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Table S1. Patient and pregnancy characteristics 

 Discovery Cohort 1 (N=33) Validation Cohort (N=16) 

Demographics 

  Controls 

(N=16) 

 Preeclampsia 

(N=17) 
Controls (N=4) Preeclampsia (N=12) 

Maternal age at enrollment 

(years, mean ± SD) 32.1 ± 4.9 31.1 ± 6.3 

 

30.7 ± 4.8 

 

32.3 ± 4.5 

Gravida (N, % nulliparous) 7 (43.7) 6 (35.3) 2 (50) 5 (41.7) 

Ethnicity (N, %)   

Hispanic 0 (0) 8 (47) 0 (0) 2 (16.7) 

Non-Hispanic 16 (100) 9 (53) 4 (100) 9 (75) 

Unknown  0 (0) 0 (0) 0 (0) 1 (8.3) 

Race (N, %)   

White 16 (100) 9 (52.9) 4 (100) 5 (41.7) 

African-American 0 (0) 1 (6.0) 0 (0) 1 (8.3) 

Asian 0 (0) 4 (23.5) 0 (0) 4 (33.3) 

Unknown 0 (0) 3 (17.6) 0 (0) 1 (8.3) 

Other 0 (0) 0 (0) 0 (0) 1 (8.3) 

Preexisting hypertension 0 (0) 4 (23.5) 0 (0) 4 (33.3) 

Height 

(cm, mean ± SD) 166.9 ± 7.4 158.8 ± 6.2 

 

163 ± 3.5 

 

163.8 ± 7.7 

Weight 

(kg, mean ± SD) 61.9 ± 9.1 74.0 ± 20.3 

 

62.6 ± 8.1 

 

79.6 ± 25.9 

BMI  (mean ± SD) 22.8 ± 3.3 29.4 ± 7.9 23.5 ± 2.5 29.4 ± 7.7 

Multiple gestation (N, %) 0 (0) 2  0 (0) 0 (0) 

Baby gender (male N, %) 8 (50) 11 (64.7) 4 (100) 6 (50) 



 

 

 

Table S2. Preeclampsia patient characteristics. 

 Cohort 1 (n=17) Validation Cohort (n=12) 

Gestational age at the onset of  

    preeclampsia (mean ± SD) 
35.8  3.8 36.6  3.7 

Early Onset (N, %) 5 (29.4) 1 (8.3) 

Severe preeclampsia (N, %) 10 (58.8) 7 (58.3) 

 

 

Table S3. List of annotated urine metabolites selected in EN models. 

Compound ID Mode 
Molecular 

Ion Metabolite Formula KEGG HMDB 

MSI 
annotation 

level 

368.2789_8.5 pRPLC [M+H]+ 
C14:2 AC 

(Tetradecadiencarnitine) C21H37NO4  
HMDB
13331 2 

249.0074_2.8 nRPLC [M-H]- 
Dihydroxyphenylglycol 

O-sulfate C8H10O7S  
HMDB
01474 3 

153.0193_1.5 nRPLC [M-H]- Dihydroxybenzoic acid C7H6O4  
HMDB
13676 2 

298.2009_5.1 pRPLC [M+H]+ 
C9:2 AC 

(Nonadienoylcarnitine) C16H27NO4   2 

632.2045_0.8 nRPLC [M-H]- Sialyllactose C23H39NO19  
HMDB
00825 2 

263.0231_4.8 nRPLC [M-H]- 

Methoxy 
hydroxyphenylethylenegl

ycol sulfate C9H12O7S  
HMDB
00559 3 

359.0984_3.9 nRPLC [M-H]- 

Methoxy 
hydroxyphenylglycol 

glucuronide C15H20O10 C03033 
HMDB
00496 3 

136.0614_0.9 pRPLC [M+H]+ Adenine C5H5N5 C00147 
HMDB
00034 1 

385.2366_8.1 pRPLC 
[M+H-
H2O]+ Dehydrocholic acid C24H34O5   2 

189.1598_17.5 pHILIC [M+H]+ 
N6,N6,N6-Trimethyl-L-

lysine C9H20N2O2 C03793 
HMDB
01325 1 

131.0713_2.3 nRPLC [M-H]- 
C6:0,OH FA 

(Hydroxyhexanoic acid) C6H12O3  
HMDB
00409 2 

425.0804_12.3 nHILIC [M-H]- 
Cysteineglutathione 

disulfide C13H22N4O8S2  
HMDB
00656 3 



 

 

