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SUPPLEMENTAL ITEMS

Given a core needle biopsy slide

|

The researcher draws contours around the glands’ boundaries and assigns a label to
each gland

|

10% of the glands in the slide are randomly selected for the pathologist’s review
+
The researcher can request the pathologist’s review for some additional glands that
the researcher is not sure about their labels

'

The pathologist reviews the selected glands

'

The researcher revises the annotations of the remaining glands in the slide using the
pathologist’s annotations for the selected glands as landmarks

Figure S1: The workflow for the annotation of core needle biopsy slides. Related to Figure 1A.

Table S1: The number of slides in training, validation, and test sets in the PANDA dataset. The values
in parentheses show the percentages. Related to Table 1.

Radboud Karolinska PANDA
Train Valid Test Total Train Valid Test Total Train Valid Test Total

No. of slides 3,021 1,007 1,032 5,060 3,258 1,086 1,108 5,452 6,279 2,093 2,140 10,512
Non-tumor 567 189 192 948 (19) 1,152 384 388 1,924 (35) 1,719 573 580 2,872 (27)
Tumor-containing 2,454 818 840 4,112(81) 2,106 702 720 3,528 (65) 4,560 1,520 1,560 7,640 (73)
3+3 480 160 162 802(20) 1086 362 364 1812(51) 1,566 522 526 2,614 (34)
3+4 402 134 137 673(16) 399 133 134 666(19) 801 267 271 1,339 (17)
443 543 181 185 909 (22) 189 63 66 318 (9) 732 244 251 1,227 (16)
4+4 393 131 132 656(16) 279 93 94 466 (13) 672 224 226 1,122 (15)
345 39 13 15 67 (2) 6 2 5 13 (0) 45 15 20 80 (1)
5+3 24 8 9 41 (1) 0 0 2 2 (0) 24 8 11 43 (1)
445 378 126 130 634 (15) 123 41 44 208 (6) 501 167 174 842 (11)
5+4 132 44 45 221(5) 15 5 7 27 (1) 147 49 52 248 (3)
545 63 21 25 109 (3) 9 3 4 16 (1) 72 24 29 125 (2)
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Figure S2: Performance evaluation of the models trained on annotations by the pathologist (P) and the
researcher (R). (a) Area under receiver operating characteristics curve (AUROC) and (b) average precision
(AP) calculated over precision vs. recall curve together with 95% confidence intervals (obtained using the
percentile bootstrap method') are presented. Note that models were trained and tested on the training set
and test set of the gland classification dataset, respectively.

Table S2: Performance of our algorithms in prostate cancer detection. The PANDA model was a three-
resolution classification model trained on the training set of the PANDA dataset. The SG pipeline consisted
of gland segmentation Mask R-CNN model and four-resolution gland classification model which were trained
on training sets of SG gland segmentation and classification datasets, respectively. Related to Table 3.

Model Dataset # of slides/parts (B: Benign, M: Malignant) AUROC (95% CI)

PANDA Model PANDA test set (internal) 2140 CNB slides (B=580, M=1560) 0.972 (0.965 - 0.978)
PANDA Model SG dataset (external) 280 CNB parts (B=179, M=81) 0.992 (0.985 - 0.997)
PANDA Model SG test set (external)* 81 CNB parts (B=50, M=31) 0.980 (0.953 - 0.997)
SG pipeline  SG test set (internal) 81 CNB parts (B=50, M=31) 0.997 (0.987 - 1.000)

CNB: Core Needle Biopsy.
*The SG test set is a subset of the SG (gland classification) dataset.
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Figure S3: Post-hoc analysis on a malignant sample using the trained SG and PANDA models. At-
tribution maps obtained using integrated gradients? with blurred images as baselines are presented for a
malignant sample in the test set of the SG gland classification dataset. This sample was predicted correctly
by the SG and PANDA models. Related to Figure 3A.
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Figure S4: Post-hoc analysis on three benign samples using the trained SG model. Attribution maps
obtained using integrated gradients? with white images as baselines are presented for three benign samples
in the test set of the SG gland classification dataset. These samples were predicted correctly by the
four-resolution model trained on the SG model. Related to Figure 3A.
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Figure S5: Example predictions by the trained SG and PANDA models. Example patches from the
test set of the SG gland classification dataset together with annotations by the pathologist and predicted
malignancy scores by the trained SG and PANDA models are presented. Scale bars are shown in black.
Related to Figure 3B.
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Figure S6: Confusion matrix for patch-level Gleason pattern predictions. Gleason pattern predictions
for all patches within slides in the PANDA Radboud test set were obtained from the trained multi-resolution
Gleason pattern prediction model. The values in parentheses show the row-wise percentages.
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Figure S7: Benign vs. malignant slide classification using multi-resolution Gleason pattern predic-
tion model. Gleason pattern predictions for all patches within slides in the PANDA Radboud test set were
obtained from the trained multi-resolution Gleason pattern prediction model. From patch predictions of a
slide, a malignancy score was obtained for the slide. Then, a ROC curve analysis was conducted for benign
vs. malignant slide classification over malignancy scores. An AUROC value of 0.960 (95% CI:0.949 - 0.970)
was obtained.
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Figure S8: Confusion matrix for slide-level Gleason grade group predictions. Gleason pattern pre-
dictions for all patches within a slide in the PANDA Radboud test set were obtained from the trained
multi-resolution Gleason pattern prediction model. Then, grade group (gg) predictions were obtained based
on the proportion of predicted Gleason patterns within a slide. A quadratically weighted Cohen’s « value of
0.707 (95% CI:0.665 - 0.748) between the slide labels and predicted grade groups was obtained. The values
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Figure S9: Color-coded Gleason pattern heatmap on a GS 3+4 patient’s slide in the Radboud test
set. Predicted patterns by the multi-resolution model are color-coded and overlayed on the original slide. The
calculated percentages for Gleason patterns are: benign 43%, pattern3 35%, and pattern4 22%. Gradients
in color codes indicate prediction scores for the corresponding pattern. Besides, two high-resolution patches
are presented from two different pattern regions. Border color of a patch indicates the predicted pattern for
the patch.
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Figure S10: Color-coded Gleason pattern heatmap on a GS 4+5 patient’s slide in the Radboud test
set. Predicted patterns by the multi-resolution model are color-coded and overlayed on the original slide. The
calculated percentages for Gleason patterns are: benign 38%, pattern4 39%, and pattern5 23%. Gradients
in color codes indicate prediction scores for the corresponding pattern. Besides, two high-resolution patches
are presented from two different pattern regions. Border color of a patch indicates the predicted pattern for
the patch.



