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Supplemental Note 

S1 Bibliographic analysis 

Geospatial field bibliometrics were computed through a search of the titles and abstracts of the 

entire medical corpus from Microsoft Academic Graph from January 1990-March 2019 cited at 

least once (17.1 million papers), filtered by keyword string matching (non case-sensitive) within 

abstracts on the following terms: "geo*" & "map*" & "illness*|disease*|health*". This returned 

1897 papers, with mean citations (normalised by the average citation count of a paper in that 

journal) 1.67 (sd 2.87). 

 

Figure S1. Overlapped histograms of the decimal log-transformed annual citation rates of 1897 identified journal papers at the 
intersection of spatial analysis and medicine cited more than once (blue), and an identically filtered random sample of non-spatial 
biomedical papers (orange), published between 1990 and 2019. The untransformed distributions are significantly different on a Mann-
Whitney U test, p<0.001. 

 

S2 Supplemental methods 

S2.1.1 Synthetic data and generative models 

We start by defining a spatial domain as a rectangular subset � ≔ �0, �� � �0, 	� ⊂ ℝ� for some �, 	 ∈
ℕ�, and restrict � and 	 to positive integers so that  

� � �0, �� � �0, 	� � � ��� � 1, ��
�

���

�

���
� �� � 1, �� 

has a natural decomposition into � � 	 grid cells with coordinates ��, �� ∈ �� ≔ �1, … , � � �1, … , 	 . 

Assuming that there are ! binary factors in the generative model, the simulated response variables 

can be written as the components of a random vector " � �#�, … , #$�% ∈ �0,1 $, which is sampled at 
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random grid cells & ∈ �� in the underlying space. Our data generation mechanism is based on the 

factorisation of the joint distribution of " and & as 

Pr�", &; )� = Pr�" | &;  )�Pr�&� 

so that the response variables �#�, … , #$�% are conditioned on location & with model parameters ) 

fixed at �+�, +�, … �%. & is distributed independently of " and uniformly over ��.  

The conditioning allows breaking down the distribution of " spatially, by partitioning the grid �� into 

a small number of (not necessarily) continuous regions ,� ⊆  �� : � �  0, … , . –  1 for which local 

distributions P��"; )� ≔  Pr�" | & ∈  ,�;  )� can be specified for each region, k. As ! ∈ �1,2} for the 

models considered here, at most four probabilities are required for each of these local distributions. 

The partitions are based on arrangements of fractal shapes, shown in Figure S2 for the two bivariate 

models and in Figure S3 for the univariate models.  

In these images, a single pixel represents a grid cell, and the shading indicates the distinct 

distributions P��"; )�. The resolution of the bivariate models is 220 by 210 grid cells, whereas the 

resolution of the univariate models is 120 by 120 grid cells. Geometry for the fractal shapes is 

constructed by recursively substituting the edges of a (start) shape with a simple curve (Figure S4) 

and then rasterising the resulting polygon into the grid using MATLAB’s poly2mask function. We wish 

to examine the effect of noise and interactions in our numerical experiments, which leads us to 

consider two distinct parameterisations of the distributions P�.  

S2.1 Parameterisation of 23�"; )� for Examining Noise 

The first parameterisation is expressed in terms of a function p45678�∙� with parameters : and ;: 

P��"; )�  �  p45678�#�, #�;  :, ;�, : �  +�, ; �  +� � < 

p45678�∙�  is summarised in Table S1. The parameters : and ; are simply the values of the marginal 

probabilities p45678�=� �  1� and p45678�=� �  1� and are sufficient for defining p45678�#�, #�;  :, ;� if 

#�and #� are assumed to be independent.  

 

Figure S2. The four distinct regions ,� ∶  � �  0, … , 3, of the joint conditional probability Pr�" | &;  )� for the snowflake model (left) 
and the anti-snowflake model (right). 
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Figure S3. The two distinct regions ,� ∶  � �  0, 1 of the conditional probability Pr�# | &;  +� for the univariate models: snowflake model 
(left), anti-snowflake model (middle) and snowflake field model (right). 

