

ceattaen 🔻

Fixation, Immunohistochemistry and in situ Hybridization of Human Lung Organoids V.(ceattaen) +

In 1 collection

Morris Baumgardt¹, Maren Hülsemann,², Katharina Hellwig¹, Alina Langenhagen³, Anne Voss³, Simon Dökel³, Achim D. Gruber³, Stefan Hippenstiel¹, Andreas C. Hocke¹, Katja Hönzke¹

¹Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Univ ersität zu Berlin, Department of Infectious Diseases and Respiratory Medicine, Charitéplatz 1, 10117 B erlin, Germany.;

²Berlin Institute of Health at Charité (BIH), BIH QUEST Center for Responsible Research, Berlin, Germa ny;

³Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany

1 Works for me

Reserved DOI:

10.17504/protocols.io.e6nvwk5p2vmk/v3

(i)

Ð

morris.baumgardt

DISCLAIMER

Informed written consent was obtained from all volunteers and the study was approved by the Charité Ethics Committee (project 451, EA2/079/13).

ABSTRACT

This protocol describes the fixation of infected human alveolar-like organoids, as well as the sample preparation for immunohistochemistry and immunohistology of infected tissue from alveolar-like organoids.

PROTOCOL INFO

Morris Baumgardt, Maren Hülsemann,, Katharina Hellwig, Alina Langenhagen, Anne Voss, Simon Dökel, Achim D. Gruber, Stefan Hippenstiel, Andreas C. Hocke, Katja Hönzke . Fixation, Immunohistochemistry and in situ Hybridization of Human Lung Organoids . **protocols.io** https://protocols.io/view/fixation-immunohistochemistry-and-in-situ-hybridizceattaen Version created by morris.baumgardt

COLLECTIONS (i)

KEYWORDS

immunohistochemistry, human lung organoids, fixation of organoids, in situ hybridization

CREATED

Jul 26, 2022

LAST MODIFIED

Sep 27, 2022

PROTOCOL INTEGER ID

67635

PARENT PROTOCOLS

Part of collection

Collection: State-of-the-Art Analytical Methods of Viral Infections in Human Lung Organoids

GUIDELINES

This protocol describes the processing of human alveolar-like organoids which have been grown according to Youk et al., 2020. <u>https://doi.org/10.1016/j.stem.2020.10.004</u>.

MATERIALS TEXT

Α	В	С	D	
Substance	Company	Order number	Concentration	
GlutaMax 100x	invitrogen	35050-038	5 mL/500 mL	
Hepes	invitrogen	15630-056	5 mL/500 mL	
Advanced	invitrogen	12634-034	1x	
DMEM/F12				

Composition of base medium

А	В	С
Substance	Company	Order number
Formaldehyde	Sigma Aldrich	1004965000
solution 4%,		
buffered, pH 6.9		
Roticlear	Carl Roth	A538.5

Materials for organoid fixation

Bufers, assays and special equipment used:

10 mM TRIS + 1 mM EDTA buffer pH 9.0

```
1.2 g TRIS (1 M = 121.14 g/L)
0.29 g EDTA (1 M = 292.2 g/L)
-> Ø 1 L Aqua bidest (store at RT)
```

Dilution medium for IF

50 mL PBS 0.01 M 0.5 g BSA 2 drops Tween 20 -> Store at 4°C

0.01 M PBS

0.9 g NaH₂PO₄ 7.75 g Na₂HPO₄ 43.6 g NaCl \rightarrow 5 L Aqua bidest (store at RT)

А	В	С
Description	Company	Order number
Tissue-Tek VIP	Sakura	
Modular Tissue	Myr	
Embedding		
Center EC 350-2		
Epredia HM 325	fisher scientific	15340735
Rotary		
Microtome		
COP 30 Cooling	VWR	632-7014
plate		
Robotic	Leica	14 0478 80100
coverslipper		
CV5030		
StarFrost®	VWR	KNITVS11371077FKA
Adhesive Slides		
Ethanol	Berkel	
denatured with		
2 % isopropyl		
Xylene	Th. Geyer	399-5L-PE
technical grade		
Hemalum	Roth	T865.1
solution acid		
acc. to Mayer		
Waldeck, Eosin	Biosystems	84-0023-00
2 %		