232.1178_3.5 pRPLC [M+H]+ Isovalerylglutamic acid C10H17NO5  
HMDB
00726 3 

352.1246_3.4 pRPLC [M+H]+ 
N-Acetyl-O-

acetylneuraminic acid C13H21NO10  
HMDB
60492 3 

289.2159_8.8 pRPLC [M-H]- Dehydroepiandrosterone C19H28O2 C01227 
HMDB
00077 3 

169.1235_7.9 nRPLC [M-H]- C10:1 FA (Decenoic acid) C10H18O2  
HMDB
41012 2 

189.0767_3.1 nRPLC [M-H]- 
C8:0, OH DC FA 

(Hydroxysuberic acid) C8H14O5  
HMDB
00325 3 

176.1029_0.5 pRPLC [M+H]+ Citrulline C6H13N3O3 C00327 
HMDB
00904 1 

299.0631_2 nRPLC [M-H]- Uric acid ribonucleoside C10H12N4O7 C05513 
HMDB
29920 3 

189.1234_8.2 pHILIC [M+H]+ N-epsilon-acetyl-L-lysine C8H16N2O3 C02727 
HMDB
00206 1 

202.1437_6.8 pRPLC [M+H]+ 
N-Acetylaminooctanoic 

acid C10H19NO3  
HMDB
59745 3 

302.2323_6.2 pRPLC [M+H]+ 
C9:0 AC 

(Nonanoylcarnitine) C16H31NO4  
HMDB
13288 2 

157.0602_8.2 pHILIC [M+H]+ Imidazolelactic acid C6H8N2O3 C05132 
HMDB
02320 3 

139.0497_0.7 pRPLC [M+H]+ Nicotinamide N-oxide C6H6N2O2  
HMDB
02730 1 

263.023_1.7 nRPLC [M-H]- 

Methoxy 
hydroxyphenylethylenegl

ycol sulfate C9H12O7S  
HMDB
00559 3 

209.0665_8.5 nHILIC [M-H]- 
1,5-anhydroglucitol (1,5-

AG) C7H14O7 C07326 
HMDB
02712 3 

314.2324_5.5 pHILIC [M+H]+ 
C10:1 AC 

(Decenoylcarnitine) C17H31NO4  
HMDB
13205 2 

230.1034_3.5 nRPLC [M-H]- Isovalerylglutamic acid C10H17NO5  
HMDB
00726 3 

284.1854_3.9 pRPLC [M+H]+ 
C8:2 AC 

(Octadienoylcarnitine) C15H25NO4   2 

281.1494_2 pHILIC [M+H]+ Tyr-Val C14H20N2O4  
HMDB
29118 2 

342.2634_8 pRPLC [M+H]+ 
C12:1 AC 

(Dodecenoylcarnitine) C19H35NO4  
HMDB
13326 1 

314.2323_6.7 pRPLC [M+H]+ 
C10:1 AC 

(Decenoylcarnitine) C17H31NO4  
HMDB
13205 2 

153.0547_5 pRPLC [M+H]+ 
2-Hydroxyphenylacetic 

acid C8H8O3 C05852 
HMDB
00669 2 

448.3065_4.7 nHILIC [M-H]- 
Glycoursodeoxycholic 

acid C26H43NO5  
HMDB
00708 3 

166.0862_10.4 pHILIC [M+H]+ Pyridinebutanoic acid C9H11NO2  
HMDB
01007 3 



 

 

