mpostðx�Þ = mðx�Þ+ kT
�k

� 1ðf � mÞ
kpost
�
x�; x

0
�
�
= k
�
x�; x

0
�
�� kT

�k
�1k�

The covariance function kðx; x0 Þ has a crucial role on the performance of the Gaussian process and here we use:

kðx; x0 Þ = s2
f

�
1+

ffiffiffi
5

p
h+

5

3
h2

�
exp

	
�

ffiffiffi
5

p
h



(Equation 32)

in which

h =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � x0Þs� 2ðx � x0ÞT

q
;s =

0
@ s1 0 0

0 1 0
0 0 sd

1
A (Equation 33)

The scalar sf and the diagonal matrix s are called hyper-parameters (that allow handling different length scales in parameter space)

whose values are computed within the optimization loop. Here, we define the objective function as

f =
1

nk

X
k

Epattern
k (Equation 34)

where nk is the total number of observation time-points and Epattern
k reads

Epattern
k =

1

ns

X7
i = 0

jnsim
k ðGreen; iÞ � nobs

k ðGreen; iÞj+

jnsim
k ðBlack; iÞ � nobs

k ðBlack; iÞj
where ns is the total number of scales. The definition of nearest-neighbor statistics nðS; iÞ is given above in the section stochastic

cellular automaton.

Note that the sensitivity analysis over the parameters of the RDmodel (Figure 7E) was performed by running, in each species, 5,000

simulations with perturbed (unoptimal) parameter values sampled from a uniform random distribution within the range ± 0:1s1;.;d,

where s1;.;d are the hyper-parameters of the covariance function (Equation 33).

Gaussian process optimization loop

Starting with an initial parameter vector x0, evaluation of the objective function fðx0Þ is iteratively accomplished through the following

steps: (i)Generate initial condition uðt0Þ by converting the observed colorsCðt0Þ and using the transformation defined in Equation 30;

(ii)Solve the discrete-RD equations (Equation 20) for all time points ranging from t0 to tk ; (iii)Convert the simulation results uðtkÞ to the

Lab coordinate colors using the observed colors CðtkÞ and the transformation defined in Equation 31 and (iv) Evaluate the objective

function f according to Equation 34. After point (iv), the output vector and input matrix are updated by adding the corresponding

values to the end of f and X, respectively. We assume that fðxÞ can be drawn from the Gaussian process in which mðxÞ = 0 and

kðx; x0Þ is the covariance function given in Equation 32. We can use f and X to obtain themeanmpost and covariance kpost at any point

in the parameter space. The latter two are used to guess the next sampling point. For that purpose, we define the improvement func-

tion as:

Iðx�Þ =
�
fmin � f� fmin > f�

0 fmin % f�

in which fmin is the minimum values of the objective function evaluated so far. The improvement function simply indicates the

amount by which the objective function is reduced with respect to the best value evaluated so far. For region in which the objective

function exceeds fmin, an improvement value of zero is assigned. The expectation of Iðf�Þ has the following closed form27

E½Iðx� Þ � =
Z N

�N

Iðx� ÞPðf�jfÞdf� = ðfmin � mpostðx� Þ ÞF
�
fmin � mpostðx� Þ
kpostðx� ; x� Þ

�
+

kpostðx� ; x� Þ4
�
fmin � mpostðx� Þ
kpostðx� ; x� Þ

�
(Equation 35)

where 4 and F are the probability density function and cumulative density function of the standard normal distribution, respec-

tively. Note that this function is much cheaper to evaluate than the objective function. The point to sample in the next iteration is

the one that minimizes the expected improvement function in Equation 35. This classical minimization problem is efficiently

handled by a gradient descent algorithm. The optimization loop is repeated until 1000 successive iterations have not generated

any improvement.
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Narrowing parameter space

Even-though the dRD solver is computationally very efficient, running the optimization loop over the full space of parameters

