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THE BIGGER PICTURE Many aspects of health and disease are distributed in space, requiring models of
topological organization. The complexity of the task, however, makes spatial analysis comparatively rare
in medicine. Here, we introduce GeoSPM, a platform for topological inference from clinical data based
on a mature mathematical framework—statistical parametric mapping—validated by decades of use in
neuroimaging. We provide comprehensive synthetic evaluation of the approach, and illustrate its applica-
tion on large-scale data fromUKBiobank. The interpretability, flexibility, scalability, ease of implementation,
robustness to noise and under-sampling, computational efficiency, and provision of principled criteria of
statistical significance, provided by our open-source platform should catalyze wider use of spatial analysis
across medicine.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
The characteristics and determinants of health and disease are often organized in space, reflecting our
spatially extended nature. Understanding the influence of such factors requires models capable of capturing
spatial relations. Drawing on statistical parametric mapping, a framework for topological inference well es-
tablished in the realm of neuroimaging, we propose and validate an approach to the spatial analysis of
diverse clinical data—GeoSPM—based on differential geometry and random field theory. We evaluate
GeoSPM across an extensive array of synthetic simulations encompassing diverse spatial relationships,
sampling, and corruption by noise, and demonstrate its application on large-scale data from UK Biobank.
GeoSPM is readily interpretable, can be implementedwith ease by non-specialists, enables flexiblemodeling
of complex spatial relations, exhibits robustness to noise and under-sampling, offers principled criteria of
statistical significance, and is through computational efficiency readily scalable to large datasets.We provide
a complete, open-source software implementation.
INTRODUCTION

Human beings vary along a rich multiplicity of social and biolog-

ical dimensions, whose complex interactions across health and

disease present a challenge for medical science and systems

biology in general. The combination of large-scale data with ma-

chine learning promises to cast brighter light on this complexity

than conventional inferential techniques, illuminating distributed,

long-range dependencies hitherto obscured. Our interventions

are increasingly grounded in an understanding of the factors
This is an open access article und
that shape disease trajectories and determine individual re-

sponses to treatment.

One comparatively neglected dimension is the literal dimen-

sion of space: each of us inhabits a particular location that

may reflect or modify our individual biological characteristics

and the influence of (and on) other spatially distributed

variables. Spatial factors may be static or vary over time,

arising at multiple scales, ranging from the domestic to the in-

ter-continental. Their reference frames may be set by internal

communities, by external geographies, or by a complex blend
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of the two. Their spatial organization may be linear or consis-

tently distorted by individual or environmental movement within

these frames of reference. Spatial factors may disclose or alter

characteristics of biology directly, or render them more or less

clinically accessible or actionable. Space arises not only in

epidemiology, environmental medicine, healthcare policy, and

public health, but in the fundamental organization of biology

itself.

Yet outside a few specialist areas spatial analysis is compara-

tively rare in medicine. An indicative survey of published paper

titles and abstracts in Microsoft Academic Graph, spanning

30 years of medical research, reveals only 1,897 journal papers

at the intersection of geospatial analysis and medicine, with an

annual citation distribution for those cited more than once none-

theless substantially higher than a matched biomedical sample

(mean 2.75 versus 2.13, Mann-Whitney U test, p < 0.001, Fig-

ure S1, see supplemental note). The comparative scarcity is

arguably in part explained by the difficulty of the task. The spatial

factors arising in a medical context are often entangled, their

sampling is sparse and frequently corrupted by noise, and the

underlying signals tend to be weak. But spatial analysis is

hard even where the data regime is benign, for the problem is

essentiallymultidimensional and is rarely, if ever, open to analytic

solutions.

The fundamental challenge is reflected in the wide array of

techniques in current use. A survey of 397 papers published

since January 1, 2017, in the joint domains of health and spatial

modeling identifies local indicators of spatial association,1

spatial scan statistics,2 inverse distance weighting,3 kernel

density estimation,4,5 spatial regression in terms of spatial lag

and spatial error models,6 geographically weighted regression

(GWR),7 land-use regression,8 kriging,9,10 generalized linear

mixed models,11 generalized (geo-)additive models,12,13 hierar-

chical Bayesian spatial analysis,14,15 and model-based geosta-

tistics,16,17 among others.