330.227_5.7 pRPLC [M+H]+ 

C10:1, OH AC 
(Hydroxydecenoylcarniti

ne) C17H31NO5   2 

263.1289_6.1 nRPLC [M-H]- gamma-CEHC C15H20O4  
HMDB
01931 2 

565.3016_9.4 nRPLC [M-H-H2O]- Cholic acid glucuronide C30H46O10  
HMDB
02577 3 

286.1396_11.1 pHILIC [M+H]+ 
Glycylprolylhydroxyproli

ne C12H19N3O5  
HMDB
02171 3 

467.2655_9.8 nRPLC [M-H]- 

5alpha-Androstan-
3alpha,17beta-diol 17-

glucuronide C25H40O8   3 

258.1698_3.1 pRPLC [M+H]+ 
C6:1 AC 

(Hexenoylcarnitine) C13H23NO4  
HMDB
13161 2 

302.2325_5.5 pHILIC [M+H]+ 
C9:0 AC 

(Nonanoylcarnitine) C16H31NO4  
HMDB
13288 2 

229.1545_0.5 pRPLC [M+H]+ 

N,N,N-trimethyl-
alanylproline betaine 

(TMAP) C11H20N2O3  

HMDB
02403

65 2 

230.1031_8.4 nHILIC [M-H]- Isovalerylglutamic acid C10H17NO5  
HMDB
00726 3 

455.2473_12 nRPLC [M-H]- Sulfolithocholic acid C24H40O6S  
HMDB
00907 2 

360.2744_5.5 pHILIC [M+H]+ 

C12:0,OH AC 
(Hydroxydodecanoylcarn

itine) C19H37NO5  
HMDB
13164 2 

448.307_9.3 nRPLC [M-H]- 
Glycoursodeoxycholic 

acid C26H43NO5  
HMDB
00708 3 

514.284_4.8 nHILIC [M-H]- Taurocholic acid C26H45NO7S C05122 
HMDB
00036 3 

176.103_9.1 pHILIC [M+H]+ Citrulline C6H13N3O3 C00327 
HMDB
00904 1 

129.0658_8.5 pHILIC [M+H]+ Dihydrothymine C5H8N2O2 C00906 
HMDB
00079 1 

100.0757_1.2 pRPLC [M+H]+ 2-Piperidinone C5H9NO  
HMDB
11749 2 

375.2888_11 pRPLC [M+H]+ Hydroxycholenoic acid C24H38O3  
HMDB
00308 3 

144.0301_5.9 nHILIC [M-H]- Keto-glutaramic acid C5H7NO4 C00940 
HMDB
01552 3 

 

 

 

 

 



 

 

Table S4. Related references to proteins identified by our prediction model. 

Protein Function Mechanism 

LEP1-5 Immune regulatory hormone 
Possibly contributes to the 
aberrant immune signature 

VEGFA6,7 Angiogenic factor 
Lack of VEGF causes endothelial 
cell dysfunction 

SELE8 Adhesion molecule  

SELL9-11 Marker for inflammation 
Several mechanisms possible 
(conflicting results reported) 

ROR112 Tyrosine kinase receptor 
Downregulation inhibits human 

trophoblast cell proliferation, 
migration, and invasion 

CXCL1013 
Pro-inflammatory and anti-
angiogenic chemokine 

May reflect enhanced systemic 
inflammatory response 

SPARCL114 
Impedes trophoblast migration 
and invasion 

Transcriptional profile revealed 
downregulation in preeclampsia 

IL-2415 Cytokine 
MiRNA-203a-3p inhibits 
inflammatory response in 
preeclampsia by regulating IL24 

HIPK316 
Impacts biological behavior of 
trophoblast cells 

Affects migration, invasion and 
proliferation of trophoblast cells 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figures:  

 

Figure S1. Features of six omics datasets. A. Number of measurements in each dataset; B. 
Number of principal components to account for 90% of the variance. Datasets containing more 
strongly correlated features yield fewer principal components. 
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Figure S2. Proteomics feature selection frequency in prediction model over gestation. Each 
model was obtained using all available samples over gestation. A. Elastic net model. B. Elastic 
net model with ten features. Y-axis shows proteins chosen with the highest frequency across 
all EN prediction models, where one EN prediction model is built in each cross-validation step. 
X-axis shows the frequency with which each protein is chosen across all models.  
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Figure S3. Spearman correlation between predictions obtained from EN model for urine 
metabolome using available samples over gestation and available clinical variables. The 
highest correlation, and the only one that was statistically significant was with BMI (p< 
0.0086). 

 

 

 

 

 

 



 

 

 

