Science Translational Medicine

Supplementary Materials for

S-217622, a SARS-CoV-2 main protease inhibitor, decreases viral load and ameliorates COVID-19 severity in hamsters

Michihito Sasaki et al.

Corresponding author: Michihito Sasaki, m-sasaki@czc.hokudai.ac.jp; Hirofumi Sawa, h-sawa@czc.hokudai.ac.jp

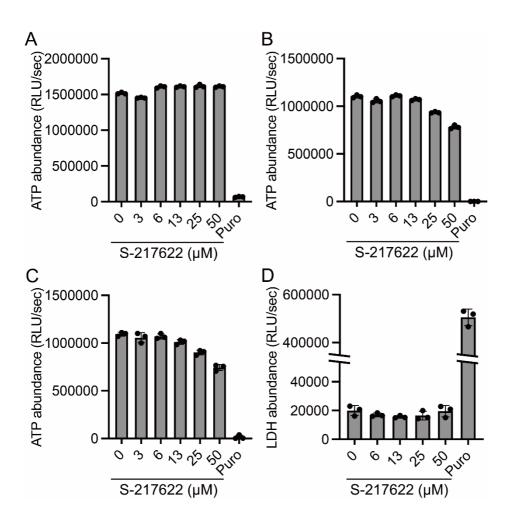
Sci. Transl. Med. **0**, eabq4064 (2022) DOI: 10.1126/scitranslmed.abq4064

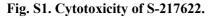
The PDF file includes:

Materials and Methods Figs. S1 to S7 Table S1

Other Supplementary Material for this manuscript includes the following:

Movies S1 to S3 Data file S1 MDAR Reproducibility Checklist


Supplementary Materials and Methods

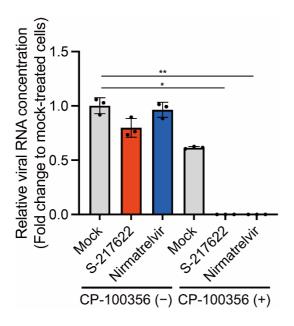
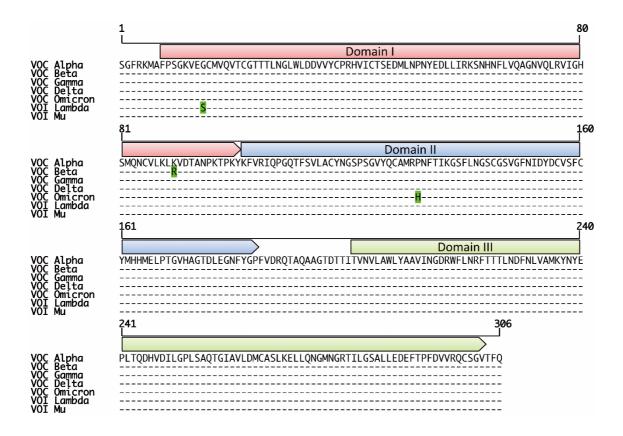

Compound cytotoxicity assay

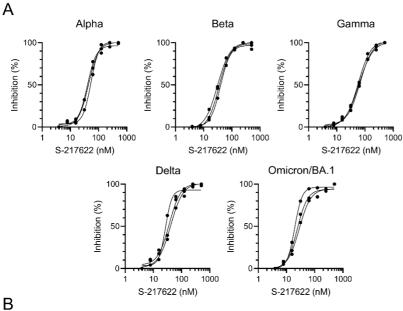
Cells were treated with S-217622 serially diluted in 2-fold increments by culture medium containing 2% fetal bovine serum (FBS). After a 3 day culture, cell toxicity was evaluated by measurement of ATP in live cells with CellTiter-Glo 2.0 reagent (Promega) or lactate dehydrogenase (LDH) released from dead cells in the basal medium with LDH-Glo Cytotoxicity Assay kit (Promega). Luminescence was detected on a luminometer (GloMax-Multi detection system, Promega).