This methodological diversity reflects differing demands on

the spatial aspects of the model and the breadth of specific

questions that arise in a spatial setting. With the question may

vary the modeling objective, and the theoretical assumptions

that underpin it. Common objectives include spatial prediction,

the analysis and regression of spatially varying or spatially

confounded associations, and the investigation of spatial point

patterns. Arguably the most general and taxing research ques-

tions involve inference—whether explicit or not—to a topological

organization, for example, identifying the location and extent of

a spatially organized signal buried in noise. Such questions

typically—if not always—require methods that treat space as a

continuity, produce spatially continuous estimates, and provide

principled measures of spatial uncertainty. Dominant in this

category are methods that adopt a nonlinear multivariate

approach, taking advantage of the flexibility and expressivity it

offers. Although potentially powerful, they require joint expertise

in the method and the domain of its application, depend on prior

specification of model parameters, and tend to demand sub-

stantial computational resource even for data of moderate

scale. Furthermore, in the generalized linear framework, space

commonly enters the model as a latent random effect—usually

derived from a suitable Gaussian process. This approach adjusts

for spatially correlated variance within an otherwise non-spatial
2 Patterns 3, 100656, December 9, 2022
framework, with the fixed effects remaining constant across

the spatial field.18

These obstacles motivate the pursuit of alternatives outside

the multivariate paradigm for the task of topological inference.

The direct counterpoint is a mass-univariate approach, where

a complex multivariate model is replaced by a spatially indexed

ensemble of simpler models. GWR modifies the predictors in a

regression model through a spatially localized weight matrix,

so that a variation of the model is estimated at each location

and the resulting estimates exhibit spatial smoothness. Although

GWR estimates can be derived from a prespecified grid, in prac-

tice only sampled locations or grids of modest size tend to be

evaluated owing to the difficulty of correcting for multiple com-

parisons in a topologically informed manner.19 Spatial inference

with GWR is commonly limited to regression coefficient or coef-

ficient of determinationmaps that simply indicate the local good-

ness of fit,20 without employing formal tests of significance.21,22

Finally, these are regression models relating a response to a

set of spatially organized predictors, not models of the spatial

variation of a set of variables within a topological framework of

uncertainty: our primary concern.

Here, we propose, implement, and validate an approach to the

spatial analysis of diverse clinical or public health data that draw

upon differential geometry and random field theory, with the to-

pological objective of identifying connected neighborhoods and

peaks of spatial significance. In particular, we leverage the

procedures used in statistical parametric mapping (SPM): a

framework for making topological inferences about spatially

structured effects, with well-behaved spatial dependencies.23

This approach has been established for decades in the realm

of (structural and functional) volumetric neuroimaging.

The core idea is to transform sparse spatial signals into a form

suited to mass-univariate statistical testing on a chosen point

grid: for example, testing that the spatial or regional expression

of a particular variable is greater than would be expected under

the null hypothesis of no regional effect. The probability of

observing topological features in the observed map, such as

peaks or clusters (i.e., level sets above some threshold), can

then be evaluated with classical inference based on random field

theory, and used to ascribe a p value to spatially organized ef-

fects. This principled approach radically simplifies one important

domain of spatial analysis, rendering it potentially more sensitive

and robust to noise, and places it on a formal inferential footing,

yielding a general-purpose geostatistical tool readily deployable

across a multitude of medical fields where the modeling objec-

tive requires inference to the topological organization of a set

of signals of interest. For example, we may use the approach

to infer the location and extent of regional expression of spatially

organized variables—taken alone or in conjunction—such as

disease prevalence in a community, while accounting for multi-

ple potentially interacting confounding factors, and without

relying on any a priori parcellation of the space.

In what follows, we (1) offer a detailed rationale for our

approach; (2) proceed to evaluate it across an extensive array

of synthetic simulations where the nature of the spatial relation-

ships, sampling, and corruption by noise are prespecified; and

(3) demonstrate its application on large-scale data from UK Bio-

bank (https://www.ukbiobank.ac.uk/).24 The numerical analyses

serve to establish face validity; the empirical analysis to

https://www.ukbiobank.ac.uk/
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demonstrate predictive validity. We provide a complete, open-

source software implementation of our framework (https://

github.com/high-dimensional/geospm), released as an exten-

sion to SPM; namely, geospatial SPM or ‘‘GeoSPM.’’ Supple-

mental note S4 and Figure S56 provide an overview of

GeoSPM’s class structure as implemented in MATLAB.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Holger Engleitner (h.engleitner@ucl.ac.uk).

Materials availability

This study did not generate new unique reagents and did not use any addi-

tional materials aside from the data and code cited below.

Data and code availability

The data analyzed in this study are available on application to UK Biobank

(https://www.ukbiobank.ac.uk). The open-source software implementation

of GeoSPM presented in this study is available on GitHub: https://github.

com/high-dimensional/geospm (https://doi.org/10.5281/zenodo.7258971).