Devices/materials for embedding, sectioning and HE staining

A	В	С	D
Substance	Company	Order number	RRID
Formaldehyde solution 4%, buffered, pH 6.9	Sigma Aldrich	1004965000	
goat-anti-ACE2, 1:100 IF	R&D	AF933	AB_355722
donkey anti-Goat IgG (H+L) Cross- Adsorbed Secondary Antibody, Alexa Fluor 488 1:2000	Thermo Fisher	A-11055	AB_2534102
FluoTag®-Q anti-SARS-CoV-2 Nucleocapsid, Sulfo-Cyanine 3 1:100	NanoTag Biotechnologies	N3601-SC3-L	
DAPI 4',6-Diamidine-2'-phenylindole dihydrochloride 1:100	Roche Diagnostics	10236276001	

Materials and antibodies for immunohistology used for host factor and virus detection

Α	В	С	
Substance	Company	Order number	
Xylen	Chemsolute	371.500	
Ethanol	Roth	9065.4	
Fluoromount	Roth	HP20.1	
with DAPI			
ViewRNA ISH	Invitrogen	19931	
Tissue Kit	(Thermo Fisher		
(contains	Sci)		
protease, probe			
diluent,			
amplifier mix,			
fast red,			
washing buffer			
etc)			
CoV2 Probe	Invitrogen	VPNKRHM	
	(Thermo Fisher		
	Sci)		
EF1a Probe	Invitrogen	VA1-10418-VT	
	(Thermo Fisher		
	Sci)		
dapB Probe	Invitrogen	VF1-11712-VT	
	(Thermo Fisher		
	Sci)		

Materials and antibodies for immunohistochemistry (RNAview)

Α	В	С
Substance	Company	Order number
ACE2 Probe	ACD biotechne	848151-C2
RNAscope® 3- plex Positive Control Probe- Hs	ACD biotechne	320861
RNAscope® 3- plex Negative Control Probe	ACD biotechne	320871

Antibodies for immunohistochemistry (RNAscope)

Α	В	С
Device	Company	Order number
Fisherbrand™	fisher scientific	15-103-0503
lsotemp™		
General		
Purpose		
Heating and		
Drying Ovens		
Staining cuvette	Roth	2287.1
Magnetic Stirrer	neolab	D-6010
with heater		
Waterproof	VWR	TD 131
thermometer		
Ultra-accurate	VWR	PTZ 341
probes		

Additional material used for immunohistochemistry (RNAscope)

DISCLAIMER:

Informed written consent was obtained from all volunteers and the study was approved by the Charité Ethics Committee (project 451, EA2/079/13).

Fixation

- 1 Remove the organoid medium from the organoid containing well. Organoids should be collected from minimum two wells of a 24-well plate, to obtain a sufficient amount of organoids for staining.
- 2 Add **□1 mL** cold base medium and collect Cultrex with organoids in a tube, flush well with **□1 mL** base medium.

- 3 Place tubes with organoids at **§ 4 °C** for **(§ 00:05:00** (to dissolve Cultrex).
- 4 Centrifuge for (300 x g, 4°C, 00:05:00.
- 5 Remove supernatant, add 4% Formaldehyde solution (FA) and pipette up and down.
- 6 C

Store over night at § 4 °C in the BSL3 lab.

- 7 Export vessel from the BSL3 with organoid and FA, centrifuge for (300 x g, 4°C, 00:05:00 remove FA and add fresh 4% FA.
- 8 Store over night at **84 °C**.
- 9 Centrifuge for (300 x g, 00:05:00 and remove FA.
- 10 Resolve pellet in PBS and store at **84 °C** or proceed with embedding.
- 11 Centrifuge for (300 x g, 00:05:00 and remove PBS.
- 12 Resolve pellet in **□100 μL** tissue Tek embedding medium (Histogel), pipette a drop on parafilm, place on ice and upon solidification place in the embedding cassette (act fast).
- 13 Close cassette, store in PBS, proceed with paraffin embedding and sectioning (sections: 2 µm).

6

5m

5m

14 Put cassette into the automatic embedding machine and start the following program:

Α	В	С	D	E	F	G
Step	Solution	Concentration	Duration	Temperature	D/V	Mix
		(%)	(min:sec)	(°C)		
1	Formalin	4	0:00	-	ON	OFF
2	Water		0:30	40	ON	OFF
3	Alcohol	70	1:00	40	ON	Slow
4	Alcohol	80	1:00	40	ON	Slow
5	Alcohol	96	1:00	40	ON	Slow
6	Alcohol	96	1:00	40	ON	Slow
7	Alcohol	100	1:00	40	ON	Slow
8	Alcohol	100	1:00	40	ON	Slow
9	Xylene		1:00	40	ON	Slow
10	Xylene		1:00	40	ON	Slow
11	Paraffin		1:00	60	ON	OFF
12	Paraffin		1:00	60	ON	OFF
13	Paraffin		1:00	60	ON	OFF
14	Paraffin		1:00	60	ON	OFF

Tissue-Tek VIP embedding program

15 In the following, after embedding, the samples are sectioned and mounted on adhesive slides. Sections of 2 µm each are prepared. Sections 1,5,9,13 are stained HE (following table) to see in which stages organoids are present, the rest is kept as blank section.

