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Supplemental Figure S1. Generation of four endogenous NF-κB knock-in reporter mouse lines 
(related to Figure 1).
(A) Schematic of the CRISPR/Cas9-mediated insertion of donor sequence at the start of the Rela
locus in the mouse genome. The targeted knock-in locus produces the fluorescent fusion protein 
mEGFP-RelA. (B) The mScarlet-RelA locus, generated with the same strategy as for mEGFP-RelA. 
(C) The mEGFP-c-Rel locus, generated with a similar strategy targeting the gene start, as for 
mEGFP-RelA. (D) The mScarlet-c-Rel locus, generated with the same strategy as for mEGFP-c-Rel. 
(E) Southern blot analysis of RelA knock-in fragments after HincII digestion. 3’ probe. (F) Southern 
blot analysis of c-Rel knock-in fragments after EcoRI digestion. 3’ probe.
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Supplemental Figure S2. mEGFP-RelA expression, immune cell compositions in knock-in reporter
mice, and unaltered stability of the mEGFP-RelA fusion protein (related to Figure 1).
(A) Flow cytometry of mEGFP-RelA expression in C57BL/6 wildtype, heterozygous knock-in, and
homozygous knock-in of mEGFP-RelA. Thymic T cells, spleen T and B cells were analyzed. (B) Cellular
compositions (% cells in each population among cells from the indicated tissue) from wildtype and green-
red DKI mice are similar. BM: bone marrow, LN: lymph node. Representative of four independent
experiments, each with 4 WT and 4 DKI animals. (C) Cyclohexamide (5µg/ml) was used to block new
protein synthesis in BMDMs, and abundance of mEGFP-RelA was subsequently monitored by Western
blotting for the fusion protein in mEGFP-RelA knock-in mice and for the natural (unlabeled) protein in
C57BL/6 mice. IκBα degradation confirms the effectiveness of cycloheximide at the indicated
concentration. Loading control was rho-GDI. A representative result is shown from 3-4 independent
experiments using different cycloheximide concentrations and time points. Error bars: s.d. of technical
replicates. (D) Quantification of data in C using ImageJ. The relative intensity of RelA was normalized to
the rho-GDI loading control.
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Supplemental Figure S3. mScarlet-c-Rel signaling is comparable to endogenous c-Rel in wildtype 
(related to Figure 1).
(A) Representative images of c-Rel immunofluorescence time-series after LPS (10 ng/ml) stimulation 
in PEFs isolated from wild-type C57BL/6 mouse (upper panel), or mScarlet-c-Rel knock-in mouse 
(lower panel). Scale bar = 50 μm. (B) Quantification of c-Rel immunostaining time-series after LPS 
(10 ng/ml) stimulation in PEFs isolated from wild-type C57BL/6 mouse or mScarlet-c-Rel knock-in 
mouse. The data represent the mean ± 95% confidence intervals. N (number of quantified cells) = 
73, 91, 77, 79, 85, 86 for wild-type C57BL/6; N = 113, 61, 78, 73, 61, 64 for mScarlet-c-Rel. 
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Supplemental Figure S4. Behavioral testing of mEGFP-RelA and mScarlet-c-Rel mice show
phenotypes comparable to wildtype C57BL/6 (related to Figure 1).

Mice were tested at 3-6 (“young”) or 20-30 (“old”) months of age. Group sizes were n=8-10 mice for
each age/strain combination, with approximately equal male/female composition. For statistical
analysis, strain, sex and age (in days) were included as interacting model terms; linear modeling was
used for data in panels A-C and linear mixed effects modeling for panel D. Post-hoc comparisons were
performed using Tukey’s HSD with ages grouped categorically into young and old. (A) Forelimb grip
strength declined with age (main effect of Age p=2.8e-8, ****). The effect of aging varied by strain
(Strain × Age interaction p=0.0004) and sex (Sex × Age interaction p=0.029). Post-hoc comparisons
revealed differences between young wild-type versus young mScarlet-c-Rel (p=0.037, *) and old wild-
type versus old mEGFP-RelA (p=0.0072, **). (B) Distance traveled during a 10 minute Y-maze test
declined with age (main effect of Age p=0.00005, ***). Females were more active than males (main
effect of Sex p=0.0014). There were no differences between strains. (C) Alternation of arms entries in
the Y-maze, a measure of working memory, did not differ by strain, age, or sex. (D) A robust and long-
lasting conditioned freezing response was entrained in all groups of mice following delivery of two
electric foot shocks in a conditioning chamber (main effect of Phase p<0.0001). Freezing was generally
higher in aged mice (main effect of Age p=0.011). Although there were marginally significant
interactions between strain and other factors (Phase × Strain p=0.042; Phase × Strain × Age p=0.032;
Phase × Strain × Age × Sex p=0.047), the only significant post-hoc pairwise comparison was a reduction
in freezing for female mScarlet-c-Rel versus female wild-type (collapsed across ages) within the 24hr
recall test (p=0.01).
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Supplemental Figure S6. Visualization of RelA and c-Rel in live murine epidermis using two-photon
microscopy on mEGFP-RelA and mEGFP-c-Rel knock-in reporter mice (related to Table 1).
Representative images of the differentiated cell layer (A), stem cell layer (B), and orthogonal cross
section (C) from the epidermis of adult, anesthetized mice homozygous for either the mEGFP-RelA or
mEGFP-c-Rel knock-in reporter from two-photon microscopy. The differentiated layer includes spinous,
granular, and cornified cells deriving from basal cells of the stem cell layer. Scale bar = 10 μm.
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Supplemental Figure S9. Same-cell measurement of RelA and c-Rel signaling features is required
for the observed significant cross-correlations within the correlation matrices (related to Figure 3).
The same-cell pairing of RelA time series and c-Rel time series was randomly shuffled, and the
correlation matrix was recalculated for live cell imaging data from LPS-stimulated BMDMs (A) or
TNF-α-stimulated BMDMs (B). The green boxes in (A) and (B) mark the lack of RelA & c-Rel cross-
correlations in comparison to Figure 3C and the top panel of Figure S8, respectively.
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