Figure S4. Biomarker comparison: entire pregnancy vs. early pregnancy. X-axis and Y-axis 
show -log(p-value) of each biomarker in early pregnancy and over gestation. A. Most predictive 
proteins. B. Most predictive urine metabolites. All values higher than -log(0.05) indicated by the 
orange line are significant. We observe that most of the biomarkers regardless of the prediction 
model are statistically significant over gestation. Less biomarkers are statistically significant in 
early pregnancy which is expected due to a smaller number of samples. 
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Figure S5. Biomarker comparison: entire pregnancy vs. early pregnancy. X-axis and Y-axis 
show the respective frequency of each biomarker in early pregnancy and over gestation. A. 
Most predictive proteins. B. Most predictive urine metabolites. Blue circles around dots imply 
the same position for more than one protein/urine metabolite. 
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Figure S6. Relationship between urine metabolome and proteome with clinical features over 
gestation. A. Prediction accuracy  of urine metabolome and plasma proteome. Dark blue (for 
urine metabolome) and orange (for proteome) bars show performance without clinical data 
(proteome: AUC = 0.83, 95% CI: [0.73, 0.92); urine metabolome: AUC = 0.88, 95% CI [0.81, 
0.95]). Grey bars show performance with clinical data (proteome AUC=0.91, 95% CI: [0.85, 
0.97];  urine metabolome AUC=0.96, 95% CI: [0.92, 0.99]). B. Comparison of P-value of 
correlations of the top proteome and clinical features. Value of − log10 𝑃 for preeclamptic 
patients and controls is shown on x-axis and y-axis, respectively. Each node is a pair of a 
proteome and a clinical feature. C. Comparison of P-value of correlations of the top urine 
metabolites and EHR features. Each node is a pair of a proteome/urine metabolome and a 
clinical feature. 
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Figure S7. Top ranking proteins and genes identified by prediction models in early pregnancy.  
A. Top-ranking proteins. B. Top-ranking genes. Y-axis shows the value in early pregnancy 
stratified by normal (grey) versus preeclamptic pregnancy (light-blue). 
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Figure S8. Identified pathways enriched in urine metabolomic data obtained in early 
pregnancy and over gestation. A. Metabolites in the arachidonic acid pathway in early 
pregnancy. Metabolites present in the data with high level of significance are shown in red. 
Metabolites not present in the data are shown in light blue. B. Metabolites in the steroid 
hormone biosynthesis pathway in early pregnancy. C. Metabolites in the steroid hormone 
biosynthesis pathway over gestation.  D. Metabolites in the caffeine metabolism pathway over 
gestation.  
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Figure S9. Univariate analysis of proteomic data collected over gestation. Heatmap of the 
ranked average value of the protein over three trimesters. Changes over gestation of 437 
proteins were significantly associated with preeclampsia outcome (Benjamini-Hochberg, FDR < 
0.05); 64 proteins with the smallest p-value (𝑝 < 5 ∙ 10−5, Linear Mixed-Effects Model) are 
shown.   
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Figure S10. Enriched protein pathways grouped into ten biological processes.  Enriched 
pathways were obtained using all available samples over gestation.  The most prevalent 
biological process was positive regulation of cellular process was (46.4%). 
 

 

 

 

 

 

 

 



 

 

 

Figure S11. Enriched cfrna pathways in two-level hierarchical structure grouped into eleven 
biological processes.  Enriched pathways were obtained using all available samples over 
gestation. The most prevalent biological process was RNA splicing (37.3%).  



 

 

 

Figure S12. Network of features from different omics sets over gestation. Features with significant 
association with preeclampsia are shown (FRD<0.05, Linear Mixed-Effects Model with Bonferroni-
Hochberg correction). Proteome, urine metabolome, plasma metabolome and transcriptome are 
shown respectively in orange, dark blue, light blue and yellow. 17 distinct communities were 
identified. 

 

  



 

 

 

Figure S13. Misclassification rate per each patient in the cohort. Misclassification rate is shown 
for three prediction algorithms: proteome (gray), urine metabolome (red) and immunome 
(green). 
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Figure S14. A. Values of known preeclampsia biomarkers over gestation.  Values for Placenta 
growth factor (PIGF), pregnancy-associated plasma protein-A (PAPP-A), endoglin (ENG), 
vascular endothelial growth factor receptor 2 (VEGFsR2) proteins are shown. For VEGFsR2, the 
corresponding gene is sFLT-1. Y-axis shows a value stratified by normal pregnancy (grey) and 
preeclamptic pregnancy (blue). P-value using LME model is shown. PIGF and PAPP-A came as 
significant. B. FLT1/PIGF Ratio. 
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Figure S15. Integration using nested (two-step) cross-validation to build predictive 
model of preeclampsia using six omics datasets.  In each step of cross-validation, EN 
models for each omics set are first trained and then the stacked model is trained in 
the same step. After the stacked model is built, it is tested on the test patient that was 
left out in the outer cross-validation loop. Therefore, no leakage of information 
between training and test data occurred. 

  



 

 

 
Figure S16. Algorithm for an EN prediction model using top ten features. In each cross-
validation step, EN model is trained and then a regression model is trained based on ten 
features chosen by EN in the same step. The refitted model is then tested on the test 
patient that was left out in the cross-validation loop. Therefore, no leakage of information 
between training and test data occurred. 

