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Supplementary Methods 

Generation of single-cell suspensions from lung tissues 

Upon arrival to the laboratory, lung tissue (up to 20 × 20 × 20 mm) was washed with 

icy sterile PBS and was processed to prepare a single-cell suspension. Briefly, lung 

tissue was cut into pieces and incubated with 2 mg/ml collagenase I, 2 mg/ml 

collagenase IV and 0.2 mg/ml DNase I (Roche) in RPMI 1640 for 40 min at 37℃ 

with 150 rpm shaking. The resulting cell suspension was filtered through a 70-μm 

sterile nylon strainer and centrifuged at 400 g for 5 min at 4℃. The cell pellet was 

resuspended in 1 ml RBC lysis buffer (0.15 mol/l NH4Cl, 10 mmol/l KHCO3, 0.1 

mmol/l EDTA) and lysed for 10 min at room temperature. Cells were centrifuged at 

400 g for 5 min at 4℃. The cell pellet was resuspended in 400 μl PBS for cell sorting 

by Countstar (IC1000). 

 

Single-cell RNA sequencing cell capture and cDNA synthesis 

Using BD Rhapsody™ Cartridge Reagent Kit (BD, 633731) and BD Rhapsody™ 

Cartridge Kit (BD, 633733), the cell suspension (300-600 living cells per microliter 

determined by Count Star) was loaded onto the Rhapsody™ Cartridge (BD) to 

generate single-cell magnetic beads in the microwells according to the manufacturer’s 

protocol. In short, single cells were suspended in sample buffer (BD). About 18,000 

cells were added to each channel, and the target cell will be recovered was estimated 

to be about 9,000 cells. Captured cells were lysed and the released RNA were 
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barcoded through reverse transcription in individual microwells. Reverse transcription 

was performed on a ThermoMixer® C (Eppendorf) at 1,200 rpm and 37°C for 45 

minutes. The cDNA was generated and then amplified, and quality assessed using an 

Agilent 4200 (performed by CapitalBio Technology, Beijing). Single-cell RNA 

sequencing (scRNA-seq) library preparation according to the manufacture’s 

introduction, scRNA-seq libraries were constructed using BD Rhapsody™ WTA 

Amplification Kit (BD, 633801). The libraries were finally sequenced using an 

Illumina Novaseq6000 sequencer with a sequencing depth of at least 50,000 reads per 

cell with pair-end 150 bp (PE150) reading strategy (performed by CapitalBio 

Technology, Beijing). 

 

Analysis of scRNA-seq data 

The BD Rhapsody analysis pipeline was used to process sequencing data ( .fastq files) 

and the reference genome was GENCODE v29 1. The scRNA-seq expression matrix 

was processed with the R package Seurat (version 3.1.5) 2. The cells were removed 

that had either fewer than 301 expressed genes or over 30% UMIs originating from 

mitochondrial. UMI counts were normalized with a scale factor of 10,000 UMIs per 

cell and subsequently log transformed. Three thousand highly variable Genes (HVGs) 

of each data were identified by the ‘FindVariableFeatures’ function. Integration of 9 

individual dataset was performed to correct batch effect. Expression matrix was 

summarized by the top 14 principal components. Visualization of transcriptomic 
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profiles was conducted by uniform manifold approximation and projection (UMAP). 

The Louvain modularity optimization algorithm was applied to iteratively group cells 

together into clusters for cell type identification. Cell clusters were annotated to 

known biological cell types using canonical cell marker genes.  

 

Differential gene expression analysis 

To identify genes differentially expressed under three conditions (aging, smoking, and 

COPD) in each cell type, MAST (1.14.0) 3 was used to perform zero-inflated 

regression analysis by fitting a linear mixed model. We controlled both technical 

variation and individual variation by using a two-part hurdle model. The following 

model was fit with MAST: 

zlm( ~ COPD+ age + (1|individual) + smoking + percent.mt + nCount_RNA , 

sca, method='glmer', ebayes=FALSE) 

Where nCount_RNA was the total number of molecules detected within a cell and 

percent.mt was mitochondria fraction. To identify genes differentially expressed due 

to the disease effect, likelihood ratio test was performed by comparing the model with 

and without the COPD variable. Multiple hypothesis testing was performed with 

Bonferroni and Holm corrections. For COPD/smoking variable, genes with absolute 

value of log2(fold change) > 0.14 (10% difference in expression) and FDR < 

0.05 between conditions were selected as differentially expressed genes (DEGs). For 

aging variable, we treat aging as a continuous covariate while controlling for technical 
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variation and individual variation. Genes were considered as significantly 

differentially expressed with an FDR < 0.05 and an age coefficient > 0.2 or < -0.2. 