 

Figure S4. The geometric construction used for the fractal shapes. Koch snowflake on the left, Koch anti-snowflake on the right. 

p45678�#�, #�; :, ;� =� � 0 =� � 1 p45678�=��
=� � 0 �1 � ;��1 � :� �1 � ;�: 1 � ;
=� � 1 ;�1 � :� ;: ;

p45678�=�� 1 � : : 1

Table S1. Probability table for the bivariate local distribution function p45678�#�, #�;  :, ;� 

As we move in � from one region to the next, we simulate spatially distinct conditions of the variables 

#�and #� by changing the regional expectations @���#�, #��A through p45678�#�, #�;  :, ;�: For the four 

regions of the bivariate models in Figure S2, the corresponding expectations are listed in Table S2, 

together with the respective values for : and ;. In the absence of uncertainty, the models generate 

the expected values in each region exactly, thus ,B only generates observations �0, 0�, ,� only �1, 0�, 

and so on.  

As more uncertainty (i.e., noise) is introduced—by adjusting the values for : and ;—the overall 

pattern of observations still holds, but other values have a non-zero probability of occurrence: ,B 

mostly generates observations �0, 0�, ,� mostly �1, 0�, and so on, until a maximum level of 

uncertainty is reached and each observation is equally probable in every region. By expressing : and 

; in terms of a single parameter C ∈ �0, … ,0.5A (the last two columns in Table S2), we can easily vary 

the degree of observation noise from a spatially deterministic and regionally differentiated form, to 

one where all regional differentiation is lost (see Figure S5 for an example). 

  



4 

 

 

 @���#�, #��A → … : → … ; → … :�C� ;�C�
,B �0,0� 0 0 C C
,� �1,0� 1 0 1 – C C
,� �0,1� 0 1 C 1 – C
,G �1,1� 1 1 1 – C 1 – C

H�I. JKLMNO�PKOQ �0.5,0.5� 0.5 0.5   

Table S2. Expected values of #�and #� in each region of the Snowflake and Anti-Snowflake models shown in Figure 1 for the given 
values of : and ;.  

The parameter vector ) in P��"; )� for the bivariate models is determined by C as shown in Table S2 

and has the following structure: 

) � )R , )R ≔ �C, 1 – C, C, 1 – C, C, C, 1 – C, 1 – CA 

We consider the deviation of observed values of " when C is non-zero from the expected values when 

C is 0 as simulating noise induced by confounding variables that are not captured in the data. Its 

effect of degrading the observable spatial differentiation of the variables of interest is key in our 

analysis of the performance of GeoSPM, and so we treat C as an independent variable in these 

numerical experiments. 

 

Figure S5. Random realisations of the bivariate Snowflake model for different levels of C (from left to right). 

Of course, real data also exhibit additive measurement noise. To simulate measurement noise an 

observation S ∈ ℝ$ with location T ∈ � is derived from " and & by adding random effects sampled 

from multidimensional uniform distributions: 

S � " + V,                   V ∼ uniformly on X�  � . . .  �  X$ , X6  �  �0, 0.005A 
T � & + Y,                Y ∼ uniformly on �0, 1�  �  �0, 1� 

A practical benefit of applying ‘spatial noise’ Y to & is that the probability of two randomly drawn 

elements �Z6, [6� and \Z� , [�] coinciding at the same location [6  �  [� is minimised. This is relevant 

for the geostatistical method used for validation in these numerical experiments, because such 

collisions would produce singular, non-positive definite covariance matrices, when predicting 

observations and need to be removed from any data set prior to model estimation.  
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As GeoSPM only operates in terms of the discrete space ��, it always applies the congruency T ≡ & 

and so the added noise Y has no effect. We will also consider an alternative method for resolving 

spatially coincident observations—by averaging observations from the same location—and provide 

corresponding results for kriging below. 

We can now summarise the procedure for generating a spatially-referenced data set of size _ and 

noise level CB as follows: 

1. Draw a uniform sample of _ grid cell coordinates `6 ∈ �1, … , � � �1, … , 	 , P: 1, … , _ 

2. For each grid cell coordinate `6 draw a sample b6 from P�\"; )R], where `6 ∈ ,� 

3. Obtain an observation Z6 at location [6 by adding small amounts of random noise to b6 and `6:  
Z6 � b6 + V6 
[6 � `6 + Y6 

S2.1.2 Parameterisation of 23�"; )� for Examining Interactions 

A common feature of regression modelling is the inclusion of interaction terms, when there is 

reasonable belief that the marginal effect of one variable depends on the value of another. In a spatial 

setting, an interaction could be described as the degree to which the observation of a value of one 

variable is affected by the value of another variable at the same location. Therefore, GeoSPM’s ability 

to detect interactions merits additional evaluation.  