 
 

Supplemental Experimental Procedures 

1. Cell-free RNA Transcriptome 

Cell-free RNA (cfRNA) was extracted from 1 mL of plasma using Plasma/Serum Circulating RNA 

and Exosomal Purification kit (Norgen, cat 29500) following manufacturer instructions. Residual      

DNA was digested using BaselineZERO DNase (Epicentre) and then cleaned using RNA Clean and 

Concentrator-96 kit (Zymo). RNA was eluted to 12 ul in elution buffer. Libraries were prepared 

using 4 uL cfRNA and SMARTer Stranded Total RNAseq Kit v2 -Pico Input Mammalian 

Components  (Clontech Cat No 634419) and SMARTer RNA Unique Dual Index Barcodes (Set A, 

Cat 634452) according to the manufacturer’s manual. Short read sequencing was performed 

using the Illumina NovaSeq (2 × 75 bp) platform to an average depth of 50 million reads per 



 

 

sample. Raw sequencing reads were trimmed with trimmomatic and then mapped to the 

human reference genome (hg38) with STAR. Duplicates were removed by Picard and then 

unique reads were quantified using htseq-count. Mapping quality statistics were aggregated 

using MultiQC. 

      

To estimate RNA degradation, we first counted the number of reads per exon and annotated 

each exon with its corresponding gene ID and exon number using htseq-count. We then 

counted the number of genes for which all reads mapped exclusively to the 3’ most exon per 

sample and divided by the total number of genes detected to obtain the fraction of genes 

where all reads mapped to the 3’ most exon. 

 

Finally, we estimated ribosomal read fraction by counting the number of reads that mapped to 

the ribosomal region (GL00220.1:105424-118780) using samtools view. 

 

Dataset quality is described in the parallel work17. Briefly, for every sequenced sample, we 

estimated three quality parameters were estimated as previously described by our group18,19. 

Our final analysis included a subset of all samples that passed pre-defined quality cutoffs, 

empirically estimated based on ~700 previously sequenced cell-free RNA samples collected 

from 5 sites across the globe. Finally, we visualized sample quality as a function of the three 

defined metrics and find that low-quality samples both cluster separately using hierarchical 

clustering and drive variance using principal component analysis. Both visualizations and 

further details regarding quality metrics can be found in Moufarrej et. al (Main text, Methods, 

Fig S1,2)17.   



 

 

 

2. Proteome 

Proteomic assay: Blood was collected into EDTA tubes, immediately placed in ice, centrifuged 

(3,000 rpm), and plasma was removed and transferred into 1.5-ml microfuge tubes. Tubes were 

then spun at 13,000 rpm for 1 min, plasma was transferred into another set of microfuge tubes 

and spun again for 1 min. Plasma was stored at -80°C. All processing was completed within 60 

min of collection. 

 

All proteomic analyses were performed blinded and in randomly allocated samples by 

SomaLogic, Inc. (Boulder, CO) using a highly multiplex aptamer-based platform [S20]. The assay 

quantifies relative concentrations of 1,310 proteins over a wide dynamic range (> 8 log) using 

chemically-modified aptamers with slow off-rate kinetics (SOMAmer reagents). Each SOMAmer 

reagent is a unique, high-affinity, single-strand DNA endowed with functional groups mimicking 

amino acid side chains. Nucleotide signals are quantified using relative florescence on 

microarrays (Agilent Technologies, Santa Clara, CA). The assay has a historic median intra- and 

inter-run coefficient of variation of about 5%, and median lower and upper limits of 

quantification of 3.0 pM and 1.5 nM20.  

 

Quality control at the sample level included the use of control SOMAmers on the microarray to 

monitor for differences in hybridization efficiency, and the calculation of the median signal over 

all SOMAmers to account for technical variability. The resulting hybridization and median scale 

factors were used for data normalization across samples. Acceptable scale factors ranged 

between 0.4 and 2.5 based on historic runs. Quality control at the SOMAmer level included the 



 

 

use of replicate calibrator plasma samples (7) and biological controls (4) to monitor for 

repeatability and batch-to-batch variability. Historic values were used for each SOMAmer to 

derive a calibration scale factor. Acceptance criteria were a median scale factor between 0.8 

and 1.2, and deviation by less than 0.4 from the plate median for 95% of SOMAmers. All quality 

metrics for the proteomic assay were met with plate scale factors of 1.24 and 1.46, and 

SOMAmer calibration factors < 0.4 for 95% of SOMAmers. The median coefficient of variation 

was 4.1%. A negligible number of proteins did not pass quality control (Fig S17).

 

Figure S17. Quality analysis of proteome. Y-axis shows the percentage of proteins that passed 
the quality assessment. 
 

We point out that SomaLogic aptamer technology used in this study have been previously 

extensively validated using orthogonal technologies (the enzyme-linked immunosorbent assay 

(ELISA) and Olink), multiple reaction monitoring mass spectrometry (MRM-MS), data 

dependent acquisition mass spectrometry (DDA-MS) and  genetic strategies. Specifically, 
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studies that performed validation of proteins identified in our study are listed in Table S5 

below.   