Sfull = f½cu; cv; cw; c1;.; c9;Du;Dv;Dw;P;q; r� : cu; cv; cw; c1;.; c9 ˛ R;Du;Dv;Dw;P;q; r ˛ R+ g
is not feasible. To identify a suitable subset of parameters S3Sfull on which to perform optimisation, we first take into account the

redundancy in the dRD formulation. Indeed, the parameter P can be removed from the optimization loop as it is a multiplier of the

diffusion coefficientsDu;Dv;Dw. Furthermore, we removeDv asDu = Dv. Second, we use the 2-D continuous RD formulation to study

the effect of varying pairs of decay and reaction coefficients cu; cv; cw; c1;.; c9 on pattern generation. The corresponding 55 simu-

lations are displayed as gradient plots (Figure S5) in which two coefficients are varying in space. For example, in the simulation

labeled ci � cj, the variation of coefficients of variation is defined as

ciðxÞ = ci +

� jcij
xmax � xmin

��
x � ðxmin + xmaxÞ

2

�

cjðyÞ = cj +

� ��cj

��
ymax � xmin

��
y � ðymin + ymaxÞ

2

�

where xmin; xmax; ymin and ymax are the domain limits and, ci and cj are the coefficient values proposed in Manukyan et al.12, i.e.,

cu = 0:020 ; cv = 0:025 ; cw = 0:06;
c1 = � 0:04 ; c2 = � 0:056 ; c3 = 0:382;
c4 = � 0:05 ; c5 = 0:0 ; c6 = 0:25;
c7 = 0:016 ; c8 = � 0:03 ; c9 = 0:24

To produce these plots, we neglect domain growth and set the other coefficients to the values proposed in Manukyan et al.12, i.e.,

Du = Dv = 1:125; Dw = 12:5; P = 0:00889

All simulations start from the HSS, perturbed with small random fluctuations, and are run to steady-state. In most of the gradient

plots, a similar diversity of patterns appears, suggesting that one might optimize the model with only a subset of parameters. To test

this conjecture, we set up optimization experiments in which parameters are added iteratively to S. First, we restrict S to q and r and

run the optimisation loop (all other parameters are set to the values proposed in Manukyan et al.12). Then, we repeat the optimization

loop for all possible subsets corresponding to the inclusion of one additional parameter in S. The parameter whose addition gener-

ates the lowest value of the objective function is permanently added to S. We repeat this iterative process of adding the next best

parameter until no reduction of the objective function is observed. Table S1 shows the objective function values obtained during the

iterative addition process performed for TL1: the columns indicate the number of parameters in S, and the rows are ordered by pa-

rameters iteratively identified as most useful (because exhibiting the lowest value, shown in bold, of the objective function). Table S1

indicates that the optimal choice of subset S for TL1 is

S = f½cv;Du;Dw;q; r� : cv ˛ R;Du;Dw;q; r ˛ R+ g
Note that we perform this identification of best subset S independently for each individual of each species. After performing

Bayesian optimisation (again, independently for each individual of each species, see above) on this parameter vector, we obtain

the optimized dRD model parameters listed in Table S2. Note that an optimal subset S was found for all individuals of all species

after optimising only 3 to 5 parameters (all other parameters did not require modifying their values from Manukyan et al.12).

Uncertainty in skin thickness spatial distribution and production of 3D super-Gaussian heterogeneous networks
Although the acquisition of skin-scale surface micro-geometry captures the continuous variation of skin height, it does not capture

the variation of the bottom boundary of the domain. In other words, we assume that the thinning of the skin at scale borders is the

same at all borders of all scales, hence, the use of a single parameter P for the reduction of RD diffusion coefficients at all one-dimen-

sional edges12 in the 2D-cRD model. To quantify how much real skin geometry deviates from this assumption, we perform 3D ge-

ometry reconstruction of a patch of dorsal skin for each of the five species. For example, the patch for ocellated lizard comprises

24 scales (10 green and 14 black) and was reconstructed using 707 images (40823 3072 pixels each with 1 pixel = 1.2 mm) acquired

with high-resolution episcopic microscopy (HREM14,23). Sections generated by HREM are intrinsically-aligned, making the volume

rendering straightforward. We then perform image analyses14 to identify the top and bottom boundaries of the skin as well as the

positions occupied by melanophores. The former allows defining the full skin 3D domain whereas the latter provides an estimate

of the restricted 3D domain populated by chromatophores. Indeed, as RD components are associated to chromatophores them-

selves, it is likely that relevant statistics on skin thickness apply to the restricted domain rather than to the whole skin depth.