Biosensor assay for viral protease activity

The DNA fragments encoding NSP3 or NSP4, NSP5, N-terminal NSP6 (NSP4/5/6N) of SARS-CoV-2 WK-521 strain (lineage A) were cloned into pCMV-derivative pCXSN vector to generate pSARS-CoV-2 papain-like protease (PL^{pro}) and pSARS-CoV-2 main protease (M^{pro}), respectively. The amino acid sequence AVLQS (for the cleavage by M^{pro}) or RLKGG (for the cleavage by PL^{pro}) were replaced into pGloSensor-30F vector backbone (CS182101, Promega) to generate firefly luciferase-based biosensor expressing plasmid pGS-AVLQS or pGS-RLKGG, respectively. 293T cells on 96-well plate were co-transfected with a set of pGS-AVLQS and pSARS-CoV-2 M^{pro} or a set of pGS-RLKGG and pSARS-CoV-2 PL^{pro} using TranIT-LT1 (Mirus Bio) in the presence of serial diluted S-217622. At 24 hours post-transfection, the luminescence signals of biosensors and renilla luciferase (an internal control reporter) from pGS vectors were measured by Dual-Glo Luciferase Assay System (Promega). The ratio (firefly luciferase:renilla luciferase) was calculated to normalize for the influence of transfection efficiency. Non-treated cells were used as a control for 100% biosensor activation.

(A to D) Calu-3 cells (A), Vero-TMPRSS2 cells (B), Vero-TMPRSS2 cells with CP-100356 at 1 μ M (C), and primary human bronchial epithelial cells (D) were treated with S-217622 for 3 days. Cell toxicity was evaluated by measurement of ATP in live cells (A to C) or LDH released from dead cells in the basal medium (D). Puromycin (puro) was used as a control compound to mediate cell toxicity. The values shown are mean \pm SD of triplicate samples. RLU, relative light units.


Fig. S2. Antiviral activity of SARS-CoV-2 main protease inhibitors in the presence of a P-glycoprotein (P-gp) inhibitor.

Vero-TMPRSS2 cells were infected with SARS-CoV-2 Delta variant at a multiplicity of infection (MOI) of 0.01 and treated with S-217622 at 100 nM or nirmatrelvir at 300 nM for 24 hours in the absence or presence of the P-gp inhibitor, CP-100356 at 1 μ M. The inhibitory effect of each treatment was evaluated by measurement of intracellular viral RNA concentration at 24 hours post infection (hpi). The values shown are mean \pm SD of triplicate samples. *p<0.05, **p<0.01 by Kruskal-Wallis test with Dunn's test.

Fig. S3. Multiple amino acid sequence alignments of M^{pro} from SARS-CoV-2 variants of concern (VOCs) and variants of interest (VOIs).

Multiple sequence alignment based on the entire length of M^{pro} from the VOCs Alpha (lineage B.1.1.7, GISAID: EPI_ISL_768526), Beta (lineage B.1.351, GISAID: EPI_ISL_1123289), Gamma (lineage P.1, GISAID: EPI_ISL_877769), Delta (lineage B.1.617.2, GISAID: EPI_ISL_2158617), and Omicron (lineage BA.2.75, GISAID: EPI_ISL_14011362), as well as the VOIs Lambda (lineage C.37, GISAID: EPI_ISL_4204973), and Mu (lineage B.1.612, GISAID: EPI_ISL_4470503). Dashes (-) represent amino acids identical to M^{pro} of Alpha. Amino acids different from the consensus are colored in green.

		EC ₅₀			CC ₅₀	
	Alpha	Beta	Gamma	Delta	Omicron /BA.1	
S-217622 (nM)	46.0 ± 5.5	35.1 ± 3.5	61.7±3.9	34.8±5.9	23.9±3.6	>50000
REGN10933 (ng/ml)	16.9±2.9	>1000	>1000	6.3±1.8	>1000	>1000
REGN10987 (ng/ml)	3.7±0.3	3.4±0.8	8.4±1.8	8.6±3.9	>1000	>1000

Fig. S4. Antiviral potency of S-217622 against SARS-CoV-2 VOCs.

Cytopathic effect (CPE) in 293T-hACE2-TMPRSS2 cells induced by SARS-CoV-2 infection was measured at 3 dpi by 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. (A) The inhibitory effect of S-217622 on SARS-CoV-2 VOCs was examined. Uninfected cells were used as a control for 100% inhibition. (B) The 50% effective concentration (EC₅₀) and cytotoxic concentration (CC50) of S-217622 and anti-SARS-CoV-2 neutralizing monoclonal antibodies (REGN10933 and REGN10987) are shown.

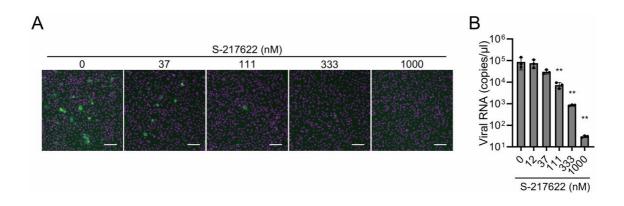
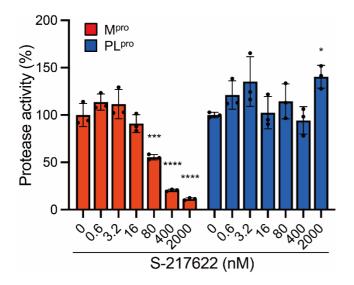



Fig. S5. Susceptibility of the SARS-CoV-2 Omicron variant to treatment with S-217622.