Table S5. Validation of aptamer assays for identified proteins. 

Protein Orthogonal strategy MS Genetic Strategies 

LEP Elisa21   

CXCL10 Elisa22, Olink23  23,24 

SELE Olink23 MRM-MS24 23,24 

SELL Luminex25, Olink23 DDA-MS24 23,24 

APOB  MRM-MS24, 
DDA-DS24 

24 

SPARCL1   23,24 

PRSS2   23 

ROR1   24 

 

3. Microbiome 

Self-sampling of the vagina  was performed weekly by study participants. Sterile Catch-AllTM 

Sample Collection Swabs (Epicentre Biotechnologies, Madison, WI, USA) were used to obtain 

material from: vagina (midvaginal wall). All clinical specimens were placed immediately after 

collection at −20◦C until transport to the laboratory for storage at −80◦C until further 

processing. Whole genomic DNA was extracted from each vaginal swab by means of 

the PowerSoil DNA isolation kit (MO BIO Laboratories) according to the manufacturer’s protocol 

except for the inclusion of a 10-min incubation at 65◦C immediately after the addition of 

solution C1. The V4 hypervariable region of the 16S rRNA gene was amplified by PCR. The 

forward PCR primer (50 AAT GAT ACG GCG ACC ACC GAG ATC TAC ACG CTN NNN NNN NNN 

NNT ATG GTA ATT GTG TGY CAG CMG CCG CGG TAA 30) was a 75-nucleotide (nt) fusion primer 

consisting of the 32-nt Illumina adapter (designated by bold), a unique 12-nt barcode to label 

each amplicon (designated by the N’s), a 10-nt forward primer pad, a 2-nt linker (GT), and the 

19-nt broad-range bacterial primer 515F (designated by underlining). The 56-nt reverse primer 

(5’ CAA GCA GAA GAC GGC ATA CGA GAT AGT CAG CCA GCC GGA CTA 



 

 

CNV GGG TWT CTA AT 30) consisted of the 24-nt Illumina adapter (designated by bold), a 10-nt 

reverse primer pad, a 2-nt reverse primer linker (CC), and the 20-nt broad-range bacterial 

primer 806R (designated by underlining). Triplicate 25-µL PCRs were carried out by using 1× 

HotMasterMix (5 PRIME), 0.4 µM concentrations of each commercially synthesized primer, and 

3 µL of prepared DNA template. Thermal cycling conditions consisted of an initial denaturing 

step of 94◦C for 3 min, followed by 30 cycles of 94◦C for 45s, 50◦C for 60s, and 72◦C for 90s, 

with a final extension step of 72◦C for 10 minutes. Upon completion of the PCRs, the 

corresponding triplicate reaction mixtures were pooled and purified by using the Ultra-clean-

htp 96-well PCR clean-up kit (Mo Bio Laboratories) according to the manufacturer’s protocol. 

DNA concentrations from each triplicate pool were quantified using the QuantiT High-

Sensitivity dsDNA Assay Kit (Invitrogen) and combined in equimolar 

14 ratios into a single tube. The resulting amplicon mixture was concentrated 

by ethanol precipitation and resuspended in 100 µL of molecular biology-grade 

water (Life Technologies). The resuspended amplicon mixture was gel purified 

and recovered using a QIAquick gel extraction kit (Qiagen). Recovered PCR products were 

sequenced on an Illumina HiSeq 2500 instrument (Illumina) at the W. M. Keck Center for 

Comparative Functional Genomics at the University of Illinois, Urbana–Champaign, IL. 

Bioinformatics processing largely followed the DADA2 Workflow for Big Data 

(benjjneb.github.io/dada2/bigdata_paired.html). Forward/reverse read pairs were trimmed 

and filtered, with forward reads truncated at 245 nt and reverse reads at 235 nt, no ambiguous 

bases allowed, and each read required to have less than two expected errors based on their 

quality scores. The relationship between quality scores and error rates was estimated for each 

sequencing run to reduce batch effects arising from run-to-run variability. ASVs were 



 

 

independently inferred from the forward and reverse of each sample using the run-specific 

error rates, and then read pairs were merged. Chimeras were identified in each sample, and 

ASVs were removed if identified as chimeric in a sufficient fraction of the samples in which they 

were present. Taxonomic assignment was performed against the Silva v123 database using the 

implementation of the RDP naive Bayesian classifier available in the dada2 R package26. 