Here, a second parameterisation of the local distributions P� can be motivated by interpreting the 

spatial response introduced earlier as a concentration instead of a measure of closeness. The 

constituent probabilities of the P� are then the regionally expected concentrations of their respective 

observations �#�, #�� ∈ ��0, 0�, �1, 0�, �0, 1�, �1, 1� . As the response of local univariate regression 

models, these concentrations should have approximately additive structure, given the objective is to 

model interactions. To this end, we define the P� as a function p64c8d�ec654�∙� with parameters :B, L�, L� 

and LG, which we assign from a global parameter vector ) for each region ,�: 

P��"; )�  �  p64c8d�ec654�#�, #�;  :B, L�, L�, LG�, :B �  +� , L6  �  +� � 6< 

Table S3 provides a definition of p64c8d�ec654�∙�. The parameters L6 approximate the effect sizes 

induced by the observations of the variables �#�, #�� in the local univariate regression models, 

which—due to their binary values—correspond to the effect of #�, #� and their interaction #� � #� on 

the concentration or response. This is only an approximation of effect size, because of the non-linear 

fall-off of the Gaussian kernels used to synthesize the response. 

p64c8d�ec654�#�, #�; :B, L�, L�, LG� =� � 0 =� � 1
=� � 0 :B :B + L�
=� � 1 :B + L� :B + L� + L� + LG

Table S3. Probability table for the bivariate local distribution function p64c8d�ec654�#�, #�; :B, L�, L�, LG� 
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The parameters L6 define the respective probabilities relative to the parameter :B, the probability of 

generating the observation �0, 0�. The L6 have a maximum range of �– 1, … ,1A, subject to the 

conditions that each :6 is a valid probability �:6 ∈ �0, … ,1A� and that all the resulting probabilities add 

up to 1: 

:� �  :B  +  L� 

:� �  :B  +  L� 

:G �  :B  + L�  +  L�  +  LG 

1 �  4:B + 2L� + 2L� + LG 

For the interaction experiments, we define the same four distinct regions ,B...G as for the bivariate 

snowflake model (shown on the left of Figure 1) in the noise parameterisation and vary the magnitude 

of the interaction effect LG in region ,G. In detail, in region ,B, all observations are equiprobable, 

representing the null state, as all three effects L�, L� and LG are 0. ,� and ,� are regions where we 

either observe a non-zero effect L� for variable #� or a non-zero effect L� for variable #� but no effect 

that corresponds to their interaction. 

Finally, we construct region ,G to model an interaction effect LG at different intensities while keeping 

:B constant at a non-zero level and assuming L� � L�. Based on (arbitrarily) setting :B to a small 

non-zero value of 0.025 and obeying all constraints, LG can range between 0 and 0.9. Given :B and a 

value for LG we can derive L� � L�  �  � – ijk – el
i  . The regional probabilities chosen for the experiments 

are summarised in Table S4 (including null values for when LG � 0), where we picked 6 equally 

spaced settings between 0.25  and 0.5 for the interaction effect LG in ,G. 

 ,B ,� ,� ,G�4mnnA ,G�B.�oA ,G�B.GA ,G�B.GoA ,G�B.iA ,G�B.ioA ,G�B.oA
:B 0.25 0.125 0.125 0.025 0.025 0.025 0.025 0.025 0.025 0.025
L� 0 0.25 0 0.225 0.1625 0.15 0.1375 0.125 0.1125 0.1
L� 0 0 0.25 0.225 0.1625 0.15 0.1375 0.125 0.1125 0.1
LG 0 1 1 0 0.25 0.3 0.35 0.4 0.45 0.5
:� 0.25 0.375 0.125 0.25 0.1875 0.175 0.1625 0.15 0.1375 0.125
:� 0.25 0.125 0.375 0.25 0.1875 0.175 0.1625 0.15 0.1375 0.125
:G 0.25 0.375 0.375 0.475 0.6 0.625 0.65 0.675 0.7 0.725

Table S4. Approximate effect sizes and derived probabilities for each region of the interaction experiments. Region ,Gis the only region 
that is varied across experiments, by increasing the magnitude of the interaction effect LG specified in square brackets. 

