Supplementary information

ADAMTSL3 knock-out mice develop cardiac dysfunction and dilatation with increased TGF β signalling after pressure overload

Karoline B. Rypdal^{1,2,3*}, A. Olav Melleby^{1,4}, Emma L. Robinson⁵, Jia Li¹, Sheryl Palmero¹, Deborah E. Seifert⁶, Daniel Martin⁶, Catelyn Clark⁶, Begoña López^{7,8}, Kristine Andreassen¹, Christen P. Dahl⁹, Ivar Sjaastad¹, Theis Tønnessen^{1,10}, Mathis K. Stokke¹, William E. Louch¹, Arantxa González^{7,8}, Stephane Heymans^{5,11}, Geir Christensen¹, Suneel S. Apte⁶, Ida G. Lunde^{1,2,3}

¹Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.

²Division of Diagnostics and Technology, Akershus University Hospital, Lørenskog, Norway. ³K.G. Jebsen Center for Cardiac Biomarkers, University of Oslo, Oslo, Norway.

⁴Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.

⁵Department of Cardiology, Maastricht University, CARIM School for Cardiovascular Diseases, Maastricht, Netherlands.

⁶Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH USA.

⁷Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain. ⁸CIBERCV, Carlos III Institute of Health, Madrid, Spain.

⁹Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway.

¹⁰Department of Cardiothoracic Surgery, Oslo University Hospital Ullevål, Oslo, Norway.

¹¹Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Leuven, Belgium.

*Corresponding author contact details:

Karoline Bjarnesdatter Rypdal, MSc, PhD

Institute for Experimental Medical Research (IEMR),

Oslo University Hospital Ullevål,

Building 7, 4th floor, Kirkeveien 166, 0407 Oslo, Norway.

Phone: +4791193598

e-mail: k.b.rypdal@medisin.uio.no

Supplementary figures

Anti-ADAMTSL3 (commercial)

Fig. S1 ADAMTSL3 antibodies detect human, but not mouse ADAMTSL3

Representative immunoblots of ADAMTSL3 antibody validation in left ventricular (LV) tissue from mouse (after aortic banding (AB)) and human (control or ischemic dilated cardiomyopathy (iDCM)). ADAMTSL3 is an ECM glycoprotein with expected size of 210 kDa¹ (1691 amino acids). LV tissue from L3-KO mice was used as negative control and human foetal cardiac fibroblasts (hfCFB) overexpressing ADAMTSL3 (L3) was used as positive control (hfCFB lysates including cell and extracellular matrix (ECM) proteins). ADAMTSL3 detection on immunoblots is indicated by arrows. (a) The commercially available anti-ADAMTSL3 polyclonal antibody HPA03473 (Merck), immunised to aa 1016-1110, sequence

ALREPMREYPGMDHSEANSLGVTWHKMRQMWNNKNDLYLDDDHISNQPFLRALLGHCSNSAGSTNS WELKNKQFEAAVKQGAYSMDTAQFDELIR, interspersed between the Ig-like C2-type 1 and Ig-like C2-type 2 domain. (b) A custom made antibody for the N-terminal region of ADAMTSL3. Both antibodies detected the positive control, with oo signal in negative control. None of the antibodies detected ADAMTSL3 in mouse LV, while the custom-made antibody was superior to the commercially available in detection of ADAMTSL3 in human LV. Thus, the latter was used in our study in lysates from human LV biopsies and hfCFBs.

Fig. S2 Adamtsl3 expression is negligible in primary cardiomyocytes

Absolute C_T -values for *Adamtsl3* in mRNA samples from primary cultures from neonatal rats (1-3 day old). Cardiac fibroblasts (nrCFB) were separated from cardiomyocytes (nrCM), and endothelial cells (nrEC) were detected in the nrCM fraction². n=3 isolations of n=60 hearts, with n=1-3 culture replicates per isolation. C_T values for *Adamtsl3* in nrCM/nrEC were 31-32, with 20ng input cDNA, indicating low expression. Data are shown as individual value scatter plot with mean \pm SEM. Statistical analysis was performed on nrCFBs vs. nrCMs using the Student's *t*-test.