(A) Immunofluorescence staining is shown of Vero-TMPRSS2 cells infected with the SARS-CoV-2 Omicron variant BA.1. Cells were inoculated with the SARS-CoV-2 Omicron variant at an MOI of 0.1 and then cultured in the presence of S-217622 for 24 hours. Cells were stained with anti-SARS-CoV-2 nucleocapsid antibody (green) and Hoechst 33342 (magenta). Scale bars, 100 μ m. (B) Viral RNA concentrations were measured in the culture supernatant of Vero-TMPRSS2 at 24 hpi with the SARS-CoV-2 Omicron variant at an MOI of 0.01. The values shown are mean \pm SD of triplicate samples. **p<0.01 by one-way ANOVA with Dunnet's test.

293T cells were co-transfected with expression plasmids of SARS-CoV-2 M^{pro} and a biosensor for SARS-CoV-2 M^{pro} and maintained in the presence of S-217622. The luminescence signal from the biosensor was measured as the protease activity at 24 hours post transfection. 293T cells expressing SARS-CoV-2 PL^{pro} and another biosensor for PL^{pro} were used as a control for the target specificity of S-217622. The values shown are mean \pm SD of triplicate samples. *p<0.05, ***p<0.001, ****p<0.0001 by one-way ANOVA with Dunnett's test.

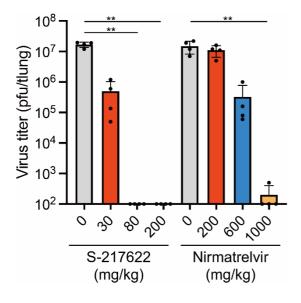


Fig. S7. In vivo antiviral efficacy of SARS-CoV-2 main protease inhibitors.

Hamsters were intranasally inoculated with 5,000 plaque-forming units (pfu) of the SARS-CoV-2 Delta variant. The hamsters were treated with oral administration of S-217622 or nirmatrelvir twice daily (b.i.d.) from the time of infection (0 hpi) for prophylactic treatment (n=4 for each treatment). Virus titers in lungs from hamsters at 4 dpi were determined by plaque assay. The values shown are mean \pm SD. **p<0.01 by Kruskal-Wallis test with Dunn's test.

	S-217622 in plasma			
	10 mg/kg	30 mg/kg	100 mg/kg	
C _{max} (μM)	12.7±2.2	61.6 ± 18.7	254 ± 24	
T _{max} (h)	0.5 ± 0.0	1.17 ± 0.76	2.67 ± 1.15	
t _{1/2,z} (h) ^a	4.46 ± 1.03	3.96 ± 0.74	3.43 ± 0.13	
AUC₀₋₂ଃհ (µM⋅h)	78.3±11.0	415±52	2480 ± 350	
AUC₀ _{-inf} (µM⋅h)	79.3 ± 10.5	417±51	2500 ± 350	

Table S1. Pharmacokinetic parameters of S-217622 in plasma after a single oral administrationof S-217622 in hamsters.

a: t_{1/2, 8-28hr}

 C_{max} , maximum concentration; T_{max} , time to peak drug concentration; $t_{1/2}$, half-life; AUC, area under the curve.

Movie S1. Reconstructed 3D image of viral antigen distribution in the lung of a vehicle-treated hamster at 4 dpi. The hamster was inoculated with SARS-CoV-2 Delta variant and treated with 0.5% methyl cellulose solution (vehicle for S-217622) from 1 dpi to 3 dpi. Related to Fig. 5E.

Movie S2. Reconstructed 3D image of viral antigen distribution in the lung of a S-217622-treated hamster at 4 dpi. The hamster was inoculated with SARS-CoV-2 Delta variant and treated with S-217622 (200 mg/kg) from 1 dpi to 3 dpi. Related to Fig. 5F.

Movie S3. Reconstructed 3D image of viral antigen distribution in the lung of a MPV-treated hamster at 4 dpi. The hamster was inoculated with SARS-CoV-2 Delta variant and treated with MPV (200 mg/kg) from 1 dpi to 3 dpi. Related to Fig. 5G.

Data file S1. Raw, individual-level data for all experiments.