As with the noise parameterisation, a data set of _ observations can be generated in a few simple 

steps. Again, we add random effects V and Y from multidimensional uniform distributions as defined 

above: 

1. Draw a uniform sample of _ grid cell coordinates `6 ∈ �1, … , � � �1, … , 	 , P: 1, … , _ 

2. For each grid cell coordinate `6 draw a sample b6 from P��"; )64c8d�ec654�, where `6 ∈ ,� and 

)64c8d�ec654 is the vector of combined regional parameters :B, L�, L� and LG for all four regions. 
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3. Obtain an observation Z6 at location [6 by applying small amounts of random noise to b6 and 

`6:  
Z6 � b6 + V6 
[6 � `6 + Y6 

This completes our description of the synthetic data used to establish the face validity of GeoSPM. 

S2.2 UK Biobank data 

UK Biobank provides a large collection of health and genetic information for its prospective cohort 

of more than 500 000 participants recruited between 2006 and 2010 with assessment centres 

throughout Great Britain (https://www.ukbiobank.ac.uk/) 24. 

We extracted a set of variables from UK Biobank in a region defined by a 35 km by 35 km square 

(spanning from 388000E, 423000N in the south-west corner to 269000E, 304000N in its north-east 

corner, in co-ordinates of the Ordnance Survey National Grid). The variables were sex (field 31), age 

(field 21022), body mass index (BMI, field 21001), household income (field 738) and the location of the 

participants (fields 20074 and 20075). Location information is based on the address to which the 

participants invitation was sent. Address verification and geo-coding was performed by UK Biobank 

using commercial software from Experian PLC and locations are provided at 100 metre and 1000 

metre resolutions, the latter being the resolution available to us. All location co-ordinates use the 

Ordnance Survey reference. UK Biobank provides one or more temporal instances for certain fields. 

For such fields, the value of the earliest instance was chosen, which was the case for BMI and 

household income. In addition, ICD-10 and ICD-9 diagnosis codes were gathered from a separate 

hospital inpatient data table named HESIN_DIAG provided through field 41259. From these diagnosis 

codes we defined an indicator variable for type 2 diabetes, whose value was set to 1 whenever a 

participant had a record of either an ICD-10 code in block E11 (“type 2 diabetes mellitus”) or at least 

one of a handful of relevant ICD-9 codes as specified in Table S7 in Supplemental Note. The number 

of participants with available data for all selected variables in the selected area of Birmingham was 

18193, resulting in a collection of as many individual locations and associated individual observations 

that was used in the subsequently described analysis.  

As a preliminary sanity check for the presence and degree of associativity, the diabetes indicator 

variable was entered as the response variable into a multiple Bayesian logistic regression model 

with a ridge prior. Sex, age, BMI, household income and the interaction between BMI and household 

functioned as predictors. Age, BMI and household income were centred at 0 and divided by their 

respective sample standard deviations. The interaction term was then formed as a simple 

multiplication. The model was evaluated by BayesReg version 1.9.1 [S1] in MATLAB. BayesReg uses a 

Markov Chain Monte Carlo (MCMC) Gibb’s sampler. Posterior parameters were estimated from a 

single chain of 250000 samples (after a burn-in period of the same number of samples), of which 

only every 5th sample was used for computing the estimate. The posterior means of the regression 

coefficients and their credible intervals were as follows: 
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Predictor Coefficient Posterior 
Mean ± SD 

95% Credible 
Interval 

t-Statistic ESS 

Sex 0.748 ± 0.054 (0.642 to 0.855) 13.79 82.2 

Age 0.313 ± 0.029 (0.257 to 0.371) 10.73 83.5 

BMI 0.719 ± 0.025 (0.670 to 0.769) 28.64 71.5 

Household Income -0.344 ± 0.036 (-0.416 to -0.274) -9.50 61.9 

BMI x Household Income 0.053 ± 0.028 (-0.001 to 0.108) 1.93 73.0 

Table S5. Results of the preliminary Bayesian logistic ridge regression analysis of the UK Biobank diabetes data set extracted for 
Birmingham. 

The results showed that there is a reasonably strong association between type 2 diabetes and all 

main terms, but evidence for an interaction between BMI and household income appears to be weak. 

On the basis of this preliminary analysis, we directed our attention to the spatial variability of diabetes 

and the question of how much of this spatial variability is driven by the other variables. We defined a 

progression of four models, listed in Table S6.  

Model Type 2 Diabetes Sex Age BMI Household Income BMI x Household 

Income 

1 ∎ � � � � �
2 ∎ ∎ ∎ ∎ � �
3 ∎ ∎ ∎ ∎ ∎ �
4 ∎ ∎ ∎ ∎ ∎ ∎

Table S6. The four GeoSPM models used for the Birmingham data from UK Biobank. 