Fig. S3 Characterization of a novel Adamts13 knock-out allele

Adamtsl3 was disrupted using CRISPR-Cas9 in C57BL/6J mice. Mice hemizygous for the targeted allele were intercrossed to homozygousity to generate *Adamtsl3* knock-out (L3-KO) mice. (a) PCR products from genotyping of ear biopsies from wild-type (WT), heterozygous (Het), and L3-KO mice. Genotyping was performed with two PCR reactions using separate WT and L3-KO forward primers and a common reverse primer, that each result in an allele-specific 428 bp PCR product. Genotyping of Hets provided both products, whereas specific PCR products were seen in WTs and L3-KOs as appropriate. (b) RNA-seq of WT and L3-KO left ventricular (LV) tissue, with several *Adamtsl3* reads in WT, and negligible numbers in L3-KO. (c) RT-qPCR of *Adamtsl3/Rpl32* mRNA in LVs from WT, Het, and L3-KO littermate male mice at baseline (n=9 WT, n=6 Het, n=9 L3-KO). Data are shown as individual value scatterplot with mean \pm SEM. Statistical difference between Het vs. WT was tested using the Student's *t*-test. ND, not detected. (d) Images of representative adult WT and L3-KO littermate mice, showing a normal appearance (photos: KB Rypdal).

Fig. S4 Representative echocardiography images of left ventricles corresponding to manuscript Fig. 2 M-mode echocardiography images of wild-type (WT) and *Adamtsl3* knock-out (L3-KO) left ventricles (**a**) one and (**b**) six weeks after aortic banding (AB) or sham surgery. Scale: 0.1 seconds, x-axis, 1 mm, y-axis. Electrocardiograms are shown in green beneath the x-axis, and heart rate (BPM) is highlighted in yellow in the lower right corners.

Fig. S5 Experimental strategy and validation of ADAMTSL3 overexpression in neonatal rat primary cardiac fibroblasts and human foetal cardiac fibroblasts

(a) Culture protocol for human foetal CFBs. Cells were cultured for a total of seven days, producing a rich ECM network, with a TGF β -binding and activating ECM network, as previously described². Cells were transduced with ADAMTSL3 (L3) or control (vehicle, Veh) adenoviruses on day four. (b) qPCR of *ADAMTSL3/RPL4* mRNA in hfCFBs transduced with L3 and Veh. Data represent experiments from three different cell passages. (c) Culture protocol for primary cardiac fibroblasts (CFBs) isolated from 1-3 days old rat hearts. Cells were cultured for a total of four days, producing a developing, immature extracellular matrix (ECM) network, as previously described². Cells were transduced with L3 or Veh 24 h after seeding. (d) qPCR of *ADAMTSL3/Rpl4* mRNA in primary rat CFBs transduced with L3 or Veh (n=3 isolations of n=60 hearts, with n=3 technical replicates per isolation). Data are presented as individual value scatterplots with mean ± SEM. Statistical differences were tested between L3 and Veh using the Student's *t*-test.

Fig. S6 *Adamtsl3* **knock-out mice develop increased tissue strain after aortic banding** (**a-b**) Mean tissue strain (%) in myocardial long axis (a) and short axis (b) from MRI tissue phase mapping (TPM) recordings, and (**c-d**) peak strain rate (SRe) in long axis (c) and short axis (d) from TPM recordings, measured at baseline (BL), 1 and 3 weeks post aortic banding (AB), in *Adamtsl3* knock-out (KO) and wild-type (WT) mice. (**e**) Peak mitral valve filling velocity in early diastole, and (**f**) mitral valve deceleration (MVD), measured with Doppler echocardiography at BL, 1 and 3 weeks post-AB in KO and WT mice. Data are presented as individual value scatterplots with mean \pm SEM. Statistical differences were tested using ordinary one-way ANOVA with Tukey's multiple comparisons test for all groups vs. WT BL at all time-points (*), and the Student's *t*-test for L3-KO vs WT at discrete time-points (\$). *^{/S}p<0.05, **^{/SS}p<0.01, ***^{/SSS}p<0.001.

