

Protein Extraction and Western Blot of Human Lung Organoids V.(ceastaee) +

In 1 collection

ceastaee 🥆

Morris Baumgardt¹, Maren Hülsemann², Diana Fatykhova¹, Stefan Hippenstiel¹, Andreas C. Hocke¹, Katja Hönzke¹

¹Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Univ ersität zu Berlin, Department of Infectious Diseases and Respiratory Medicine, Charitéplatz 1, 10117 B erlin, Germany.;

²Berlin Institute of Health at Charité (BIH), BIH QUEST Center for Responsible Research, Berlin, Germa ny

1 Works for me

Reserved DOI: 10.17504/protocols.io.81wgb6peylpk/v3

maren.huelsemann

DISCLAIMER

Informed written consent was obtained from all volunteers and the study was approved by the Charité Ethics Committee (project 451, EA2/079/13).

ABSTRACT

This protocol describes the protein extraction from human alveolar-like organoids followed by western blotting. It gives a detailed description of the preparation of cell lysate from human alveolar-like organoids, followed by exact steps to perform a western blot and the immunostaining to detect ACE2, TMPRSS2, and FURIN as host factors of SARS-CoV-2.

PROTOCOL INFO

Morris Baumgardt, Maren Hülsemann, Diana Fatykhova, Stefan Hippenstiel, Andreas C. Hocke, Katja Hönzke . Protein Extraction and Western Blot of Human Lung Organoids . **protocols.io** https://protocols.io/view/protein-extraction-and-western-blot-of-human-lungceastaee Version created by morris.baumgardt

•

COLLECTIONS (1)

Collection: State-of-the-Art Analytical Methods of Viral Infections in Human Lung Organoids

KEYWORDS

protein extraction, human lung organoids, Sars-CoV-2 hostfactor, ACE-2, Western Blot

CREATED

Jul 26, 2022

LAST MODIFIED

Sep 27, 2022

OWNERSHIP HISTORY

Sep 27, 2022 maren.huelsemann

PROTOCOL INTEGER ID

67634

PARENT PROTOCOLS

Part of collection

Collection: State-of-the-Art Analytical Methods of Viral Infections in Human Lung Organoids

GUIDELINES

This protocol describes the processing of human alveolar-like organoids which have been grown according to Youk et al., 2020. <u>https://doi.org/10.1016/j.stem.2020.10.004</u>.

MATERIALS TEXT

Α	В	С
Substance/Material	Company	Order
		Number
Protein LoBind®	Eppendorf	0030108116
Tubes 1.5 mL		
Protein LoBind®	Eppendorf	0030122216
Tubes 15 mL		
7.5% Mini-Protean	Bio Rad	456-1023
TGX Precast Gel		
Odyssey (PBS)	LI-COR	927-40000
Blocking Buffer		
DC Assay	Bio Rad	5000116
KIT ECL PRIME DET.	Amersham	RPN2232
REAGENT		
ECL Western Blotting	Thermo	32109
Substrate		
cOmplete™, Mini	Roche	11836153001
Protease Inhibitor		
Cocktail		
GBX Developer and	KODAK	
Fixer		
NA 1 1 1		

Materials

Α	В	С
Antibody	Company	RRID
Anti- β -Actin antibody, Mouse	Sigma	AB_476692
monoclonal, 1:5000 WB, A1978		
goat-anti-ACE2, 1:100 WB, AF933	R&D	AB_355722
Anti-TMPRSS2, 1:1000, rabbit	abcam	AB_10863728
Anti-FURIN, 1:1000 rabbit	abcam	AB_2801581
	Santa Cruz	AB_628490
mouse anti-goat IgG-HRP	Biotechnology	
	Santa Cruz	AB_628497
mouse anti-rabbit IgG-HRP	Biotechnology	
m-lgGκ BP-HRP anti-mouse	Santa Cruz	AB_2687626
	Biotechnology	