It is important to keep in mind that unlike in this preliminary analysis, in these GeoSPM models, 

type 2 diabetes is no longer a response variable but an explanatory or independent variable, which 

means its effect is marginalised relative to the other variables in each model. By applying a single 

colour map to all regression coefficient maps across models, the intensity and nature of 

topological changes—in the marginalised contribution of each variable—become visible, not only 

within a single model but over the ensemble of four models. Similarly, changes in the extent and 

location of significant areas, due to the addition of variables as we move from one model to the 

next, allow us to assess patterns of spatial variability. Lastly, using intersections between 

significant areas of multiple variables, we can identify areas of significant conjunctions between 

those variables[S2]. 

 

S2.3 Kriging 

Kriging[S3] is an ensemble of linear least-squares regression techniques for predicting the value of a 

random field at an unsampled location from observations at other locations. It is commonly used 

when interpolating spatially-referenced point data over a surface and provides a measure of the 
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uncertainty in its predictions. In statistics and machine learning, kriging is essentially an application 

of multivariate Gaussian process prediction. Crucially, kriging requires an explicit model of the 

spatial covariance and cross-covariance of the data, which needs to be chosen a priori. As the 

random field is generally assumed to be second-order stationary and isotropic, the covariance can 

be expressed as a function of the Euclidean distance between a pair of points, independently of their 

actual location in the spatial domain. A theoretical variogram is the quasi-dual form of a covariance 

model (it is slightly more generic in some situations). An overview of some common theoretical 

variograms is shown in Figure S6. Parameters required by the selected model are estimated from 

the data and substituted for the true values when computing the predictions. The covariance and 

cross-covariance model we used for all kriging predictions presented in the main text is the family 

of Matérn functions[S4] together with an added “nugget” component. The Matérn model exhibits 

adaptable smoothness controlled by a parameter x and is recommended as a sensible default choice 

in the literature[S5], [S6]. The nugget component adds a discontinuous jump to the covariance function 

at coincident points and captures variance due to measurement error. Its relative strength is 

specified by a single numeric parameter. Additional parameters of the Matérn model are the sill, 

which determines its contribution to the covariance, as well as the range which reflects its spatial 

scale. For the main results reported in Figures 3 and 4, as well as Figures S7–S11, we left parameter 

x fixed at its default gstat setting of 0.5, whereas for the extended comparison of kriging covariance 

models reported in Sections S3.4, S3.5, S3.6 and S3.7), x was estimated within a pre-specified range 

of [0.1, 5]. 

In cases where the experimental data contained several variables, gstat estimated a linear model of 

coregionalization (LCM), which expressed all required auto- and cross-covariances as linear 

combinations of a Matérn function and a nugget component. The range parameter is constrained by 

gstat to be the same for all covariances in the LCM and was estimated from the first variable in the 

data prior to estimating the LCM. We configured gstat to use ordinary (co-)kriging with a constant 

but unknown mean in a global search window. 

In addition to the Matérn model, we present a wider comparison of results with the kriging models 
shown in Figure S6 in Section S3. 
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Figure S6. A range of common theoretical variograms to be fitted to the synthetic model data in the kriging experiments. 

 

S3 Additional Results 

S3.1 Synthetic Experiment Results for Univariate Models 

 

Figure S7. Synthetic univariate snowflake models: Recovery scores for the single GeoSPM and kriging model term in the low (N = 600), 
middle (N = 1200) and high (N = 1800) sampling regime. Lines denote the mean score across 10 random model realisations, shaded 
areas its standard deviation to either side of the mean. GeoSPM degrades more slowly and gracefully as noise increases compared 

with kriging. 
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Figure S8. Synthetic univariate anti-snowflake models: Recovery scores for the single GeoSPM and kriging model term in the low (N 
= 600), middle (N = 1200) and high (N = 1800) sampling regime. Lines denote the mean score across 10 random model realisations, 
shaded areas its standard deviation to either side of the mean. Areas of overlapping performance are identified by additive shading. 

GeoSPM degrades more slowly and gracefully as noise increases compared with kriging. 