 

Enrichment analysis of gene sets  

Gene Ontology Gene enrichment was performed using the R package clusterProfiler 

(version 3.14.3) 4. Enrichment in GO Biological process between DEGs of COPD of 

each cell type was analyzed using the compareCluster. Significantly enriched GO 

terms were simplified using simplify function remove highly similar terms (cutoff = 

0.7) by retaining the most significant representative term. Enrichment in GO 

Biological process on DEGs of aging and smoking were analyzed as above. 

Enrichment analysis using custom genes sets was performed using the appropriate 

background lists (genes detected >10 % of cells in each cell type). Enrichment of 

COPD-associated DEGs at COPD GWAS risk genes5 was performed using Fisher's 

exact test to determine cell types contributing to COPD heritability.  

 

Downsampling analysis to identify condition-relevant cell types  

To calculate the number of COPD-associated DEGs across cell types normalized by 

the number of cells in each cell type, we randomly drew 700 cells from each cell type 

before performing differential gene expression analysis. This analysis was repeated 10 

times and the number of DEGs for each cell type were presented as boxplots. Aging-

associated DEGs and smoking-associated DEGs were performed as above. 
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Cell type prioritization analysis  

To delineate the cell type-specific responses to different biological conditions (aging, 

smoking, and COPD), cell type prioritization analysis in three conditions was 

performed using ‘calculate_auc’ function implemented in the Augur R package with 

default parameters (version 1.0.0) 6. As input, we used the gene expression counts that 

were normalized with a scale factor of 10,000 UMIs per cell and subsequently natural 

log-transformed. Different conditions were analyzed separately. COPD and smoking 

cell type prioritization scores from augur analysis were AUC, and aging cell type 

prioritization score from augur analysis was CCC. The cell type prioritization score 

was displayed in heatmap.  

 

Sub-clustering and identification of markers of sub-cluster 

To identify sub-clusters within monocytes, we reanalyzed cells belonging to 

monocytes with a resolution of 0.2, and three sub-clusters of monocytes were 

identified: CD14+ classical monocytes, CD14+ intermediate monocytes and CD16+ 

non-classical monocytes. we further clustered our club cells with a resolution of 0.1 

and generated 2 sub-clusters: mix sub-cluster, autoimmune-prone sub-cluster. 

To distinguish sub-clusters within dendritic cells, we reanalyzed cells belonging to 

dendritic cells with a resolution of 0.2. According to the gene expression of each sub-

cluster, we obtained five dendritic clusters, including IGSF2+ DC, TREM2+ DC, 
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myeloid DC1 (mDC1), myeloid DC2 (mDC2), plasmacytoid DC (pDC). To identify 

sub-clusters within macrophage, we reanalyzed cells belonging to macrophage with a 

resolution of 0.2, and two sub-clusters of macrophage were identified: one FABP4+ 

macrophage and one FABP4- macrophage.  

We then applied the Seurat FindAllMarkers to generate cell type sub-cluster marker. 

 

Gene set enrichment analysis (GSEA) 

To determine whether differential expression genes within a given cell type were 

significantly enriched with meaningful biological processes, gene set enrichment 

analysis (GSEA) was done using the clusterProfiler R package (3.12.0) 4. Only genes 

detected in >10% of cells of a given cell type were evaluated. All annotated gene sets 

were collected from the Molecular Signatures Database (MSigDB: C5: ontology gene 

sets). Gene set with a P-value less than 0.05 was considered as significantly enriched. 

 

Trajectory analysis 

To identify lineage trajectories, we used Slingshot (version 1.4.0) 7. The cluster 

representing CD14+ classical monocytes, AT2s, and club cells were chosen as the 

root node separately to construct lineages of differentiation to other cell types based 

on PCA dimension reduction and estimate pseudotime of each cell along the lineages. 