Fig. S7 Representative histology of mid-ventricular sections corresponding to manuscript Fig. 5 Wild-type (WT) and Adamtsl3 knock-out (L3-KO) mice were subjected to aortic banding (AB) or sham surgery for 1 or 6 weeks. Picrosirius Red, Fast Green, and Alcian Blue (RGB)-staining of mid-ventricular sections of WT and L3-KO left ventricles at 1 (a) and 6 (b) weeks post-AB, showing collagen in red and cardiac muscle tissue in green. Scale bar = $50\mu m$.

Fig. S8 Wild-type and *Adamtsl3* knockout cardiomyocytes are similar in size at baseline, with similar contraction at baseline and stress

Isolated cardiomyocytes (CMs) from wild-type (WT, n=3) and Adamtsl3 knock-out (L3-KO, n=4) mice. (a) CM length and width in WT and L3-KO (n=30 cells per animal). (b) Resting sarcomere length (SL) in WT and L3-KO at 1 Hz pacing, at baseline (n=16 WT and n=18 L3-KO cells), and after isoproterenol (ISO, n=15 WT and n=16 L3-KO cells). (c) CM contraction at 1 Hz pacing at baseline (n=16 WT and n=18 L3-KO cells), and cell shortening after ISO (n=15 WT and n=16 L3-KO cells). (d-e) Contraction and relaxation kinetics with (d) time-to-peak contraction (TTP) and (e) time from peak to 50% relaxation (R50). Data are individual values with mean \pm SEM. Statistical analysis was performed using the one-way ANOVA with Dunnett's multiple comparisons test. *p<0.05, **p<0.01, and ***p<0.001 for all groups vs. WT.

Supplementary tables

	WT	L3-KO
n (biometry)	41	45
BW (g)	25.39 ± 0.45	26.09 ± 0.41
HW (mg)	129.7 ±2.95	146.4 ±4.17* (13%)
HW/BW	5.19 ± 0.08	5.67 ±0.12* (9%)
Tibia length (mm)	17.04 ± 0.05	17.41 ±0.05* (2%)
n (biometry)	20	22
LW (mg)	151.5 ± 4.49	157.3 ± 3.37
LW/BW	5.79 ± 0.18	5.89 ± 0.56
n (echo)	15	17
HR (bpm)	458 ± 11.0	458 ± 9.74
LVPWd (mm)	0.62 ± 0.01	0.63 ± 0.01
IVSd (mm)	0.63 ±0.01 0.62 ±0.0	
LVIDd (mm)	$4.06 \pm 0.08 \qquad 4.21 \pm 0.10$	
LVIDs (mm)	3.13 ± 0.09	3.32 ± 0.11
LAD (mm)	$1.30\pm\!\!0.03$	1.28 ± 0.03
FS (%)	23.1 ± 1.01	21.2 ± 1.21
n (MRI)	6	5
LVM (mg)	84.69 ± 3.16	99.68 ± 10.68
EDV (µL)	47.87 ± 3.18	57.93 ± 8.17
EF (%)	67.80 ± 2.34	55.18 ± 6.29

Table SI Baseline characteristics of untreated Adamtsl3-KO and WT mice

Baseline biometrics and cardiac phenotype of untreated C57BL/6 wild-type (WT) and *Adamtsl3* knock-out (L3-KO) mice 8-12 weeks of age. Cardiac structure and function were measured on anesthetized animals breathing 1-2% isoflurane using echocardiography (echo) and cardiac magnetic resonance imaging (MRI). Abbreviations: n, number of animals; BW, body weight; HW, heart weight; HR, heart rate; LVPWd, left ventricular posterior wall thickness in diastole; IVSd, interventricular septum in diastole; LVIDd, left ventricle internal diameter in diastole; LAD, left atrial diameter; FS, fractional shortening; LVM, LV mass; EDV, end diastolic volume; EF, ejection fraction. Data are presented as mean \pm SEM. Statistical differences were calculated using the Student's *t*-test, *p<0.05 for L3-KO vs. WT.