 

Figure S9. Synthetic univariate snowflake field models: Recovery scores for the single SPM and kriging model term in the low (N = 
600), middle (N = 1200) and high (N = 1800) sampling regime. Lines denote the mean score across 10 random model realisations, 
shaded areas its standard deviation to either side of the mean. Areas of overlapping performance are identified by additive shading. 
GeoSPM degrades more slowly and gracefully as noise increases compared with kriging. 

 

  



12 

 

S3.2 Synthetic Experiment Results for Term "y of the Bivariate Models 

 

Figure S10. Synthetic snowflake models: Recovery scores for GeoSPM and kriging model term #� in the low (N = 1600) and high (N = 
3200) sampling regime. Lines denote the mean score across 10 random model realisations, shaded areas its standard deviation to 
either side of the mean. Areas of overlapping performance are identified by additive shading. GeoSPM degrades more slowly and 

gracefully as noise increases compared to kriging. 

 

Figure S11. Synthetic anti-snowflake models: Recovery scores for GeoSPM and kriging model term #� in the low (N = 1600) and high 

(N = 3200) sampling regime. Lines denote the mean score across 10 random model realisations, shaded areas its standard deviation 
to either side of the mean. Areas of overlapping performance are identified by additive shading. GeoSPM degrades more slowly and 
gracefully as noise increases compared with kriging. 
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S3.3 Synthetic Experiment Results for Kriging When Averaging Coincident Observations 

 

Figure S12. Synthetic bivariate snowflake models: Recovery scores for kriging model term #� with a Matérn covariance function (blue) 
and a Gaussian covariance function (purple) in the high (N = 3200) sampling regime. Lines denote the mean score across 10 random 

model realisations, shaded areas its standard deviation to either side of the mean. In both cases coincident observations were 
averaged and reduced to one instead of adding a small amount of random noise to their locations as before. However, this did not 
change the performance in any meaningful way when compared with a Matérn covariance function with random noise added (as shown 
in Figure 3): That curve is almost identical to the averaged version displayed here in blue and was therefore left out. The Gaussian 
covariance function performs slightly worse than the Matérn covariance. This leads us to believe that kriging performance is not 

improved in our experiments by choosing a different coincident observation regime or covariance function (which is confirmed by the 
results presented in section S3.4) 
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S3.4 Extended Synthetic Experiment Results for Term "z of the Bivariate Model 

 

Figure S13. Synthetic snowflake models: Recovery scores for various kriging models with a nugget term in comparison with SPM for 
term #� and the high sampling regime (N = 3200). 

 

Figure S14. Synthetic anti-snowflake models: Recovery scores for various kriging models with a nugget term in comparison with 
SPM for term #� and the high sampling regime (N = 3200). 
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Figure S15. Synthetic snowflake models: Recovery scores for various kriging models without a nugget term in comparison with SPM 
for term #� and the high sampling regime (N = 3200). 

 

Figure S16. Synthetic anti-snowflake models: Recovery scores for various kriging models without a nugget term in comparison with 
SPM for term #� and the high sampling regime (N = 3200). 
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Figure S17. Synthetic snowflake models: Recovery scores for various kriging models with a nugget term in comparison with SPM for 
term #� and the low sampling regime (N = 1600). 

 

Figure S18. Synthetic anti-snowflake models: Recovery scores for various kriging models with a nugget term in comparison with 
SPM for term #� and the low sampling regime (N = 1600). 
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Figure S19. Synthetic snowflake models: Recovery scores for various kriging models without a nugget term in comparison with SPM 

for term #� and the low sampling regime (N = 1600). 

 

Figure S20. Synthetic anti-snowflake models: Recovery scores for various kriging models without a nugget term in comparison with 
SPM for term #� and the low sampling regime (N = 1600). 
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S3.5 Extended Synthetic Experiment Kriging Recoveries for Term "z of the Bivariate Model 

 

Figure S21. Kriging recoveries of term #� for the Bessel kernel. Columns represent increasing noise levels. Each row shows a 
combination of the synthetic model used and whether a nugget component was included in the variogram. 
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Figure S22. Kriging recoveries of term #� for the circular kernel. Columns represent increasing noise levels. Each row shows a 
combination of the synthetic model used and whether a nugget component was included in the variogram. 
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Figure S23. Kriging recoveries of term #� for the exponential kernel. Columns represent increasing noise levels. Each row shows a 
combination of the synthetic model used and whether a nugget component was included in the variogram. 
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Figure S24. Kriging recoveries of term #� for the Matérn kernel. Columns represent increasing noise levels. Each row shows a 
combination of the synthetic model used and whether a nugget component was included in the variogram. 
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Figure S25. Kriging recoveries of term #� for the spherical kernel. Columns represent increasing noise levels. Each row shows a 
combination of the synthetic model used and whether a nugget component was included in the variogram. 
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S3.6 Summary of Kriging Parameters for the Extended Synthetic Experiments 

 

Figure S26. Synthetic snowflakes model: Estimated partial sill parameters for the main (left) and nugget (right) variogram 
components in the high sampling regime (N = 3200). Lines denote the mean estimate across 10 random model realisations, shaded 
areas its standard deviation to either side of the mean. 