After running slingshot, we used the tradeSeq package (version 1.4.0) 8 to find genes 

dynamically expressed during cell differentiation. For each HVG, we fit a general 
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additive model (GAM) using a negative binomial noise distribution to model the 

relationships between gene expression and pseudotime and tested for significant 

associations between expression and pseudotime using the associationTest. We picked 

out the top genes based on wald statistics and visualized their expression over 

developmental time with a heatmap. 

 

Monocytes differentiation driver genes enrichment analysis 

To identify lineage trajectories of monocytes sub-clusters, we performed trajectory 

inference analysis using Slingshot. The cluster representing CD14+ classical 

monocytes was chosen as the root node to construct lineages of differentiation to 

CD14+ intermediate monocytes. we fit a general additive model (GAM) using a 

negative binomial noise distribution to model the relationships between gene 

expression and pseudotime and tested for significant associations between expression 

and pseudotime using the associationTest. We ranked genes according to wald 

statistics (the gene with the largest waldStat is ranked the top) and picked out the top 

250 genes based on wald statistics as monocytes differentiation driver genes. To 

investigate whether DEG sunder three conditions (COPD, aging, smoking) in 

monocytes are enriched in the pre-ranked 250 monocytes differentiation driver genes, 

we performed Kolmogorov-Smirnov (K-S) test on DEGs of monocytes and visualized 

with a kolmogorov-smirnov plot. The one-sided (greater) K-S test was used to 

determine the enrichment score. The nominal p-value estimates the statistical 
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significance of a single gene set's enrichment score, based on the null distribution 

generated from gene set permutation. 

 

Cell-cell interactions (CCIs) analysis 

To infer potentially relevant interactions between two cell populations, CCIs analysis 

was conducted with the CellPhoneDB software (version 2.0) 9. For the COPD 

condition, normalized gene expression matrix of control and COPD patients was first 

corrected to remove variation due to smoking and aging using WGCNA R package 

function ‘empiricalBayesLM’. The same method is used to eliminate variation due to 

COPD and smoking in the aging condition and variation due to COPD and aging in 

the smoking condition. In CCIs analysis, COPD and control were analyzed separately. 

Only receptors and ligands detected in >10% of cells in each cell type from COPD 

were further evaluated, while a CCI was considered nonexistent if the ligand or the 

receptor was unmeasurable. Averaged expression of each ligand-receptor pair was 

analyzed between various cell types, and only those whose average expression value 

was in the top 75% quantile among the ligand-receptor pairs with p-value < 0.05 were 

used for the prediction of CCIs between any two cell types. The control group was 

analyzed as above. We quantified the degree of change in cell interactions in the 

COPD condition by the difference between the number of significant interaction 

ligand-receptor pairs in COPD and the number of significant interaction ligand-

receptor pairs in control. The degree of changes in CCIs under aging (old vs. young 
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group) and smoking (active smoker vs. never-smoker group) conditions was analyzed 

as above. 

 

Intercellular interaction network of ligands and receptors  

To identify and illustrate alterations in the intercellular signaling network, iTALK 

(version 0.1.0) 10 (Corpus ID: 91802336) was employed to identify significant 

changes, i.e. gains or losses of interactions between groups. All ligands and receptors 

in analysis were collected from Chemical Classification and Information Database 

(CCID). Normalized cell-gene expression matrix that was corrected to remove 

variation due to smoking and aging using WGCNA R package function 

‘empiricalBayesLM’ as input. For all COPD subject cells and each cell type, the 

expression value for each gene was averaged to create a single “sample” 

representative of a cell type of COPD. The ligand or receptor was considered 

expressed in monocytes if the averaged expression of monocytes was greater than 0.2, 

and the ligand or receptor was considered expressed in each cell type (except the 

monocytes) if the averaged expression per cell type was greater than 1.1. The number 

of ligand-receptor interactions between each two cell types was detected by ‘FindLR’ 

function in iTALK. The number of ligand-receptor interactions between each two 

different cell types of control was analyzed as above. The interaction alteration of 

each cell type between COPD and control was defined as follows: the difference 

between the number of interactions of the COPD group and the number of interactions 
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of the control group and then divided by the number of interactions of the control 

group. For visualization of interaction networks of iTALK cell-cell communication 

changes, colors in the interaction network correspond to the cell type, while the 

thickness of the lines is the changes of interaction pairs between cell types. To profile 

interaction alterations of ligand-receptor pair of monocytes with structural cells 

AT1/AT2 within COPD, we used ligand-receptor pairs from cell-cell interaction 

databases to analyze the interaction alteration between monocytes and structural cells 

based on the expression. Only differentially expressed ligands/receptors were further 

evaluated. The circosplot of interaction alterations using circlize R package (version 

0.4.11) 11. The interaction between monocytes and immune cells within COPD was 

analyzed as above. 