Α	В	С
Step	Solution	Duration
		(min:sec)
1	Xylene	2x 2:00
2	Xylene	1x 3:00
3	96% ethanol	0:30
4	80% ethanol	0:30
5	70% ethanol	0:30
6	Water	1:00
7	Hematoxylin	8:00
8	Water	0:05
9	70% ethanol	0:10
10	80% ethanol	0:30
11	96% ethanol	0:45
12	100% ethanol	1:00
13	100% ethanol	1:00
14	Xylene	4x 1:00

HE staining steps

Immunohistology staining 3h 26m

Dewaxing over night at § 60 °C in Roticlear.

17 Put the slide with organoids three times for (© 00:15:00 in Roticlear at 8 60 °C (use fresh Roticlear for every step).

15m

1m

10m

- 18 © 00:15:00 100% Ethanol.
- 19 (300:01:00 100% Ethanol.
- 20 (c) 00:10:00 96% Ethanol.
- 21 © 00:05:00 80% Ethanol.

22	© 00:05:00 70% Ethanol.	5m
23	© 00:05:00 50% Ethanol.	5m
24	Shake 3x ⓒ 00:05:00 in 10:0.01 Molarity (M) PBS (100 U/min).	5m
25	Antigen-Retrival for ③ 00:30:00 in a steam bath: Tris-EDTA buffer.	30m
26	Let cool down for approx. (90:30:00 .	30m
27	Shake 3x ⓒ 00:05:00 in 🕬 0.01 Molarity (M) PBS (100 U/min).	5m
28	ଓ 00:15:00 permeabilisation in 1% Triton (in ୲ଲା 0.01 Molarity (M) PBS) (on shaker 10 U/min).	15m 0
29	Shake 3x ⓒ 00:05:00 in 10:00 Molarity (M) PBS (100 U/min).	5m
30	Blocking for ③00:30:00 in 5% appropriate serum (in dilution medium), ca.]70 µL per slice.	30m tissue
31	Flush carefully with [M]0.01 Molarity (M) PBS (Pasteur pipette).	
32	Dilute primary antibody in dilution medium and incubate over night at 👌 4 °C (wet cham	ber).

33	Flush carefully with	[M]0.01 Molarity (I	M) PBS (Pasteur pipette).
----	----------------------	---------------------	---------------------------

- 5m 34 Shake 3x (900:05:00 in [110.01 Molarity (M) PBS (100 U/min). 35 Dilute secondary antibody in dilution medium and incubate over night at **§ 4 °C** (wet chamber). 36 Flush carefully with [M]0.01 Molarity (M) PBS (Pasteur pipette). 5m 37 Shake 3x (900:05:00 in 100.01 Molarity (M) PBS (100 U/min). 5m 38 Incubate () 00:05:00 with DAPI. 5m 39 Shake 3x (300:05:00 in 10.01 Molarity (M) PBS (100 U/min). 10m 40 Embedding with Mowiol® and coverslip, let air dry for () 00:10:00 and seal edges with nail polish.
 - 41 Immunofluorescence is analyzed by spectral confocal microscopy using a LSM 780 [Carl-Zeiss, Jena, Germany]. Based on a spectral image lambda stack, linear unmixing of tissue autofluorescence and overlapping spectra of fluorochromes is performed using ZEN 2012 software (Carl-Zeiss, Jena, Germany). To reveal lung and cell morphology, images are combined with Differential Interference Contrast (DIC). All image sets are acquired using optimal configuration regarding resolution and signal to noise ratio. Images are processed using ZEN 2012.

P5 SARS-CoV-2

P6 SARS-CoV-2 SARS-CoV-2 ACE2 ACE2 DAPI DIC 20 µm

Representative immunostainings for exemplary mock- (left panel) and SARS-CoV-2-infected (right column) human alveolar-like organoids. Shown are immunostainings for SARS-CoV-2 (N-protein, red), ACE2 (green) and *ACE2* mRNA expression (red dots, see *in situ* hybridization - step 55) 24 h post infection (MOI = 1). Arrows indicate either cells positive for SARS-CoV-2 (red arrows) or areas of particularly high ACE2 expression (protein: green arrows, mRNA: red dotted arrows). Cell nuclei are visualized by DAPI stain (blue). Scale bars = 20 μ m.