The HREM data allows us to extract, for a dorsal patch of skin in each species, the spatial distributions of skin thickness (d) and of

thickness dm in the domain restricted to chromatophores. We then compute the mean distance S among neighboring scales at their

highest point, as well as the means among the top-surface highest point of scales (hc) and among the heights of edges (he). We then

construct a ‘noisy’ 3D lattice (an example is shown in Figure 5B for T. lepidus) in which heights hc and he (i.e., at the centers and at the

edges of the super-Gaussian scales, respectively) vary with standard deviations sc and se. Starting from the HREM-observed
e12 Current Biology 32, 5069–5082.e1–e13, December 5, 2022
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average values of S, hc and he, we optimise hc, he, p, s, sc and se to obtain a depth-map histogram of the noisy lattice (e.g., Figure 5C

for T. lepidus), hence, a skin thickness distribution, highly similar to that observed in the HREM data. We then construct 1,000 do-

mains of 64 super-Gaussian scales, represented as 3D curvilinear structured grids, by keeping S and p constant, but sampling hc
(for each bump) and he (for each edge) from the Normal distributionsNðhc;scÞ andNðhe;seÞwith optimized parameters. Finally, us-

ing themapping dmðdÞ discussed above, we compute the bottomboundary of each domain by subtracting dm from the top boundary,

hence, producing models of the skin domain restricted to chromatophores (turquoise volume illustrated in Figure 5B for T. lepidus).

HREM data acquisition, optimization of parameters hc, he, p, s, sc, as well as sampling of hc and he from the Normal distributions

Nðhc; scÞ and Nðhe;seÞ, are performed independently for each species. We also generate for each species a reference hexagonal

3D lattice of identical super-Gaussian bumps, with super-Gaussian parameters s and p, and with the centers of all bumps and all the

edges set to optimized hc and he, respectively.

Color measurement uncertainty and Lyapunov spectrum analysis
One powerful approach to estimate the degree of sensitivity of a dynamical system is to compute how fast two trajectories diverge

when they initially differ by an arbitrary small difference. To this aim, we first define Cref = ðC1;.;Cns Þ as the reference 33 ns matrix

containing the states (in CIELAB colors) of all scales of the observed juvenile lizard. We then generate 2,000 ‘noisy initial conditions’

by adding random noise to the reference matrix, i.e.,C = Cref + sC
0
, where the scalar s and the matrixC0 are randomly sampled from

the uniform and 3-variate normal distributions, Uð0; 1Þ andN �0;Sref
+

�
, respectively. Note that Sref

+ is the covariance matrix of Cref. We

then use a color transformation matrix (see STAR Methods, section Juvenile initial condition (IC) and color transformation matrix) to

transfer each of these 2,000 noisy initial conditions to the space of RD variables for performing numerical simulations. For each initial

condition, the state of the system at time t is defined as:

St = ½u1ðtÞ; v1ðtÞ;w1ðtÞ; :::;unsðtÞ; vns ðtÞ;wnsðtÞ�
andwe study its time evolution as a trajectory in theR33ns phase space parametrized by the time variable t+ % t% tf , where t+ and

tf are the juvenile (initial condition) and final (adult) time points, respectively. We thenmeasure, at each time t, the Euclidean distance

dt = k St � Sref
t k between the state of the system (St ) and the state (Sref

t ) of the reference (i.e., the latter is the trajectory starting from

the observed unperturbed juvenile colors). We then use the Lyapunov exponent l as an estimate of the rate of divergence between