 

Regulatory potential analysis 

To speculate the regulatory potential of ligands in monocytes on differential expressed 

genes in interacting cells, we applied the NicheNet analysis using nichenetr R package 

(version 1.0.0) 12. As input genes to infer the ligand activity score, we defined all 

DEG genes with FDR < 0.05 and log2fc > 0 within a given cell type in COPD 

condition. As background genes, we defined all genes that were not DEG within a 

given cell type in COPD conditions and detected in > 10% of cells. For ligand 

prioritization, we selected the genes with FDR< 0.05 and log2fc > 0.14 in COPD 

conditions were defined as large change potential_ligands within a given cell type. 
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Genes with FDR < 0.05 in COPD conditions were defined as potential_ligands within 

a given cell type.  

 

Potential upstream regulators prediction 

To predict potential upstream transcriptional regulators of the COPD-associated 

DEGs in AT1s, AT2s, endothelial cells, stromal cells, club cells, and ciliated cells, we 

performed enrichment analysis of DEGs using Metascape software 13. TRRUST 

ontology categories with a p-value < 0.01, a minimum count of 3, and an enrichment 

factor > 1.5 in metascape were considered as significant DEG potential upstream 

regulators. The pathway annotation of upstream regulators was classified according to 

the pathway types in the KEGG database.  

 

Weighted correlation network analysis (WGCNA) 

To identify the co-expression gene modules of alveolar type 2 cells, a weight gene co-

expression network analysis was performed using WGCNA R package (version 1.69) 

14. Expression was first corrected to remove variation due to smoking and aging using 

empiricalBayesLM. The appropriate soft-thresholding power was chosen based on a 

scale-free topology criterion and the weighted adjacency matrix was constructed using 

the soft-thresholding power. The relationship between one gene and all other ones in 

the analysis was incorporated, and the adjacency matrix was transformed into the 

topological matrix (TOM). The genes demonstrated hierarchical clustering according 
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to the TOM-based dissimilarity (1-TOM) measure, and highly interconnected genes 

were assigned to the same module. Then, the eigengenes of WGCNA modules were 

calculated to represent the overall gene expression profiles in each module and then 

were tested for statistical significance of association with the COPD. Hub genes are 

defined as genes with high correlation with the remaining genes in the Blue module.  

 

Functional interaction analysis 

To better demonstrate the core biological process in COPD-associated AT2s as well 

as their interrelationships, we used the STRING database 15 to construct a functional 

interaction network based on the genes which were enriched in more than 2 biological 

processes in the enrichment map showing the functional topologies among major 

biological process of AT2s WGCNA Blue module. Network type was physical 

complex and the edge thickness indicate the strength of data support. Active 

interaction source was from experiments only. The minimum required interaction 

score based upon confidence was set as 0.5. 

 

AT2-to-AT1 differentiation driver genes enrichment analysis 

To identify lineage trajectories of AT2s to AT1s, we performed trajectory inference 

analysis using Slingshot. The cluster representing AT2s was chosen as the root node 

to construct lineages of differentiation to AT1s. We ranked genes according to wald 

statistics (the gene with the largest waldStat is ranked the top) and picked out the top 
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500 genes based on wald statistics as AT2s-AT1s differentiation driver genes. To 

investigate whether COPD-, aging-, and smoking-associated DEGs of monocytes are 

enriched in the 500 AT2s-AT1s differentiation driver genes, we performed 

Kolmogorov-Smirnov (K-S) test on COPD-, aging-, and smoking-associated DEGs of 

monocytes and visualized with a kolmogorov-smirnov plot. The one-sided (greater) 

K-S test was used to determine the enrichment score. The nominal p-value estimates 

the statistical significance of a single gene set's enrichment score, based on the null 

distribution generated from gene set permutation. 