Overview

Our approach builds on the well-established regression analysis framework

implemented in SPM12 (http://www.fil.ion.ucl.ac.uk/spm/), the most widely

used platform for spatial inference in brain imaging. Within this framework, a

set of explanatory variables is associated with a multivariate, spatially struc-

tured response, whose components represent measurements taken at regular

locations in a spatial domain. The association between explanatory variables

and response is estimated at each location separately, using the same general

linear model (GLM). This yields a collection of univariate multiple regression

models that share the same model architecture and design matrix but differ

in the response variable and the estimated parameter values. Crucially,

random fluctuation, or variations in the response variable that are not ex-

plained by the GLM, are treated as realizations of a random (spatial) field

with certain contiguity or smoothness properties. This ismass-univariate infer-

ence from a spatial perspective.

A distinguishing feature of SPM is the manner of correcting for multiple com-

parisons when testing mass-univariate model parameters (i.e., regression co-

efficients) for significance. The large number of tests, performed simulta-

neously, gives rise to a proportionally large number of false positives by

chance alone. Conversely, the strong spatial correlations among the compo-

nents of the response violate assumptions of mutual independence, and

render simple Bonferroni correction inappropriately strict. SPM applies a

more suitable correction by modeling the residuals as a random Gaussian

field, so that p values are meaningful in terms of identifying significant peaks

and clusters in a discretized spatial domain. Heuristically, topological infer-

ence of this kind automatically accounts for spatial dependencies; in the sense

that smooth random fluctuations will produce a smaller number of maxima

than rough random fields with less spatial dependence (even though the

total area above some threshold could be the same). It can be shown that

the smoothness of the residual fields is a suitable approximation to the

smoothness of a t statistic map derived from the model, which in turn reflects

the spatial dependence of the covariates.25,26

The kind of data we are concerned with comprise variables of interest

observed at locations in a continuous spatial domain D. D is usually a subset

of R2 representing coordinates of a geographic space. More precisely, every

element in a spatially referenced dataset associates a vector yi of P variable

observations ðyi1;.; yiPÞT ˛RP with a location xi ˛D

ðyi ; xiÞ : i = 1;.;N:

SPM typically requires data sampled at regular locations across a grid,

spanning the spatial domain. However, we wish to analyze data that are irreg-

ularly and sometimes sparsely sampled. This can be resolved by distributing

each data point locally—over regular grid locations—using a spatial Gaussian

kernel of suitable and fixed variance.
From a data-centric point of view, we can interpret this spatial transforma-

tion as estimating the contribution of an individual observation to regular

sample points, where the contribution has a maximum value at the observa-

tion location and then diminishes with increasing distance. In this way, the

dependent variable in the univariate regression at any location of space is

essentially a weighting of individual observations according to their proximity

to that location: the higher the local response, the closer the observation.

We can do this with impunity because we are interested in the explainable

differences in these contributions at prespecified (grid point) locations.

These explainable differences are assessed with normalized effect sizes

(i.e., classical statistics), which are not affected by the total contribution or

variance.23,27

The chosen variance of the Gaussian kernel is a parameter—hereafter called

the smoothing parameter—deliberately left open to the analyst to specify the

appropriate degree of spatial coarse graining (i.e., spatial smoothness of the

data features in question). Since SPM naturally handles volumetric data, we

are free to use the third dimension to model multiple smoothing values on a

continuous positive scale, rendering them as different spatial ‘‘scales’’ or ‘‘fea-

tures’’ of a response variable.28 Here, two coordinates represent the location in

space (i.e., location space), and the third coordinate tracks spatial spread (i.e.,

scale space), allowing the regression analysis to operate at different scales

simultaneously. It is appropriate to permit inference under varied assumptions

of uncertainty, allowing the analyst to draw conclusions from the similarities

and differences obtained across the range of plausible spatial scales. The an-

alyst is also free to implement mechanisms that select an optimal parameter

under some criterion: here we suggest one pragmatic method of doing this.

Note that this scale-space implementation of topological inference automati-

cally accounts for dependencies in moving from one scale to another and en-

ables topological inference in terms of maxima or clusters in both location and

scale space (i.e., a particular effect can be declared significant at this location

and this spatial scale). For simplicity, wewill focus on topological inference at a

given spatial scale.

Downstream of the above spatial transformation of data features, the

statistical approach is formally identical to a standard SPM analysis. The

output comprises a series of volumes representing regression coefficients,

statistical contrasts derived from these model parameters, the statistical

parametric maps—of classical statistics based on these contrasts—and,

finally, thresholded binary maps that indicate whether the voxels in the cor-

responding statistical map are significant at the chosen (suitably corrected)

p value.