 

Figure S27. Synthetic snowflakes model: Estimated partial sill parameters for the main (left) and nugget (right) variogram 
components in the low sampling regime (N = 1600). Lines denote the mean estimate across 10 random model realisations, shaded 
areas its standard deviation to either side of the mean. At high levels of noise, estimates for some main components become 
unreliable, resulting in extreme values. 

 

Figure S28. Synthetic anti-snowflakes model: Estimated partial sill parameters for the main (left) and nugget (right) variogram 
components in the high sampling regime (N = 3200). Lines denote the mean estimate across 10 random model realisations, shaded 
areas its standard deviation to either side of the mean. 
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Figure S29. Synthetic anti-snowflakes model: Estimated partial sill parameters for the main (left) and nugget (right) variogram 
components in the low sampling regime (N = 1600). Lines denote the mean estimate across 10 random model realisations, shaded 
areas its standard deviation to either side of the mean. At high levels of noise, estimates for some main components become 
unreliable, resulting in extreme values. 

 

Figure S30. Synthetic snowflakes model: Estimated range parameters for the main variogram component in the high sampling 
regime (N = 3200, left) and low sampling regime (N = 1600, right). Lines denote the mean estimate across 10 random model 
realisations, shaded areas its standard deviation to either side of the mean. At high levels of noise, estimates unreliable, resulting in 
extreme values. 

 

Figure S31. Synthetic anti-snowflakes model: Estimated range parameters for the main variogram component in the high sampling 
regime (N = 3200, left) and low sampling regime (N = 1600, right). Lines denote the mean estimate across 10 random model 
realisations, shaded areas its standard deviation to either side of the mean. At high levels of noise, estimates unreliable, resulting in 
extreme values. 
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S3.7 Summary of Kriging Variograms for the Extended Synthetic Experiments 
S3.7.1 Bessel Kernel 

 

Figure S32. Synthetic snowflakes model: Empirical semivariograms and fitted Bessel kernel with a nugget component at three 
different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run of the 
experiments. 

 

Figure S33. Synthetic snowflakes model: Empirical semivariograms and fitted Bessel kernel without a nugget component at three 
different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run. 

 

Figure S34. Synthetic anti-snowflakes model: Empirical semivariograms and fitted Bessel kernel with a nugget component at three 
different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run. 

 

Figure S35. Synthetic anti-snowflakes model: Empirical semivariograms and fitted Bessel kernel without a nugget component at 
three different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run. 
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S3.7.2 Circular Kernel 

 

Figure S36. Synthetic snowflakes model: Empirical semivariograms and fitted circular kernel with a nugget component at three 
different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run. 

 

Figure S37. Synthetic snowflakes model: Empirical semivariograms and fitted circular kernel without a nugget component at three 
different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run. 

 

Figure S38. Synthetic anti-snowflakes model: Empirical semivariograms and fitted circular kernel with a nugget component at three 
different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run. 

 

Figure S39. Synthetic anti-snowflakes model: Empirical semivariograms and fitted circular kernel without a nugget component at 
three different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run. 
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S3.7.3 Exponential Kernel 

 

Figure S40. Synthetic snowflakes model: Empirical semivariograms and fitted exponential kernel with a nugget component at three 
different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run. 

 

Figure S41. Synthetic snowflakes model: Empirical semivariograms and fitted exponential kernel without a nugget component at 
three different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run. 

 

Figure S42. Synthetic anti-snowflakes model: Empirical semivariograms and fitted exponential kernel with a nugget component at 
three different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run. 

 

Figure S43. Synthetic anti-snowflakes model: Empirical semivariograms and fitted exponential kernel without a nugget component 
at three different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run. 
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S3.7.4 Gaussian Kernel 

 

Figure S44. Synthetic snowflakes model: Empirical semivariograms and fitted Gaussian kernel with a nugget component at three 
different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run. 

