Supporting Information for

ORIGINAL ARTICLE

Co-delivery of nigericin and decitabine using hexahistidine-metal nanocarriers for pyroptosis-induced immunotherapeutics

Qiang Niu^{a,†}, Yu Liu^{b,†}, Yujing Zheng^{b,†}, Ziwei Tang^a, Yuna Qian^{b,c}, Ruogu Qi^{d,*}, Jianliang Shen^{b,c,*}, Ping Zhao^{a,*}

^aSchool of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China

^bState Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China

^cWenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China

^dSchool of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China

Received 14 August 2022; received in revised form 10 October 2022; accepted 21 October 2022

[†]These authors made equal contributions to this work.

*Corresponding authors.

E-mail addresses: rqi@njucm.edu.cn (Ruogu Qi), shenjl@wiucas.ac.cn (Jianliang Shen), pingzhao@gdpu.edu.cn (Ping Zhao).

Fig.	S1 Binding conformation and binding forces between Nig/His ₆ and DAC/His ₆ l	23
Fig.	. S2 Dilution stability analysis and drug release of (Nig+DAC)@HmA	.P3
Fig.	S3 Fluorescence images of MB49 cells incubated with Cy5	P4
Fig.	. S4 Cell viability of MB49 cells treated by HmA	P4
Fig.	. S5 MB49 tumor growth curves of each mouse in different treat groups	P5
Fig.	S6 Body weight of MB49 tumor-bearing mice after different treatments	.P5
Fig.	. S7 4T1 tumor growth curves of each mouse in different treatment groups	P6
Fig.	. S8 Body weight of 4T1 tumor-bearing mice after different treatments	.P6
Fig.	. S9 The gating strategy to sort macrophage (F4/80+) from 4T1 tumor-bearing mice p	resented
	in Fig. 7D.	P7

Figure S1 The most stable binding conformation between Nig/His_6 (A) and DAC/His₆ (B). The binding forces between Nig/His_6 (C) and DAC/His₆ (D). Hydrogen bond,Van der Waals, Pi-Alkyl,..... Pi-Sigma.

Figure S2 (**A**) Dilution stability analysis of (Nig+DAC)@HmA in bovine serum albumin (BSA) and fetal bovine serum (FBS) buffer at room temperature. (B) Release of drug from (Nig+DAC)@HmA nanoparticles in PBS with pH 5.0 and

Figure S3 Representative fluorescence images of MB49 cells incubated with Cy5 at different time points, scale bar = $20 \ \mu m$.

Figure S4 Cell viability of MB49 cells was treated by HmA with different concentrations. Data are shown as mean \pm SD (n = 3).

Figure S5 MB49 tumor growth curves of each mouse in different treatment groups.

Figure S6 Body weight of MB49 tumor-bearing mice after different treatments.

Data are shown as mean \pm SD (n = 4).

Figure S7 4T1 tumor growth curves of each mouse in different treatment groups.

Figure S8. Body weight of 4T1 tumor-bearing mice after different treatments.

Data are shown as mean \pm SD (n = 5).

Figure S9 The gating strategy to sort macrophage $(F4/80^+)$ from 4T1 tumor-bearing mice presented in Fig. 7D.