Synthetic data and generative models

Thestatistical validity of theproposedapproach is underwrittenby theassump-

tions onwhichSPM rests. Nonetheless, it is helpful to examine its construct val-

idity, in comparison with alternative methods (e.g., kriging), and face validity, in

terms of its ability to recover known effects in different situations. Such valida-

tion is best performedwith a known (spatial) ground truth, under manipulations

of sampling and noise traversing the plausible space of possibility as far as is

practicable. Note, however, that no aspect of the modeling approach—as

opposed to its validation—may be allowed to rely on a ground truth, for in topo-

logical inference—as opposed to prediction—no ground truth is generally

available.We cannot, for example, use a ground truth to tune a hyperparameter

without excluding precisely the inferential context we are interested in.

Formaximum flexibility and control over the evaluation process, here we use

synthetic data drawn from a generative model with a spatially varying distribu-

tion of one or two joint binary variables. The spatial variability of the distribution

is determined by the locale and extent of shapes with a fractal boundary. Frac-

tals characteristically exhibit detail across an infinite range of spatial scales,

which makes them ideal candidates for a spatially structured ground truth

with sensitivity to the widest possible range of spatial scales. The use of binary

variables to generate two distinct signal levels for the response allows us to

focus on data that are generated in a spatially structured way; namely, in a

regionally specific fashion under various levels of noise or stochasticity. A

full description of the process is provided in supplemental note S2.

Demonstration with UK Biobank data

To demonstrate the application of GeoSPM to real data, we chose to

explore the potential association between a common disease—type 2
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Figure 1. Sampling levels (noise-free, g = 0:0) for the univariate models on the left (N = 600; 1200; 1800), and for the bivariate models on
the right (N = 1600; 3200)
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diabetes—and a small number of demographic variables in UK Biobank

drawn from the area of Greater Birmingham. It should be stressed that

the sole purpose of this analysis was to illustrate the application of the

method, not to make inferences about the data itself, which would require

more detailed investigation than our foundational focus here permits. The

objective instead is to illustrate how spatial variation of a variable of interest

may be examined, with specific attention to two important contexts: where

the effect of the variable must be isolated from a set of known potential con-

founders, and where the joint effects of two or more variables are of interest.

A detailed description of the variable selection and preprocessing is given in

supplemental note S2.2.

Numerical experiments

Kriging

We evaluate GeoSPM in comparison with the well-established multivariate

geostatistical method of kriging, described in detail in supplemental note

S2.3. All kriging computations were done in R using the gstat package,29

which is available at https://cran.r-project.org/web/packages/gstat/index.

html. For each variable of interest kriging produced an image of the predicted

mean and an image of the corresponding prediction variance, which is

derived solely from the arrangement of positions in the data, i.e., the predic-

tion variance does not depend on the values of the observations, only on

their locations.

Synthetic experiments: Noise parameterization

The numerical face validation experiments are based on three univariate models

(snowflake, anti-snowflake, snowflake field) and two bivariate models (snow-

flake, anti-snowflake) as depicted in Figures S2 and S3. For all models, we ran

experiments at different sampling levels, Nunivariate e f600; 1200; 1800g and

Nbivariate e f1600; 3200g, and increased the noise parameter g from 0:0 to 0:35

in 0:01 increments (Figure 1). For each triplet (model,N, g), 10 independent data-

sets were randomly generated.

Each generated dataset was processed by GeoSPM as well as gstat. For

GeoSPM, the spread of the spatial response at locations xi , i.e., the spatial distri-

bution of the response following smoothing, wasmodeled at increasing smooth-

ing parameter values ([ = 10) using the 95% iso-density diameters of the

bivariate normal distribution, s = ð10; 15; 20; 25; 30; 35; 40; 45;50; 55; 60ÞT.
This measure of spread is the diameter of a circle that contains 95% of the
4 Patterns 3, 100656, December 9, 2022
probability mass of a two-dimensional Gaussian distribution at its center. The

largest value of the smoothing parameter, 60, was chosen to be half

the height of the grid for the univariate models. The regression coefficients esti-

mated by GeoSPM were tested using a one-tailed t test at p < 0.05 FWE

(voxel-level, family-wise correction), producing a stack of [ binarymaps of signif-

icant areas for every variableof interest. Toderive correspondingmaps—oneper

variable—for kriging, we compared a standardized form of the kriging prediction

bystdðj; kÞ with the critical value of the upper tail probability p < 0.05 of the

normal distribution. We standardized byðj; kÞ at each grid cell ðj; kÞ using its esti-

mated (positional) variance bsðj; kÞ and assuming a null mean of 0:5 to produce

bystdðj;kÞ:

bystdðj; kÞ =
byðj; kÞ--mnull

bsðj; kÞ ;whereðj; kÞ˛D0;mnull = 0:5:

For a fair comparison with kriging, one of the [ smoothing values and its

associated maps produced in a run of GeoSPM had to be chosen. We based

this choice on maximizing the spatial coverage by the significant areas at each

spatial scale (see Figure 2), while minimizing the spatial overlap between them.