Lactobacillus species were assigned by hand via BLAST against sequences from cultured 

Lactobacillus strains. 

 

For the vaginal microbiome dataset, biodiversity coverage was nearly complete, as shown by 

rarefaction curves for each sample (Fig S18). The curves are asymptotic, suggesting that the 

sequencing depth was sufficient to exhaustively sample the biodiversity present, which was 

measured using amplicon sequence variants (ASVs). Note that it is common for vaginal 

microbiomes to have relatively low estimates of biodiversity in states of health, as shown in 

Figure S19, and for increased diversity to be associated with disease risk (e.g., preterm birth). 

Our reads have been submitted to SRA. The BioProject accession is PRJNA752652. 

 



 

 

 
Figure S18. Rarefaction (coverage) curves for vaginal swabs analyzed for microbiome dataset, 

demonstrating nearly complete biodiversity coverage. 
 

 

Figure S19. Alpha diversity estimates for vaginal swabs analyzed for microbiome dataset. 
These demonstrate that vaginal microbiomes have lower estimates of biodiversity in states of 
health and increased diversity to be associated with disease risk (e.g., preterm birth). 
 

Principal Component Analysis (PCA) revealed that microbiome samples cluster together and no 
batch effects (Fig. S20). 



 

 

 

 
 

Figure S20: PCA of microbiome samples. Different sequencing runs are shown with different 
colors. 
 

 

4. Immunome 

Whole blood samples were stimulated for 15 min with either LPS, IFNα, a cocktail containing IL-

2 and IL-6, or left unstimulated. Samples were then processed using a standardized protocol for 

fixation (SmartTube Inc), barcoding and antibody staining of whole blood samples for mass 

cytometry analysis27. For further details see28. Three categories of immune features were 

derived for integrative analysis: Cell frequency features: cell frequencies were expressed as a 

percentage of gated singlets in the case of neutrophils, and as a percentage of mononuclear 

cells (CD45+CD66−) in the case of all other cell types. Endogenous signaling immune features: 

Endogenous intracellular signaling 



 

 

activities were derived from the analysis of unstimulated blood samples. The signal intensity of 

the following functional markers was simultaneously quantified per single cell: phospho (p) 

STAT1, pSTAT3, pSTAT5, pNFκB, total IκB, pMAPKAPK2, pP38, prpS6, pERK1/2, and pCREB. For 

each cell type, signaling immune features were calculated as the median signal intensity 

(arcsinh transformed value) of each signaling protein. Intracellular signaling response features: 

the signal intensity of all functionalmarkers was analyzed from samples stimulated with LPS, 

IFNα or IL. For each cell type, signaling responses were calculated as the difference in median 

signal intensity (arcsinh transformed value) of each signaling protein between the 

stimulated and unstimulated conditions. 

 

5. Metabolomics and Lipidomics Analyses  

While lipidome can be considered a part of the metabolome,  in this study,  we  consider them 

separately because the datasets are generated using a very different workflow. Also, in this study 

lipidome refers to complex lipids, whereas small lipids such as fatty acids, oxylipins, etc. are part 

of our metabolome data. 

Untargeted Metabolomics by Liquid Chromatography (LC)- Mass Spectrometry (MS) 

LC-MS-grade solvents and mobile phase modifiers were obtained from Fisher Scientific (water, 

acetonitrile, methanol) and Sigma−Aldrich (acetic acid, ammonium acetate). Urine and plasma 

samples were analyzed using a broad-spectrum metabolomics platform consisting of hydrophilic 

interaction chromatography (HILIC) and reverse phase liquid chromatography (RPLC)–MS29. 

Sample preparation. Frozen urine samples were thawed on ice and centrifuged at 17,000g for 10 

min at 4°C. Supernatants (25 µl) were then diluted 1:4 with 75% acetonitrile and 100% water for 



 

 

HILIC- and RPLC-MS experiments, respectively. Samples for HILIC-MS experiments were further 

centrifuged at 21,000g for 10 min at 4°C to precipitate proteins. Frozen plasma samples were 

thawed on ice and metabolites were prepared from 100 µl of plasma using 1:1:1 

acetone:acetonitrile:methanol, evaporated to dryness under nitrogen, and reconstituted in 1:1 

methanol:water. Each sample was spiked-in with 15 analytical-grade internal standards (IS). 