the two trajectories:

l = lim
t/N

lim
d+/0

1

t � t+
log

dt

d+

where d+ = dt+ . Figure 6A shows, for each of the 2,000 simulations, the trajectory of logðdt=d+Þ as a function of time. The Lyapunov

exponent is then simply derived as the slope of the curve (computed with least-square fit) for early time points, i.e., before saturation

of dt. The positive value of the mean (± SD) Lyapunov exponent (l = 0:0287±0:0004 for TL1) confirms that the system is unstable.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed with MATLAB R2021a. Statistical details can be found in the figure legends, results section

and the STAR Methods.
Current Biology 32, 5069–5082.e1–e13, December 5, 2022 e13
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Figure S1 | Neighbourhood statistics and stochastic models for ocellated lizard; 
related to Figure 2 — (A) Top panel: time history of the number of green (green circles) 
and black (black circles) scales observed in ocellated lizard individual TL1; scale colours 
are thresholded to green or black by applying K-mean clustering. Middle panel: relative 
frequencies of green (left) and black (scales) as a function of , i.e., the number of 
isochromatic direct neighbours; lines of different colours correspond to different observed 
time-points (i.e., circles in top panel), from blue (juvenile state) to red (adult). Lower panel: 
expected probability of colour change ( ) for green/black scales as a function of 

 (circles); error bars indicate the 0.95% confidence interval corresponding to the 
Binomial distribution. (B) Left panel: mean values (±SD) of  
(using the data from (A)) with the best affine fit ( ) and corresponding Lenz-Ising 
model parameters  and  (non-Glauber dynamics14). Right panel: optimised Lenz-Ising 
model parameters (black star) at finite temperature, for individual TL1, plotted in polar 
coordinates with radial coordinate mapped to a finite range. Oblique solid lines indicate 
the separation between ferromagnetic and anti-ferromagnetic regions in the triangular 
Lenz-Ising model.  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Figure S2 | Neighbourhood statistics and their predictability in ocellated lizard 
individual TL2; related to Figures 2 and 4 — (A) Same analyses as in figure S1A but for 
individual ocellated lizard TL2. (B) Same analyses as in figure S1B but for individual 
ocellated lizard TL2. (C) Same analyses as in main Figure 2 but for individual ocellated 
lizard TL2. (D) Different initial conditions used for simulations; their localisation in PC1-
PC2-PC3 space are shown with the corresponding geometrical symbols. (E) Adult 
patterns simulated with different initial conditions (i.c.): juvenile (juv.) pattern (= scale 
colours thresholded to green or black) and juvenile colours (col.) are both shown in D. (F) 
Histogram comparing scale-by-scale errors (mean ± SD) of adult patterns simulated with 
different models. 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Figure S3 | Lenz-Ising parameters and prediction of neighbourhood statistics in four 
other species; related to Figure 3 — (A) Optimised Lenz-Ising model parameters (stars) 
for all individuals of all species plotted in polar coordinates with radial coordinate mapped 
to a finite range. Oblique solid lines indicate the separation between ferromagnetic and 
anti-ferromagnetic regions in the triangular Lenz-Ising model. (B) Projections on the PC1-
PC2 plane of the 16D nearest-neighbour error vectors (in comparison to the 
corresponding observed adult pattern, black stars) of patterns simulated with sCA (red 
ellipse and red shading), Lenz-Ising (blue), and dRD (yellow) models. Red ellipses, blue 
ellipses and yellow spots show adult patterns simulated from the corresponding observed 
juvenile patterns (black diamonds), whereas red, blue and yellow shadings show adult 
patterns simulated from random patterns (grey areas) as initial condition. The green spots 
show the adult dRD-patterns simulated from the juvenile colours in the corresponding 
individual. Ellipses and border of shadings indicate 1% density isolines.  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Figure S4 | Lyapunov spectrum analysis and colour measurement uncertainty in 
ocellated lizard individual TL1; related to Figure 6 and Data S1B — Time-evolution 
trajectories of 2,000 ‘perturbed’ simulations, i.e., started at random small colour 
differences  from the observed juvenile colours.  is then translated to the 
Euclidean distances ( ) in RD space;  = distance at time  between the state of each 
perturbed simulation and the state of the reference trajectory (starting from observed 
juvenile state); (Data S1B). The positive value of the mean (± SD) Lyapunov exponent 
( slope of  for early time points) confirms the instability of the system. The 
blue histogram in the inset indicates the distribution of  across all simulations. 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Figure S5 | Pairwise parameter gradient plots; related to Figure 4 and STAR methods  
— Different patterns generated by linear variation of RD model parameters. First and 
second varying parameters (white font) correspond to the horizontal and vertical 
directions, respectively. The limit of variations in each direction is  of the absolute 
values given in Eq. (35).  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Figure S6 | Time evolution of observed scale colours of ocellated lizard; related to 
Figure 1B-D and STAR methods — Scale colours at 25 time-points for the patch of skin 
analysed in ocellated lizard TL1 (cf. Figure 1B). The colour of each polygonal scale is set 
to the mean albedo of its pixels at the corresponding time-point (see STAR methods).  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Figure S7 | Growth model and colour transformation to RD variables; related to 
STAR methods — (A) The time history of mean scale size (among edge lengths of all 
scales) for ocellated lizards TL1 and TL2. Solid lines show the best fitted logistic 
functions. (B) Schematic trajectories of scales in  space shown as curved lines; 
trajectories start from  (white circles) close to the HSS (red star) and approach the 
dominating eigenvector line (Eq. (29)) shown as a solid black line which extremities (black 
circles) intersect the grey planes described by Eq. (24). (C) Transformation between 
CIELAB colour space and  space using matrices , , and ; the green dot 
indicates, for a given scale, its observed juvenile colour and the blue dot, located on the 