SUPPLEMENTAL EXPERIMENTAL PROCEDURES

Post-processing predicted masks

Predicted gray-scale mask for each instance was thresholded at 0.5 to obtain a binary mask. When
thresholding resulted in multiple contours, the largest contour was used to represent a segmented instance
(gland). Holes in the binary mask, if any, were then filled. Predictions at tissue boundaries extending to the
background were excluded.

Multiple binary masks corresponding to the same gland were observed due to the use of overlapping
patches and detection of incomplete glands at the boundary. Thus, the masks were processed to remove
redundant ones as follows:

1. When the intersection-over-union (loU) or intersection over minimum area between two predicted
masks exceeded the threshold of 0.3, the mask with the lower prediction score was discarded.

2. A mask that intersected with two or more masks was excluded.

3. Finally, two binary masks that had an loU exceeding 0.3 were merged in an iterative manner starting
with the pair of masks that had the greatest loU.

Multi-resolution Gleason pattern classification model

We modified our multi-resolution benign vs. malignant patch classification model into Gleason pattern
classification model with four classes: benign, pattern3, pattern4, and pattern5. This was a three-resolution
model accepting 20x, 10x, and 5x patches at the input and predicting Gleason pattern at the output.

Training of the model

The model was trained end-to-end from scratch using Adam optimizer for 2152 iterations. The model was
trained on the training set of the Radboud dataset (Table S1), and performance on the validation set was
tracked for early stopping. The learning rate was initially set to 5e — 4 and reduced to 5¢ — 5 at the end of
iteration 1506, where the validation set performance was saturated. A weight decay of 5e — 5 was also used
for regularization. Batch size was 16.

Benign vs. malignant slide classification

Predictions for all patches within a slide were obtained from the trained Gleason pattern classification model.
Then, a four-channel heatmap for the slide by mapping the obtained class scores into corresponding patch
locations. To eliminate outliers, a 2 x 2 moving average filter was applied on the heatmap.

To conduct a benign vs. malignant classification study, we obtained a malignancy score for each slide.
Malignant channels (pattern3, pattern4, and pattern5) in the heatmap were aggregated by summing them up.
The maximum score in the resulting channel was used as the slide’s malignancy score. Finally, a receiver
operating characteristics curve analysis was conducted (Figure S7).

Gleason grade group prediction

The pattern with the highest score at a point in the smoothed heatmap was assigned as that point’s Gleason
pattern prediction (Figure S9 and S10). Based on these predictions, percentages of patterns within a slide
were calculated. Finally, a slide’s grade group was obtained using Algorithm S1.



import numpy as np

gs_to_gg_dict = { '0+0':0, '3+3':1, '3+4':2, '4+3':3, '4+4':4,
'3+5':4, '6+3':4, '4+5':5, '5+4':5, '6+5':5 }

def get_gg(percent_patterns):
sorting_indices = np.argsort(percent_patterns)

# how many patterns are there

pattern_count = np.sum(percent_patterns>0)
if patterm_count == 0:

first_pattern = 0

second_pattern = 0
else:

first_pattern = sorting_indices[-1] + 3

if temp_percentages[sorting_indices[-2]]1<0.05:

second_pattern = first_pattern
else:
second_pattern = sorting_indices[—Q] + 3

# for biopsy slides, the highest grade is reported as 2nd pattern if it is > 5%
if sorting_indices [0]==2 and temp_percentages[sorting_indices[0]]>0.05:
second_pattern = 5

gs '{}+{}'.format (first_pattern,second_pattern)
gg = gs_to_gg_dictlgs]

return gg

Algorithm S1: Obtaining grade groups based on percentage of Gleason patterns within a slide.
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