A spatial condition in the context of the observed variables Y ˛RP in our

models is obtained by applying a threshold of 0:5 to all observations, recording

as 1 if an observed variable value exceeds the threshold or 0 if it does not. Each

observation of a univariate model can thus be assigned one of two spatial con-

ditions, or one of four conditions in the case of a bivariate model. We obtain the

significant areas for each spatial condition by running a separate analysis in

GeoSPM on a set of data that represents the spatial condition of each obser-

vation as a one-hot encoding, i.e., with each category represented as a set of

binary dummy variables.

This approach enabled us to derive a score for each of the [ smoothing

values, which simply comprised the total number of significant grid cells that

appeared for exactly one of the spatial conditions, thereby ignoring any over-

lap. The smoothing value with the highest score was selected, together with

the binary maps of significant areas computed from it. Ties were broken by

choosing the smallest scale.

The binary maps for each variable were assessed relative to their respec-

tive target maps, which were derived by thresholding the corresponding mar-

ginal distribution of the model, adding grid cells with a probability greater

than 0:5 to the target. We applied a number of representative image

https://cran.r-project.org/web/packages/gstat/index.html
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Figure 2. Example of a coverage computation for an instance of the bivariate snowflake model with noise g = 0:1 and N =1600

For each value s of the smoothing parameter, the combined significant areas for all four spatial conditions ðZ1; Z2Þ˛ fð0; 0Þ; ð1; 0Þ; ð0; 1Þ; ð1; 1Þg as deter-

mined by a separate run of GeoSPM are shaded in light gray. The maximum number of significant grid cells is obtained for s = 40, highlighted in red.
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segmentation metrics to each pair of maps, computing a mean score over

the 10 repetitions of each unique triplet (model, N, g) and variable. The

following metrics were used30,31: Jaccard index, Dice score, Matthew’s cor-

relation coefficient, symmetric uncertainty and the modified Hausdorff dis-

tance (as a fraction of the length of the model diagonal). The mean score
Figure 3. Synthetic snowflake models: recovery scores for GeoSPM a

sampling regimes

Lines denote the mean score across 10 random model realizations, shaded ar

identified by additive shading. GeoSPMdegradesmore slowly and gracefully as no

shown in Figure S10.
and deviation for each metric and computation method were aggregated

into the plots reported below.

Numerical experiments: Interaction parameterization

These experiments used the snowflake interaction model above and comprise

observations of its variables, augmented by an interaction term. The
nd kriging of model term Z1 in the low (N = 1600) and high (N = 3200)

eas its SD to either side of the mean. Areas of overlapping performance are

ise increases comparedwith kriging. Comparable results formodel term Z2 are
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Figure 4. Synthetic anti-snowflakemodels: recovery scores for GeoSPMand kriging ofmodel term Z1 in the low (N = 1600) and high (N = 3200)

sampling regime

Lines denote the mean score across 10 random model realizations, shaded areas its SD to either side of the mean. Areas of overlapping performance are

identified by additive shading. As is the case with the snowflakemodels, GeoSPMdegradesmore slowly and gracefully as noise increases comparedwith kriging.

Comparable results for model term Z2 are shown in Figure S11.
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interaction term is formed in the usual manner, by multiplying the observed

values for both variables, yielding augmented observations: y0 =

ðy1; y2; y1$y2ÞT. The regional arrangement of the model is the same as the

one employed for the bivariate snowflakemodel shown on the left of Figure S2.

A single sampling level Ninteraction = 15000 was used and the interaction

parameter c3 was increased from 0:25 to 0:5 in steps of 0:05. For each level

of c3, R = 10 independent datasets were randomly generated. We set a sin-

gle value for the smoothing parameter s = 60, which was the highest value for

the noise experiments. As before, a one-tailed t test at p < 0.05 FWE (voxel-

level family-wise correction) determined areas of significance and the same

set of image segmentation metrics was computed for the binary maps.

UK Biobank experiments

Results for the UK Biobank data were obtained by a single invocation of

GeoSPM for each of the four models listed in Table S6. We choose a

smoothing value of 7 km, specified as the diameter of a patch enclosing

95% of the density the bivariate normal distribution with equal variances.

This represents 20% of the width and height of our Birmingham analysis

area, and seemed appropriate for identifying local variation sensitive to the

plausible spatial scale of distinct geographically defined communities. This

time, a two-tailed t test at p < 0.05 FWE (voxel-level family-wise correction)

was used for thresholding the statistic maps. Analysis is restricted to areas

where the combined smoothing density of all observations is at least 10

times the kernel peak value.