Data acquisition. Metabolic extracts were analyzed using HILIC and RPLC separations in both 

positive and negative ionization modes. Data were acquired on a Thermo Q Exactive HF mass 

spectrometer equipped with a Heated Electrospray Ionization probe (HESI-II) and operating in 

full MS scan mode. MS/MS data were acquired at different fragmentation energies (NCE 25, 35 

and 50) on pooled samples consisting of an equimolar mixture of all the samples in the study. 

HILIC experiments were performed using a ZIC-HILIC column 2.1 x 100 mm, 3.5 μm, 200Å (Merck 

Millipore) and mobile phase solvents consisting of 10 mM ammonium acetate in 50/50 

acetonitrile/water (A) and 10 mM ammonium acetate in 95/5 acetonitrile/water (B). RPLC 

experiments were performed using a Zorbax SBaq column 2.1 x 50 mm, 1.7 μm, 100Å (Agilent 

Technologies)  and mobile phase solvents consisting of 0.06% acetic acid in water (A) and 0.06% 

acetic acid in methanol (B). 

Data quality was ensured by: (1) sample randomization for metabolite extraction and data 

acquisition, (2) multiple injections of a pooled sample to equilibrate the LC-MS system prior to 

running the sequence (12 and 6 injections for HILIC and RPLC methods, respectively), (3) spike-in 

labeled IS during sample preparation to control for extraction efficiency and evaluate LC-MS 

performance, (4) checking mass accuracy, retention time and peak shape of the IS in each sample 

and (5) injection of a pooled sample every 10 injections to control for signal deviation over time. 



 

 

Data processing. Data from each mode were independently processed using Progenesis QI 

software (v2.3) (Nonlinear Dynamics). Metabolic features from blanks and that did not show 

sufficient linearity upon dilution in QC samples (r < 0.6) were discarded. Only metabolic features 

present in > 2/3 of the samples were kept for further analysis. Inter- and intra-batch variations 

were corrected by applying locally estimated scatterplot smoothing local regression (LOESS) on 

pooled samples injected repetitively along the batches (span = 0.75). Dilution effects for urine 

samples were corrected using probabilistic quotient normalization (PQN). Missing values were 

imputed by drawing from a random distribution of low values in the corresponding sample. Data 

from each mode were then merged, producing a dataset containing 8718 and 3622 metabolic 

features for urine and plasma, respectively. Metabolite abundances were reported as spectral 

counts. 

Metabolic feature annotation. Peak annotation was first performed by matching experimental 

m/z, retention time and MS/MS spectra to an in-house library of analytical-grade standards. 

Remaining peaks were identified by matching experimental m/z and fragmentation spectra to 

publicly available databases including HMDB (http://www.hmdb.ca/), MoNA 

(http://mona.fiehnlab.ucdavis.edu/) and MassBank (http://www.massbank.jp/) using the R 

package ‘metID’ (v0.2.0)30. Briefly, metabolic feature tables from Progenesis QI were matched to 

fragmentation spectra with a m/z and a retention time window of ± 15 ppm and ± 30 s (HILIC) 

and ± 20 s (RPLC), respectively. When multiple MS/MS spectra match a single metabolic feature, 

all matched MS/MS spectra were used for the identification. Next, MS1 and MS2 pairs were 

searched against public databases and a similarity score was calculated using the forward dot–

product algorithm which considers both fragments and intensities. Metabolites were reported if 

the similarity score was above 0.4. We used the Metabolomics Standards Initiative (MSI) level of 

http://www.hmdb.ca/
http://mona.fiehnlab.ucdavis.edu/
http://www.massbank.jp/


 

 

confidence to grade metabolite annotation confidence (level 1 - level 4). Level 1 represents 

formal identifications where the biological signal matches accurate mass, retention time and 

fragmentation spectra of an authentic standard run on the same platform. For level 2 

identification, the biological signal matches accurate mass and fragmentation spectra available 

in one of the public databases listed above. Level 3 represents putative identifications that are 

the most likely name based on previous knowledge of blood and urine composition. Level 4 

consists in unknown metabolites. Annotated urine metabolites selected in the prediction models 

are reported in Table S3. 

PCA revealed that samples cluster together and the absence of batch effects (Fig. S21), thereby 

confirming satisfactory quality control. 



 

 

 

 

Figure S21: PCA of metabolome plasma, metabolome urine and lipidome samples. Different 

colors are assigned to different batches. 

 

 

 

 

 

 



 

 

Comparison between enrichment factors and statistical significance of pathways enriched over 
gestation versus in early pregnancy is shown in Figure S22.    
 
 
 

 
 
Figure S22. Pathways enriched over gestation (yellow) and early in pregnancy (grey). A. Pathway 
enrichment. B. Statistical significance.  
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