—  line (i.e., the dominating eigenvector line), indicates the corresponding initial RD 
component values used for simulations.
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Table S1 | Optimised values, for individual TL1, of the objective function  (equation 
34 in STAR methods) during iterative addition of different parameters (left column) to 

; related to STAR methods — We start by optimising 2 free parameters (q and r), while 
keeping all others at the values of ref. 12 in the main text, and obtain an  value of 0.2448. 
We then make all combinations of q, r and i (column 3), where i is each of the remaining 
14 reaction, decay, and diffusion parameters. For each i, we optimise q, r and i, and 
select the parameter i that gives the best value of  (here, 0.1774 for cv vs. higher values 
for all other parameters). We then make all combinations of q, r, cv and i, where i is each 
of the remaining 13 parameters (column 4). The procedure is iterated until no 
improvement in the value of function  is obtained. In this example, (individual TL1), the 
optimal value is obtained after optimising 5 parameters highlighted by shaded cells.


dimensions = 2 3 4 5 6

q, r 0.2448 — — — —

cv — 0.1774 — — —

Du,v — 0.2373 0.1167 — —

Dw — 0.2308 0.1774 0.1086 —

cu — 0.2257 0.1774 0.1103 0.1086

cw — 0.2246 0.1774 0.1143 0.1086

c1 — 0.1809 0.1774 0.1167 0.1086

c2 — 0.2268 0.1774 0.1167 0.1086

c3 — 0.2129 0.1774 0.1167 0.1086

c4 — 0.2247 0.1774 0.1167 0.1086

c5 — 0.2264 0.1774 0.1167 0.1086

c6 — 0.2123 0.1774 0.1167 0.1086

c7 — 0.2252 0.1774 0.1167 0.1086

c8 — 0.1812 0.1774 0.1167 0.1086

c9 — 0.2121 0.1774 0.1167 0.1086

f

𝕊
f

f

f



Table S2 | RD parameters for all individuals; related to STAR methods — Shaded cells 
indicate values optimised using Bayesian machine-learning following the procedure 
illustrated in table S1. Other values are from ref. 12 in the main text. Units are indicated 
between brackets ([-] = dimensionless, d = day,  and z = dimensions of the 
corresponding u, v and w RD variables).