Viral in situ hybridization 1d 5h 35m 45s

- 42 We used a maximum of 12 slides at a time for the procedure. The size of the FFPE section should not exceed 2/3 of the slide and at least 5 mm away from each slide boarder.
- 43 Baking:
 - 43.1 Bake the slides for (© 01:00:00 at & 60 °C +-1°C in a dry oven.
 - **43.2** Direct after baking remove paraffin with a tissue as much as you can, but do not touch the tissue.

1h

44 Deparaffinization:

- 44.1 Pour **200 mL** of xylene into a staining dish.
- **44.2** Transfer the baked slides to the staining dish and incubate the slides at room^{5m} temperature for **© 00:05:00**. Agitate frequently by moving the rack up and down.
- **44.3** Repeat the xylene washing with fresh xylene for 2 times.
- 44.4 Remove the slides from the xylene and wash the slides twice with **□200 mL**^{5m} of 100% ethanol for **○00:05:00** with frequent agitation.
- 44.5 Remove the slides from the ethanol and place them face up on a paper towel to air dry for () 00:05:00 at room temperature.
- 45 Hydrophobic barrier:

- **45.1** Before using the hydrophobic barrier pen dap it on a paper towel several times to ensure proper flow of the hydrophobic solution.
- 45.2 To create a hydrophobic barrier draw a rectangle around the organoid section, repeat it 2-4 times to ensure a solid seal.
- 45.3 Let the barrier dry for $\sim \bigcirc 00:25:00$ (until it is really dry).

46 Heat Pretreatment:

- 46.1 Heat the 1x Pretreatment Solution to **8 90 °C to 95°C** in a porcelain staining jar (do not boil the Solution).
- 46.2 Incubate the slides for © 00:10:00 at § 90 °C to 95°C in the 1x Pretreatment Solution (time depends on tissue sample).
- 46.3 Remove the slide from the jar and submerge it directly into a clear staining dish containing **⊒200 mL** of full desalted autoclaved water (VE water), at this point the slides should not dry out.
- 46.4 Wash for **© 00:01:00** with frequent agitation.
- 46.5 Repeat the wash step 46.3 and 46.4 one more time with **⊒200 mL** of fresh VE water.
- 46.6 Transfer the slides to a clear staining dish containing [M]0.01 Molarity (M) PBS.
- 47 Protease digestion and fixation:

- 47.1 Dilute the Protease (all in ViewRNA Tissue Kit) 1:100 in pre warmed 1X PBS (
 40 °C) and briefly vortex to mix.
- 47.2 Remove each slide out of the dish and flick it to remove excess PBS. Do not let the slides dry out.
- 47.4 Incubate the OCB in an isotemp oven (Thermo Fisher) at **§ 40 °C** for **© 00:20:00** (Time depends on organoid sample).
- 47.5 After incubation decant the working protease solution from the slides and wash the slides two times with PBS in a staining dish for ③ 00:01:00.
- **47.6** Remove each slide out of the dish and flick it to remove excess PBS. Do not let the slides dry out.
- 47.7 Place each slide on a paper towel under a fume hood and incubate with 4% PFA for © 00:05:00 at room temperature.
- 47.8 After incubation decant the PFA from the slides and wash the slides two times with PBS in a staining dish for $\bigcirc 00:01:00$.

48 Hybridization:

- **48.1** Dilute the viewRNA probe set 1:40 in pre warmed probe set diluent and briefly vortex to mix. For positive control we use a $EF1\alpha$ probe set (also possible is *ACTB* or *GAPDH*) and for negative control we use a *DapB* probe set.
- **48.2** Remove each slide out of the dish and flick it to remove excess PBS. Do not let the slides dry out.

48.3 Place each slide face up on an OCB and immediately add **⊒200 µL** of the diluted probe set solution onto the tissue section. Make sure that the tissue section is covered with solution.