Ethical approval

UK Biobank has approval from the North West Multi-centre Research Ethics

Committee as a Research Tissue Bank (RTB) approval. This approval means

that researchers do not require separate ethical clearance and can operate

under the RTB approval.
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RESULTS

Our numerical experiments with a known generative model

enabled us to measure performance against a known ground

truth under circumstances varying in density of sampling

and contamination with noise, enclosing the range likely to

obtain in real-world scenarios. It also permits robust evaluation

of graded interaction effects. In total, 2,160 independent

simulations with synthetic data were performed for the

univariate models, 1,440 for the bivariate models and 60

for the interaction model. Summarizing scores within the

three sets of simulations, we derive performance curves for

GeoSPM and kriging solutions in each case. We then proceed

to illustrate the application of GeoSPM to real world data from

UK Biobank.

Synthetic models
Displayed in the following figures are sets of independent simu-

lations comparing the performance of GeoSPM (in yellow) versus

kriging (in green) as a function of contaminating noise, measured

by five different indices of retrieval fidelity, using the snowflake

(Figure 3) or anti-snowflake (Figure 4) bivariate ground truths,

and low or high data sampling regimes (similar results for the

univariate ground truths are reported in Figures S7–S9 in



Figure 5. Recoveries of variable Z1 in the synthetic bivariate snowflakemodel acrossR = 10 repetitions for GeoSPM in the top row and kriging

with a Matérn kernel and nugget component in the bottom row, both in the high sampling regime (N = 3200)

Grid cells that lie in the target region are shown in white, those outside in gray. The number of significant tests out of 10 repetitions is superimposed in color for

each grid cell: dark blue indicates at least one significant test and dark red indicates themaximum number of 10, while cells with no significant test did not receive

any color. Kriging only produces recoveries up to a g value of 0.10, whereas GeoSPM still produces recoveries for much higher values of g. GeoSPM used t tests

with a family-wise error corrected p value of 0.05, for kriging we applied a z-test with an uncorrected p value of 0.05, a null mean of 0.5 and a sample deviation

obtained from the (positional) kriging variance estimate, as described in the section on ‘‘synthetic experiments: noise parameterization’’. Additional kriging re-

coveries are shown in Figures S21–S25 of supplemental note S3.5.

ll
OPEN ACCESSArticle
supplemental note S3.1, as are the results for the second term in

the bivariate models in Figures S10 and S11 of supplemental

note S3.2). A visual summary of the recovered binary maps un-

derlying these performance curves—for the bivariate snowflake
Figure 6. Recoveries produced by GeoSPM for the synthetic interactio

term Z13 Z2 in the bottom row, with N = 15,000 samples

Grid cells that lie in the target region are shown in white, those outside in gray. Th

each grid cell: dark blue indicates at least one significant test and dark red indicate

any color. Starting with a low value for the interaction effect c3 on the left, recover

Z1 in the same region is stronger. This correlates with the fact that observations ð1
null probability of 0:525 when c3 equals 0 in the same setting. As c3 increases towa

at the right), while recovery for variable Z1 decreases (probability p1 = 0:125 at

interaction effect). GeoSPM used t tests with a family-wise error corrected p val
model and the high sampling regime—affords a further qualita-

tive comparison between the two methods (Figure 5).

It is evident that GeoSPM offers superior efficiency across

most of the noise range in all models and on all metrics.
n model across R = 10 repetitions for variable Z1 in the top row and

e number of significant tests out of 10 repetitions is superimposed in color for

s themaximum number of 10, while cells with no significant test did not receive

y of the interaction term Z13 Z2 in region R3 is weak, while recovery for variable

; 1Þ occur with only a slightly elevated probability p3 = 0:6 compared with their

rd the right, recovery in the same region for term Z13 Z2 increases (p3 = 0:725

the right for observing ð1; 0Þ, which is half of what it would be if there was no

ue of 0.05.
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Figure 7. Synthetic snowflake interaction model: recovery scores for SPM model variable Z1 and term Z13 Z2 with N = 15,000 samples

Lines denote themean score across 10 randommodel realizations, shaded areas its SD to either side of themean.We increase the approximate interaction effect

in regionR3 of the grid from left to right, so that the probability of observing ð1; 1Þ growswhile the probability of observing ð1; 0Þ or ð0; 1Þ shrinks (the probability of
observing ð0; 0Þ stays the same). As a result, scores increase for the interaction term Z13 Z2 as it captures more of the overall variance, whereas scores for

variable Z1 decrease, until the only significant recovery occurs in region R1, which represents half of the target for Z1 and explains why the overall decrease

saturates.

ll
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GeoSPMmodels generally remain stable at higher levels of noise

than kriging. Both GeoSPM and kriging exhibit sensitivity to the

sampling regime, both in terms of variability and stability, but

the effects are dwarfed by the difference between the two ap-

proaches. The type of ground truth has negligible impact. In

addition, neither changing the (cross-) covariance function

used for kriging from a Matérn function to a Gaussian nor

applying a different regime for dealing with coincident observa-

tions—such as averaging—yields a discernible improvement to

the performance of kriging in this context (see Figure S12 in sup-

plemental note S3.3).