 q
[-]

 r 
[-]

 cu 
[d-1]

 cv 
[d-1]

 cw 
[d-1]

Du,v 
[d-1 l2]

Dw 
[d-1 l2]

 c1 
[d-1]

 c2 
[d-1]

 c3 
[z d-1]

 c4 
[d-1]

 c5 
[d-1]

 c6 
[z d-1]

 c7 
[d-1]

 c8 
[d-1]

 c9 
[z d-1]

TL1 2.9 0.23 0.02 0.03 0.06 0.07 21.8 -0.04 -0.056 0.382 -0.05 0 0.25 0.016 -0.03 0.24

TL2 2.25 0.33 0.02 0.025 0.06 0.33 22.9 -0.04 -0.056 0.382 -0.05 0 0.25 0.016 -0.03 0.239

PS1 3.15 0.63 0.02 0.022 0.06 1.125 12.5 -0.04 -0.056 0.384 -0.05 0 0.25 0.016 -0.03 0.24

PS2 4.9 0.85 0.02 0.025 0.06 1.125 21.5 -0.04 -0.056 0.382 -0.05 0 0.25 0.015 -0.03 0.24

SM1 4.8 0.95 0.02 0.025 0.06 0.055 12.5 -0.04 -0.056 0.382 -0.05 0 0.212 0.016 -0.03 0.24

SM2 1.04 0.93 0.02 0.025 0.06 0.06 12.5 -0.04 -0.056 0.382 -0.05 0 0.222 0.016 -0.03 0.24

HS1 1.9 0.07 0.02 0.025 0.06 0.27 12.5 -0.04 -0.056 0.382 -0.05 0 0.238 0.016 -0.03 0.24

HS2 1.7 0.23 0.018 0.025 0.06 0.43 12.5 -0.04 -0.056 0.382 -0.05 0 0.25 0.016 -0.03 0.24

HS3 2.5 0.16 0.02 0.025 0.06 0.21 12.5 -0.04 -0.056 0.382 -0.05 0 0.238 0.016 -0.03 0.24

HS4 1.13 0.23 0.02 0.025 0.06 0.27 12.5 -0.04 -0.056 0.382 -0.05 0 0.25 0.016 -0.03 0.24

VI1 1.1 0.05 0.02 0.025 0.06 0.11 12.5 -0.04 -0.056 0.382 -0.053 0 0.25 0.016 -0.039 0.24

VI2 2.7 0.61 0.02 0.025 0.06 0.43 12.5 -0.037 -0.056 0.382 -0.05 0 0.228 0.016 -0.03 0.24

l ≈ 86 μm



Table S3 | Exchanging sets of RD parameters among individuals within and between 
species (black and white tegu versus mangrove monitor lizard); related to Figure 3 
— Colour patterns of two tegus ( = 0.081 for SM1 versus SM2) and one monitor lizard 
(VI1) simulated after exchanging their optimised RD parameters. Numbers in parentheses 
indicate  errors when compared to the observed adult pattern.


Model parameters

SM1 SM2 VI1

SM1

SM2

VI1



(0.070)

(0.037)



(0.065)



(0.077)



(0.407)



(0.380)



(0.281)



(0.296)



(0.056)

E16D

E16D

In
iti

al
 c

on
di

tio
n






Table S4 | Exchanging sets of RD parameters among individuals within and between 
species (ocellated lizards vs. black and white tegu); related to Figures 2 and 3 — 
Colour patterns of two ocellated lizards ( = 0.16 for TL1 versus TL2) and one tegu 
(SM1) simulated after exchanging their optimised RD parameters. Numbers in 
parentheses indicate  errors when compared to the observed adult pattern.


Model parameters

TL1 TL2 SM1

TL1

TL2

SM1

(0.029)



(0.526)

(0.397)



(0.078) (0.520)



(0.146)



(0.037)



(0.044)



(0.372)

E16D

E16D
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