 

Figure S45. Synthetic anti-snowflakes model: Empirical semivariograms and fitted Gaussian kernel with a nugget component at 
three different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run. 
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S3.7.5 Matérn Kernel 

 

Figure S46. Synthetic snowflakes model: Empirical semivariograms and fitted Matérn kernel with a nugget component at three 
different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run. 

 

Figure S47. Synthetic snowflakes model: Empirical semivariograms and fitted Matérn kernel without a nugget component at three 
different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run. 

 

Figure S48. Synthetic anti-snowflakes model: Empirical semivariograms and fitted Matérn kernel with a nugget component at three 
different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run. 

 

Figure S49. Synthetic anti-snowflakes model: Empirical semivariograms and fitted Matérn kernel without a nugget component at 
three different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run. 
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S3.7.6 Spherical Kernel 

 
 

Figure S50. Synthetic snowflakes model: Empirical semivariograms and fitted spherical kernel with a nugget component at three 
different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run. 

 

Figure S51. Synthetic snowflakes model: Empirical semivariograms and fitted spherical kernel without a nugget component at three 
different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run. 

 

Figure S52. Synthetic anti-snowflakes model: Empirical semivariograms and fitted spherical kernel with a nugget component at 
three different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run. 

 

Figure S53. Synthetic anti-snowflakes model: Empirical semivariograms and fitted spherical kernel without a nugget component at 
three different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run. 
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S3.7.7 Wave Kernel 

 

Figure S54. Synthetic snowflakes model: Empirical semivariograms and fitted wave kernel with a nugget component at three 
different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run. 

 

Figure S55. Synthetic anti-snowflakes model: Empirical semivariograms and fitted wave kernel with a nugget component at three 
different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run. 

 

 

ICD-9 codes 

ICD-9 Group Description ICD-9 Codes in Group 

250.0 Diabetes mellitus without mention of 
complication 

250.00, 250.02 

250.1 Diabetes with ketoacidosis 250.10, 250.12 

250.2 Diabetes with hyperosmolarity 250.20, 250.22 

250.3 Diabetes with other coma 250.30, 250.32 

250.4 Diabetes with renal manifestations 250.40, 250.42 

250.5 Diabetes with ophthalmic manifestations 250.50, 250.52 

250.6 Diabetes with neurological manifestations 250.60, 250.62 

250.7 Diabetes with peripheral circulatory disorders 250.70, 250.72 

250.8 Diabetes with other specified manifestations 250.80, 250.82 

250.9 Diabetes with unspecified complication 250.90, 250.92 

Table S7. ICD-9 codes used in the extraction of the type II diabetes indicator variable. 
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S4 GeoSPM Software Overview 

GeoSPM is implemented as a well-structured collection of MATLAB classes and packages in the 

“geospm” and “hdng” namespaces, preventing name-collisions with a user’s existing MATLAB 

installation. It makes use of a separately provided SPM toolbox (synthetic_volumes_toolbox) to allow 

in-memory generation of SPM scan files, which we hope to integrate into SPM proper in the future. 

An overview of key classes and packages is shown in Figure S56. A potential user of GeoSPM invokes 

a single function – geospm.compute() – to initiate an analysis, passing a path to a working directory, 

a SpatialData object and a set of name-value options. All results will be stored as files in the given 

directory, including images of all regression coefficients and vector-based shape files demarking 

regions of significance for any applied thresholds. A SpatialData object can be constructed manually 

or obtained via loading a comma-separated value (CSV) file from disk via geospm.load_data(). In 

order to produce geo-referenced TIFF images, GeoSPM requires a SpatialData object to have an 

attached co-ordinate reference system. This can be specified when calling geospm.load_data() or 

manually, by creating a hdng.SpatialCRS object from an appropriate identifier. For example, 

‘EPSG:27700’ is the identifier for the Ordnance Survey National Grid used by UK Biobank. 

 

Figure S56. Class diagram of GeoSPM. 

Internally, geospm.compute() uses a SpatialAnalysis object to define a pipeline comprising a number 
of successive processing stages, each concerned with a clearly de-lineated task, such as 
transforming continuous locations to discrete grid co-ordinates, rendering a Gaussian kernel of 
desired size at each location of the data, running SPM itself, colour-mapping output images, and 
extracting vector-based areas of significance for each threshold.  
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