 

Gene set variation analysis (GSVA) 

To evaluate the activity of gene sets within a given cell type under different 

conditions, Gene set variation analysis (GSVA) was performed in the GSVA R 

package (version 1.34.0) 16. All ontology gene sets were collected from the 

Molecular Signatures Database (MSigDB). Only genes detected in >10% of cells 

within a given cell type were further evaluated. As GSVA input, normalized gene 

expression matrix was first corrected to remove variation due to aging and smoking 

using WGCNA R package function ‘empiricalBayesLM’ in each cell type for the 

COPD condition; normalized gene expression matrix was first corrected to remove 

variation due to COPD and smoking using WGCNA function ‘empiricalBayesLM’ in 

each cell type for the aging condition; normalized gene expression matrix was first 

corrected to remove variation due to COPD and aging using WGCNA R package 
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function ‘empiricalBayesLM’ in each cell type for the smoking condition. Differential 

expression analysis with gene sets enrichment scores as if they were simple gene 

expression values using the ‘lmFit’ and ‘eBayes’ functions from the limma R 

package. Gene sets with adjust p-value (padjust) < 0.05 were selected as differentially 

activated gene sets.  

 

Club differentiation driver genes functional enrichment analysis 

To identify potential driver genes responsible for club differentiation from the club 

cells to the ciliated cells, AT1s, and AT2s, we performed trajectory analysis using 

Slingshot. Club cells was chosen as the root node to construct lineages of 

differentiation to ciliated cells, to AT1s, and to AT2s. For club cells to ciliated cells, 

we ranked genes according to wald statistics (the gene with the largest waldStat is 

ranked the top) and picked out the top 100 genes based on wald statistics as potential 

driver genes responsible for club cells differentiation from the club cells to the ciliated 

cells. Finally, we performed functional enrichment analysis on club cells 

differentiation driver genes using Metascape software. Club cell-to-AT1 and club cell-

to-AT2 differentiation driver genes were identified as above. 

 

Identification of macrophage subtypes 

To identify macrophage subtype, we selected top 400 biological process terms of 

macrophage with largest standard deviation of GSVA enrichment score. K-means 
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clustering with k = 4 was performed on top 400 biological process GSVA enrichment 

score of macrophages, and 3 subtypes of macrophage were identified: k-means 

cluster1 and k-means cluster2 defined as subtype A, k-means cluster3 as subtype B 

and k-means cluster4 as subtype C.  

 

Correlation analysis based on summarized expression profiles at the individual 

level 

We calculated cell type-specific mean expression within each individual. As a result, 

each individual has an expression matrix with rows corresponding to genes and 

columns corresponding to cell types (15 columns in total). To estimate expression 

correlations between cell types across individuals, for example “A” gene in 

macrophages and “B” gene in endothelial cells, we actually performed Spearman 

correlation analysis between mean expression values of A genes of 9 individuals in 

macrophages and mean expression values of B genes of 9 individuals in endothelial 

cells. Highly correlated genes are defined as those with Spearman correlation 

coefficient ≥  0.8 or ≤  -0.8. 

 

Integration of publicly available scRNA-seq data   

To assess the reliability of the three conditions (COPD, aging, and smoking)-

associated DEGs in monocytes in our dataset, we collected COPD-associated DEGs 

in monocytes from the scRNA-seq dataset of Li and his colleagues 17. Since they 
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neither set young controls nor analyzed smoking separately, both aging- and smoking-

associated DEGs of monocytes were not available in their datasets but all mixed with 

COPD-associated DEGs. GO enrichment analysis was performed across our three 

conditions (COPD, aging, and smoking)-associated DEGs of monocytes and COPD-

associated DEGs of Li and his colleagues’ via Metascape database 13. GO biological 

process terms with moderate p-value were selected to eliminate some biological 

processes too broad to reflect the specific pathological role and displayed in a 

heatmap. To further assess the reliability of the three conditions (COPD, aging, and 

smoking)-associated DEGs in CD14+ monocytes in our dataset, we collected COPD-

associated DEGs in CD14+ monocytes from the scRNA-seq dataset of Adams and his 

colleagues 18. GO enrichment analysis across these multiple DEGs were performed 

and visualized as above. 

Data from GEO accession number GSE136831, representing scRNA-seq raw count 

data from 6 control lung homogenates and 3 transplant stage COPD lungs, were used. 

Samples’ clinical information are given in Dataset 7.xlsx.  

To validate the reproducibility of our study, all cells of 9 samples in our study and 

those of 9 samples in Adams’ study were combined as the “9 + 9 dataset”.  