Antibodies

Α	В
Substance	Volume
25 mM Tris (pH 8)	25 mL
137 mM NaCl	27.4 mL
10 % Glycerol	100 mL
0.1 % SDS	1 g
0.5 % Na deoxycholate DOC	5 g
1 % NP40	10 mL
2 mM EDTA (pH 8)	4 mL
DIDA Duffer (1000 ml) (store	-+ 400)

RIPA-Buffer (1000 mL) (store at 4°C)

- Dissolve one cOmplete Protease Inhibitor tablet in 2 mL dist. water (store at 2 to 8 $^\circ$ C for 1 to 2 weeks, or at least 12 weeks at -15 to -25 $^\circ$ C)

- Add fresh 40 μL Protease Inhibitor Cocktail 3 to 1 mL RIPA buffer

Α	В	
Substance	Volume	
10 % SDS	1 g	
50 % Glycerol	5 mL	
25 % β-Mercaptoethanol	2.5 mL	
0.01 % Bromphenol blue	0.001 g	
312 mM Tris/HCl pH 6.8	3.1 mL of 1 M	
	solution	

SDS-Sample-Buffer (store at -20°C)

Α	В
Substance	Volume
1.5 M Tris pH 9	181.71 g
0.4 % Temed	4 mL
0.4 % SDS	4 g

Running-Buffer (store at 4°C)

• Adjust pH 9 using HCl, adjust to 1 L with dH20

Α	В	
Substance	Volume	
0.14 M Tris pH 6.8	16.958 g	
0.11 % Temed	1.10 mL	
0.11 % SDS	1.10 g	

Stacking-Buffer (store at 4°C)

Adjust pH 6.8 using HCl, adjust to 1 L with dH20

Α	В	С	D
Reagent	Molecular	Molarity of 1X	Add for 1 L of
	weight		1x
NaCl	58.44	137 mM	8 g
KCI	74.54	2.7 mM	0.2 g
Na2HPO4	141.96	10 mM	1.44 g
KH2PO4	136.08	1.8 mM	0.24 g

1x PBS (store at RT)

- to prepare 0.05% (V/V) **PBS-T** buffer, add 50 μL Tween 20 to 1 L of 1x PBS

10x Blotting-Buffer:

- Dissolve 30.1 g Tris and 144 g Glycin in dH20
- Adjust to 1 L, store at 4°C
- Before use add 10 % Methanol (1 x Blotting-Buffer = 100 mL 10 x Buffer + 100 mL Methanol + 800 mL dH20)

10x SDS Page Running-Buffer:

- Dissolve 10 g SDS, 30.3 g Tris and 144.1 g Glycin in 800 mL dH20
- Adjust to 1 L with dH2O, store at 4°C

DISCLAIMER:

Informed written consent was obtained from all volunteers and the study was approved by the Charité Ethics Committee (project 451, EA2/079/13).

BEFORE STARTING

Please use protein low-bind tubes for all steps.

Prepare cell lysate of alveolar-like organoids 15m

You need a sufficient amount of organoids (approx. 300,000 cells per well) and organoids should be collected from minimum two wells of a 24-well plate (total ~600,000 cells).

1

2 From here all steps § On ice .

Keep tubes, reagents and buffers on ice.

- **3** Remove organoid media by aspiration.
- 4 Add \blacksquare 1 mL ice-cold PBS to the organoids.
- 5 δ On ice Transfer organoids to **15 mL** LoBind Tube (with 1000 μL pipette).
- 6 Centrifuge (300 x g, 4°C, 00:05:00.

5m

- 7 **§ On ice** Remove supernatant carefully.
- 8 **On ice** Make sure the protease inhibitor is added to the RIPA buffer.
- 9 Add \Box 75 µL RIPA buffer + Protease inhibitor to pellet.
- 10 Breake organoid pellet by repeated resuspension (3 times) using a disposable syringe with 27G needle.
- 11 Transfer sample to 1.5 mL LoBind tube.
- 12 Centrifuge (3)16000 x g, 4°C, 00:10:00.