Additional results based on an extended selection of covari-

ance models for kriging show comparable outcomes and are

similar to those presented in Figures 3, 4, and 5, as documented

in Figures S13–S20 in supplemental note S3.4 and Figures S21–

S25 in supplemental note S3.5. For a more in-depth view of the

behavior of kriging parameters and variograms, refer to supple-

mental note S3.6 and S3.7.

The recoveries obtained from simulations of the interaction

model clearly show GeoSPM’s ability to detect an interaction

between two spatially distributed factors, even toward the

lower end of the approximate interaction effect size range

(Figure 6). Plots of the same five indices above demonstrate
8 Patterns 3, 100656, December 9, 2022
successful retrieval for these interaction simulations quantita-

tively (Figure 7). As we increase the size of the approximate

interaction effect c3, retrieval results for the interaction term

Z13 Z2 approach those of the previous, noise-free bivariate

snowflake model (setting aside the different sampling regimes).

At the same time, recovery for variable Z1 decreases in the

interaction region R3 (but not elsewhere), as the interaction

term explains more variance. Once the recovery for variable

Z1 in region R3 has vanished, the corresponding retrieval

scores are about half of those for the same term in the noise-

free model, which agrees with our expectation, because only

one of two snowflake shapes in the target are still retrieved at

that stage.

UK Biobank models
In real-world scenarios there is usually no explicit ground truth

against which an inference can be tested: the conclusion rests

on the integrity of the underlying statistical assumptions. Our

illustrative analysis of UK Biobank data24 therefore does not

seek to quantify GeoSPM’s fidelity but to demonstrate its poten-

tial utility in the medical realm. We focus on two aspects: the

derivation of marginalized spatial maps that disentangle a factor

of interest from a set of (interacting) confounders, and the use of



Figure 8. GeoSPM results for the four UK Biobank models of Birmingham (one column per model)

Geographic regression coefficient maps are shownwith outlines of significant areas in the corresponding two-tailed t test at p < 0.05 FWE (voxel-level family-wise

correction). The smoothing parameter value is 7,000 m.

ll
OPEN ACCESSArticle

Patterns 3, 100656, December 9, 2022 9



Figure 9. Geographic regression coefficient

maps with location names for a single run of

UK Biobank models 1 and 4

Model 1 is a univariate model of diabetes, model 4

adds sex, age, BMI, household income, and an

interaction term BMI 3 household income. Outlines

show significant areas in the corresponding two-

tailed t test at p < 0.05 FWE (voxel-level family-wise

correction). The smoothing parameter value is 7,000

m. The color map scale is the same as in Figure 8.
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conjunction analysis to identify regions jointly modulated bymul-

tiple spatially organized factors.

The propensity to develop type 2 diabetes is related to age,

sex, BMI, and household income, among other factors: a known

pattern clearly replicated in UK Biobank. A map of diabetes may

therefore reflect not just the propensity to develop the disease

but also the spatial structure of associated factors, both causal

and incidental. If we are pursuing a previously unknown spatial

factor—pollution, for example,32–34—we would wish to void our

diabetes map of known confounders, yielding a spatial distribu-

tion of fully marginalized propensity.

We demonstrate GeoSPM on individual-level UK Biobank

data drawn from Birmingham. Figure 8 presents the regression

coefficient maps and significant t test areas for four separate

models of diabetes with incrementally greater numbers of co-

variates. The first, univariate, model of diabetes (model 1) re-

veals an extensive concentric organization, positive in the cen-

ter and negative in the periphery, especially in the north and

south. The map becomes more tightly circumscribed with the

addition of sex, age, and BMI in model 2: the two negative

areas in the north and south are no longer significant, and a

stronger negative region emerges west of the center. With

the addition of further covariates and their interactions, the

spatial structure of diabetes that remains unexplained con-

verges on a set of focal, central regions, displayed in detail in

comparison with the univariate model in Figure 9. Here

the regional expression of diabetes is not explained by the

modeled covariates, suggesting the presence of other factors

in play to be subsequently investigated. In general, the

ensemble of significant areas for each model indicates the

spatial structure that remains unexplained for the correspond-

ing set of covariates, while the intensity and sign of each

regression coefficient map represent the degree of spatial as-

sociation of its covariate in the ensemble. With this in mind,

the individual maps for diabetes represent a spatial distribution

of propensity marginalized against the other covariates, but not

an absolute rate of disease.