To identify genes differentially expressed under three conditions (aging, smoking, and 

COPD) within each cell type of the 9 + 9 dataset, MAST was used to perform zero-

inflated regression analysis by fitting a linear mixed model. Considering the batch 

effect of the 9 + 9 dataset, our 9 samples were defined as batch 1 data, while Adams’ 
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9 samples were defined as batch 2 data. We controlled both technical variation and 

individual variation by using a two-part hurdle model. The following model was fit 

with MAST: 

zlm( ~ COPD+ age + (1|individual) + smoking + batch + sex+ percent.mt + 

nCount_RNA , sca, method='glmer', ebayes=FALSE) 

For COPD/smoking variable, genes with absolute value of log2(fold change) > 0.14 

(10% difference in expression) and FDR < 0.05 between conditions were selected as 

differentially expressed genes (DEGs). For aging variable, we treat aging as a 

continuous covariate while controlling for technical variation and individual variation. 

Genes were considered as significantly differentially expressed with an FDR < 0.05 

and an age coefficient > 0.2 or < -0.2. 

To calculate the number of COPD-associated DEGs across cell types normalized by 

the number of cells in each cell type of the 9 + 9 dataset, we randomly drew 2000 

cells from each cell type before performing differential gene expression analysis. This 

analysis was repeated 10 times and the number of DEGs for each cell type were 

presented as boxplots. Aging-associated DEGs and smoking-associated DEGs were 

performed as above. Since no neutrophil cells were annotated as neutrophils in 

Adams’ data, neutrophils were not included in downsampling analysis of the 9 + 9 

dataset. 

To verify the reliability of GSEA analysis results in our study, we applied the 

differential expression analysis results of the 9 + 9 dataset to conduct GSEA analysis, 
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and the analysis process was as described in the previous gene set enrichment 

analysis. 

 

Preparation of aqueous cigarette smoke extract (CSE) 

Huangshan Brand cigarettes were manufactured by China Tobacco Anhui Industrial 

Co., Ltd. Tar, nicotine, and carbon monoxide contents of Huangshan Brand cigarettes 

were 10 mg/cigarette, 0.9 mg/cigarette, and 11 mg/cigarette, respectively. CSE was 

prepared by bubbling smoke from 1 cigarette into 10 ml of RPMI medium 1640 

(Gibco, Burlington, ON, USA) at a rate of 1 cigarette per 2 minutes, as described 

previously 19. The pH of CSE was adjusted to 7.2-7.4. After being filtered through a 

sterile 0.22 μm filter (Merck&Millipore,Darmstadt, Germany), some CSE preparation 

was diluted 7 times with RPMI medium 1640 and used to monitor the absorbance at 

320 nm (optical density of 0.67 ± 0.01). CSE was freshly prepared for each 

experiment and diluted with culture medium immediately before use. Control medium 

was prepared by bubbling air through 10 ml of culture medium, adjusting pH to 7.4, 

and sterile filtering as described for CSE preparation. 

 

Generation and treatment of bone marrow-derived macrophages (BMDMs) 

from mouse 

All animal experiments were approved by the Institutional Animal Care and Use 

Committee at Nanjing Medical University. Male C57BL/6 mice of 8 weeks were 
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purchased from the National Resource Center for Mutant Mice Model Animal 

Research Center of Nanjing University. GM-CSF derived alveolar-like macrophages 

were generated from bone marrow of unchallenged C57BL/6 mice as previously 

described 20. Briefly, mouse was euthanized and its femurs and tibiae were isolated in 

the biological safety cabinet. Cut the end of each bone. 

Insert the tip of a 261⁄2 gauge (G) needle (BD, NJ, USA) into the end of a bone piece 

and flush out the bone marrow cells with 1 ml Hank’s Balanced Salt Solution with 5% 

fetal calf serum (Gibco) (HBSS-FCS) into a 100 mm x 15 mm sterile dish (Corning, 

NY, USA). Transfer the born marrow suspension to a sterile 50 ml conical tube 

(Corning). Spin down the bone marrow cells at 314 g for 5 min at 4 °C. Aspirate the 

supernatant and loosen the pellet by adding 10 ml of red blood cell (RBC) lysis buffer 