10m

13 § On ice Collect and transfer supernatant to 1.5 mL LoBind tube (~ \equiv 50 μ L).

14 Freeze at & -80 °C optional or continue.

Protein quantification and preparation before Western blot 7m

Use **5** µL of RIPA-lysate in DC Assay (a dilution of the sample might be required, 1:10 or 1:50 in PBS, follow manufacturer's instructions) for protein quantification.

- 16 Prepare appropriate amount of sample by using $\Box 50 \mu g$ protein lysate according to DC assay results with 4x Laemmli protein sample buffer for SDS-PAGE.
- 17 Shake for () 00:07:00 at § 95 °C (() 1000 rpm).

7m

SDS-PAGE

15

- 18 Commercial gel used: Bio Rad 7.5% (Mini-Protean TGX Precast Gels Cat# 456-1023).
- 19 Arrange gel chambers inside the electrophorator and fill the tank with 1x Running-Buffer (fill the chamber formed by the gels with new 1x Running-Buffer, check if everything is tight and fill the tank with 1x Running-Buffer until it is half full). Remove the comb carefully.
- 20 Load **Ξ5** μL Kaleidoscope Protein Standard in Iane 1 (Precision Plus Protein Kaleidoscope Prestained Protein Standards #1610375).
- 21 Add \equiv 50 µg sample/lane (can be increased to 100 µg sample/lane for low expressed proteins).
- 22 Run the gel for up to (01:30:00 at 100 V (until the blue front line runs out of the gel).

Blotting

23 After the SDS-Page is done, do not switch off the power (due to diffusing proteins) until

🐼 protocols.io

everything is prepared for blotting. It is better to reduce the voltage instead.

- 24 Before use keep bottle of 1x blotting buffer in the freezer for ③ 01:30:00 . Equilibrate PVDF membrane (IMI0.45 micromolar (μM) methanol for ④ 00:00:15) and transfer it to the 1x blotting buffer. Add sponges and filter papers in 1x blotting buffer. For each gel, you need 2 sponges and 4 filter papers.
- 25 Carefully open gel chamber and equilibrate gel in 1x blotting buffer for () 00:02:00.

2m

- 26 Create a transfer sandwich as follows:
 - White side of retainer (top)
 - Sponge
 - 2 filter papers
 - PVDF Membrane
 - SDS Gel
 - 2 filter papers
 - Sponge
 - Black side of retainer (bottom)
- 27 Check out that there are no air bubbles between the gel and the membrane. Use a pipette to squeeze out extra liquid and bubbles.
- 28 Relocate the sandwich to the transfer apparatus. Add ice and fill with 1x Blotting-Buffer until the sandwich is completely covered.
- 29 Transfer for (901:00:00 at 100 V.

1h

1h

Blocking and antibody incubation 2h 11m

30 Wash membrane with PBS.

Block membrane in Odyssey blocking solution for (© 01:00:00 .

Cut membrane for multiple protein detection.

33 C

Add primary antibody (diluted in Odyssey blocking solution pure) and incubate membrane on a shaker overnight at **84 °C**.

34 Wash membrane thrice with 1x PBS-T for (© 00:05:00 each. 5m

- 35 Incubate membrane for © 01:00:00 at room temperature with secondary antibody solution (in 1x PBS-T with 5% milk).
- 36 Wash membrane twice with 1x PBS-T for (© 00:05:00 each. 5m

5m

- Wash membrane with 1x PBS for () 00:05:00.
- 38 Prepare ECL solution and incubate on membrane according to manufactures instructions (^{7m} © 00:02:00 for Thermo Scientific Kit and © 00:05:00 for Amersham Kit). The more sensitive Amersham Kit is used for ACE2 detection, all other proteins are detected using the Thermo Scientific Kit.
- 39 Expose film until an adequate signal can be determined

Analysis of constitutive ACE2 (120 kDa), TMPRSS2 (54 and 25 kDa) and FURIN (87 kDa) expression in human alveolar-like organoids by Western blot (three donors).