2h

- 48.4 Incubate the OCB in an isotemp oven at **§ 40 °C** for **© 02:00:00**.
- 48.5 Prepare **□**2 L wash buffer with VE water, **□**18 mL wash comp1 and **□**5 mL wash comp2.
- 48.6 After incubation decant the probe set solution and wash the slides in a staining dish with wash buffer for () 00:02:00. Repeat washing for 2 times more with fresh washing buffer.
- 48.7 Optionally the slides can be stored at this point in **□200 mL** storage buffer (^{1d} **□60 mL** comp2 and **□140 mL** VE water) for **©24:00:00** at RT.
- 48.8 After storage the slides must be washed again 3 times with wash buffer.
- 49 Pre amplifier hybridization:
 - 49.1 Pre warm the pre amplifier mix and swirl it to mix the solution.
 - **49.2** Remove each slide out of the dish and flick it to remove excess liquid. Do not let the slides dry out.
 - 49.3 Place each slide face up on an OCB and immediately add ⊒200 µL of the pre amplifier mix onto the tissue section. Make sure that the tissue section is covered with solution.
 - 49.4 Incubate the OCB in an isotemp oven at **8 40 °C** for **© 00:25:00**.

49.5 After incubation decant the pre amplifier mix and wash the slides in a staining dish with wash buffer for © 00:02:00 . Repeat washing for 2 times more with fresh washing buffer.

50 Amplifier hybridization:

- 50.1 Pre warm the amplifier mix and swirl it to mix the solution.
- 50.2 Remove each slide out of the dish and flick it to remove excess liquid. Do not let the slides dry out.
- 50.3 Place each slide face up on an OCB and immediately add **⊒200 µL** of the amplifier mix onto the tissue section. Make sure that the tissue section is covered with solution.
- 50.4 Incubate the OCB in an isotemp oven at **840 °C** for **©00:15:00**

- 50.5 After incubation decant the amplifier mix and wash the slides in a staining dish with wash buffer for ③ 00:02:00 . Repeat washing for 2 times more with fresh washing buffer.
- 51 Label Probe 1-AP hybridization:
 - 51.1 After incubation decant the amplifier mix and wash the slides in a staining dish with wash buffer for $\bigcirc 00:02:00$.
 - 51.2 Repeat washing for 2 times more with fresh washing buffer.

- 51.3 Remove each slide out of the dish and flick it to remove excess liquid. Do not let the slides dry out.
- 51.4 Place each slide face up on an OCB and immediately add **⊒200** µL of the label probe 1-AP solution onto the tissue section. Make sure that the tissue section is covered with solution.

15m

1h

- 51.5 Incubate the OCB in an isotemp oven at **840 °C** for **© 00:15:00**.
- 51.6 After incubation decant the amplifier mix and wash the slides in a staining dish with wash buffer for $\bigcirc 00:03:00$.
- 51.7 Repeat washing for 2 times more with fresh washing buffer.

52 Fast Red Substrate:

- 52.1 Remove the slides from the dish and place them face up on a paper towel, immediately add $\equiv 200 \ \mu L$ of the AP Enhancer Solution to each slide and incubate for $\odot 00:05:00$.
- 52.2 Decant the AP Enhancer Solution after incubation, place each slide face up on an OCB and add directly ⊇200 µL of fresh prepared fast red mix (for ⊇2.5 mL fast red buffer add ⊇40 µL fast red substrate1, vortex then add ⊇40 µL substrate2, vortex at least add ⊇40 µL substrate3, vortex).
- 52.3 Incubate the OCB at RT in the dark for (© 01:00:00.
- 52.4 After incubation decant the fast red mix and wash the slides in a staining dish with PBS for 00:01:00.
- 52.5 Repeat washing for one time more with fresh PBS.

53 Counter staining:

53		1 о	ptionally	y counter stain for	© 00:00:45 with	Gill's hematoxy	/lin.
	•		P	,	0 0000000000000000000000000000000000000	• • • • • • • • • • • • •	

45s

5m

53.2 Wash with water for \bigcirc 00:05:00 .

53.3 Mount the slides with fluoromount (Roth) by using a robotic coverslipper.

54

In situ hybridization of human alveolar-like organoids (three donors) shows SARS-CoV-2 mRNA expression (left column, red). *DapB* and *EF1a* served as negative respectively positive control. Red arrows indicate cells positive for SARS-CoV-2. Scale bars = 20 μ m.

ACE2 in situ hybridization 1d 5h 35m 45s

55 For *ACE2 in situ* hybridization proceed with the "RNAscope® Multiplex Fluorescent Reagent Kit v2 Assay":

USM-323100_Multiplex_Fluorescent_v2_User_Manual_10282019.pdf

The following changes were made using the USM-323100 protocol:

Page 14, step 5: a third xylene incubation step is implemented (5 min at RT). Page 15, target retrieval: a digital heat plate is used instead of a steamer. Page 17: a staining cuvette is used instead of the slide holder.

After finishing the steps for "FFPE sample preparation and pretreatment", continue with chapter 4 on page 28.

Page 31: Opal is used with a dilution of 1:1500.

Exemplary results are shown at step 41.