(Beyotiome, Shanghai, China). Vortex to resuspend the cells and incubate them in 

RBC lysis buffer at room temperature for 5 min. Add 10 ml of HBSS-FCS then spin 

cells at 314 g for 5 min and prepare born marrow culture (BMC) media by adding 

10% FCS, 20 mM HEPES (Gibco), 1x nonessential amino acid (Solarbio, Beijing, 

China), 55 μM 2-mercaptoethanol (Sigma Aldrich, St. Louis, MO, USA), 50 U/ml 

penicillin and streptomycin (Solarbio), 1 mM sodium pyruvate (Solarbio), and 2 mM 

L-glutamine (Solarbio) to RPMI medium 1640 (Gibco). Aspirate the supernatant and 

resuspend cells at 4 x 106 cells/ml in BMC media. Add 500 μl of the 4 x 106 cells/ml 

bone marrow cells to 9.5 ml of BMC media containing 200 ng of recombinant mouse 

GM-CSF (PeproTech, Rocky Hill, NJ, USA), plant bone marrow cells in a new sterile 
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100 mm x 15 mm Petri dish for the final concentration of 2 x 105 cells/ml and culture 

them at 37℃ in a humidified 5% CO2 atmosphere. On day 3, add 10 ml of fresh BMC 

media containing 200 ng of GM-CSF to the dish of cells. On day 6, carefully remove 

10 ml of media into a sterile 50 ml conical tube, spin down at 314 g for 5 min, and 

discard the supernatant. Resuspend the cell pellet in 10 ml of fresh BMC media 

containing 20 ng/ml of GM-CSF, gently add to the original cell culture dish for a total 

volume of 20 ml. On day 7, harvest the non-adherent cells in a sterile 50 ml conical 

tube. Spin down at 314 g for 5 min, discard the supernatant and resuspend the cell 

pellet at 1 x 106 cells/ml in BMC media with CSE at desired concentration or same 

volume of control medium. Culture cells in new 60 mm x 15 mm sterile dishes 

(Corning) at 37℃ in a humidified 5% CO2 atmosphere for another 24 h before final 

collection. 

 

RNA extraction and RT-PCR assay 

Total RNA was extracted from macrophages using Trizol reagent (Invitrogen, Grand 

Island, NY, USA) as previously described 21. RNA was reverse-transcribed into 

cDNA with HiScript II Q RT SuperMix for qPCR (Vazyme, Nanjing, Jiangsu, China). 

Quantification RT-PCR was performed using ChamQTM Universal SYBR qPCR 

Master Mix (Vazyme) and Step One PlusTM Real-Time PCR System (Applied 

Biosystems, Foster City, CA, USA). Primers were manufactured by Genscript 

(Nanjing, Jiangsu, China). Arpppo was used as internal standards for mRNAs. Primer 
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sequences were designed to be intron-spanning and were as follows (5′-3′): Arpppo 

(forward: GAAACTGCTGCCTCACATCCG, reverse: 

GCTGGCACAGTGACCTCACACG); mouse Sptlc1 (forward: 

AGGGCATCGCATTGACTC, reverse: GGTCTCTGAGTAGTTCCGTCCGCAG); 

mouse Sptlc2 (forward: GTTGCCTGATTCTGAGTG, reverse: 

TTCTTCCAGGGTCTTCTT); mouse Asah1 (forward: 

AAAGTCTTCTCACCTGGGTC, reverse: ACGGAACTGGTCCTCTAT); mouse 

Cers2 (forward: GCCCAAGCAGGTGGAGGTA, reverse: 

TGACAGCCATGCCAGCAA); mouse Cers5 (forward: 

CAGGACAAGCCTCCAACG, reverse: CGGGTATCCCAGAACCAA); mouse 

Sgpp1 (forward: CGGGTATCCCAGAACCAA, reverse: 

AATCTCAGCCGTGTCTCC); mouse Cerk (forward: CCATCAATGCCACCAACA, 

reverse: GACTCGATAAACTTCAACGAAA); mouse Smpd4 (forward: 

GCAGTGCCTCGCTTTGTC, reverse: TGCCCTGAGCCTGTTTCT). 

 

Statistical analysis 

For the in vitro experiment related to Fig. 7E, at least three independent experiments 

were performed. Comparisons were performed using the Student’s t test between two 

groups. Results were presented as means ± SEM. A p-value < 0.05 was considered 

statistically significant. 
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