	WT	Het	L3-KO
n	11	12	13
BW (g)	27.22 ± 0.62	27.34 ± 0.61	27.97 ± 0.71
HW (mg)	133.6 ± 3.38	134.2 ± 4.50	156.2 ±7.97 *(17%) ^{\$} (16%)
HW/BW	4.92 ± 0.12	$4.90\pm\!\!0.13$	5.56 ±0.68 *(13%) ^{\$} (13%)
Tibia length (mm)	17.09 ± 0.14	17.43 ± 0.09	17.56 ±0.10 *(3%)

Table SII Baseline characteristics of Adamts13-KO, heterozygote and WT littermate mice

Biometric parameters of wild-type (WT), heterozygotes (Het) and *Adamtsl3* knock-out (L3-KO) 12-16 weeks old C57BL/6 mice at baseline. % increase of L3-KO values are shown in parentheses. Abbreviations: n, number of animals; BW, body weight; HW, heart weight. Data are presented as mean \pm SEM. Statistical differences were calculated using the ordinary ANOVA with Tukey's multiple comparisons test, *p<0.05 L3-KO vs. WT, ^{\$}p<0.05 L3-KO vs. Het.

Table SIII Tadwan gene expression assays used for qPCK								
Gene	Assay name	Species	Gene	Assay name	Species			
ACTA2	Hs00426835_g1	Human	Adamtsl3	Mm01312414_m1	Mouse			
ADAMTSL3	Hs00324954_m1	Human	Acta2	Mm00725412_s1	Mouse			
COL1A2	Hs01028956_m1	Human	Col1a1	Mm00801666_g1	Mouse			
COL1A1	Hs00164004_m1	Human	Col1a2	Mm00483888_m1	Mouse			
COL3A1	Hs00943809_m1	Human	Col3a1	Mm00802305_g1	Mouse			
CTGF	Hs00170014_m1	Human	Ctgf	Mm01192933_g1	Mouse			
ELN	Hs00355783_m1	Human	Fbn1	Mm00514908_m1	Mouse			
FBN1	Hs00171191_m1	Human	Fbn2	Mm00515713_m1	Mouse			
FBN2	Hs00266592_m1	Human	Fn1	Mm01256744_m1	Mouse			
FN1	Hs01549976_m1	Human	Lox	Mm00495386_m1	Mouse			
KI67	Hs00606991_m1	Human	Ltbp1	Mm00498234_m1	Mouse			
LOX	Hs00942482_g1	Human	Myh6	Mm00440359_m1	Mouse			
LTBP1	Hs01558763_m1	Human	Myh7	Mm00600555_m1	Mouse			
MCM2	Hs01091564_m1	Human	Nppa	Mm01255747_g1	Mouse			
PCNA	Hs00427214_g1	Human	Nppb	Mm01255770_g1	Mouse			
POSTN	Hs01566750_m1	Human	Postn	Mm01284913_g1	Mouse			
RPL32	Hs00851655_g1	Human	Rpl32	Mm02528467_g1	Mouse			
RPL4	Hs03044646_g1	Human	Spp1	Mm00436767_m1	Mouse			
SPP1	Hs00959010_m1	Human	Tgfb1	Mm01178820_m1	Mouse			
TGFB1	Hs00998133_m1	Human	Adamtsl3	Rn01477616_m1	Rat			

Table SIII TaqMan gene expression assays used for qPCR

Supplementary references

- 1 Hall, N. G., Klenotic, P., Anand-Apte, B. & Apte, S. S. ADAMTSL-3/punctin-2, a novel glycoprotein in extracellular matrix related to the ADAMTS family of metalloproteases. *Matrix Biol.* **22**, 501-510 (2003).
- 2 Rypdal, K. B. *et al.* The extracellular matrix glycoprotein ADAMTSL2 is increased in heart failure and inhibits TGFbeta signalling in cardiac fibroblasts. *Sci. Rep.* **11**, 19757 (2021). https://doi.org:10.1038/s41598-021-99032-2

Supplementary blots

Fig. 1 blots

Total protein

Fig. 4 blots

Anti-ADAMTSL3

Total protein

Anti-SMAD2/3

Anti-pSMAD2

pos.cont

.

Total protein

-

Anti-TGFb

Total protein

Fig. 6 blots