We can now also examine the conjunctions of multiple maps,

not necessarily derived from the same model, within a

second-level analysis. Conjunctions are here simply the inter-

sections of two or more thresholded t maps, identifying areas
10 Patterns 3, 100656, December 9, 2022
where the regression coefficients and

their associated variables are jointly

significant. Applied to the outputs of

our most complex model above, the

approach and resulting conjunctions are

shown in Figure 10. Pairwise conjunctions
show a single region where diabetes and male sex are colocal-

ized; a distinct region where diabetes and age are inversely

associated; a very narrow region with an inverse relation

between diabetes and BMI; and a single region where diabetes

is inversely related to household income. Finally, a three-way

conjunction identifies a region where diabetes is spatially asso-

ciated with younger age, male sex, and lower income (Fig-

ure 11). Such conjunction maps identify regions where two

or more variables of interest are significantly expressed

together, representing subpopulations whose intersectionally

characteristic features may inform responsive action or further

investigation.

This concludes our illustration of GeoSPM. Note that the fact

that GeoSPM was able to identify significant regionally specific

effects provides a provisional form of predictive validity; under

the assumption that these effects were present in the popula-

tion—and could therefore be used to predict response

variables.

DISCUSSION

We propose, implement, and validate an approach to drawing

spatial inferences from sparse clinical data, extending to geosta-

tistics amature, principled framework for topological inference—

SPM—that is well established in the realm of brain imaging.

Compared with kriging, GeoSPM combines similar fidelity under

optimal conditions with substantially less sensitivity to noise

and under-sampling, greater robustness to failure, faster

computation, graceful handling of multiple scales of spatial vari-

ation, and formal inferential support. Its simplicity and accessi-

bility facilitate widespread application of the comprehensive

software implementation we have provided, built on the vali-

dated SPM open-source codebase, across a wide range of ap-

plications in medicine and beyond. Here, we consider six points

concerning the application, extension, and limitations of our

approach.

First, GeoSPM is applicable to problems of topological

spatial inference, whose formulation conforms to the minimal

assumptions of the underlying statistical framework. The

types of data, the choice of model evaluated at each point,

and the size and density of the evaluated grid are not under



Figure 10. Binary conjunctions of geographic regression significance maps for a single run of UK Biobank model 4

A binary conjunction is formed of the significant areas of a two-tailed t test at p < 0.05 FWE (voxel-level family-wise correction) between type 2 diabetes and, in

turn, sex, age, BMI, household income, and BMI 3 household income. Purple outlines show significant areas in the two-tailed t test of each variable, green

outlines show significant areas of conjunction: significant areas of conjunction arise in diabetes combined with each of sex (male), age (younger than 56.6 years),

BMI (below 27.9 kg/m2), and household income (below £35,015). No significant areas of conjunction exist for diabetes and BMI3 household income. Locations

shown in darker gray tone are not significant for any of the variables. The smoothing parameter value is 7,000 m.
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any strong constraint. Eliminating the spatial dimension allows

each point-wise model to be more flexible than the data

or computational resource could otherwise sustain. The

model could even be complicated spatially, extending to
encompass a local patch within otherwise the same framework.

This is a key strength in medical applications, where a spatial

effect typically needs to be disentangled from a wide array of

others.
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Figure 11. Example of a multiple conjunction

(here quaternary) of geographic regression

significance maps for a single run of UK

Biobank model 4

A binary conjunction is formed of the significant

areas of a two-tailed t test at p < 0.05 FWE (voxel-

level family-wise correction) between type 2 dia-

betes and, in turn, sex, age, BMI, household

income, and BMI 3 household income. Purple

outlines show significant areas in the two-tailed

t test of each variable, green outlines show signifi-

cant areas of conjunction: we can identify a signifi-

cant area where younger males of lower income are

associated with having type 2 diabetes in Birming-

ham. The smoothing parameter value is 7,000 m.
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Second, although here prototyped on temporally stationary

data, GeoSPM can be configured with time instead of the spatial

scale in the third dimension, enabling graceful modeling of both

spatial and temporal correlations. This has been used, for

example, in the context of electrophysiology35 where extra di-

mensions can include peristimulus time or, indeed, fast oscilla-

tory frequencies. The effects of manipulating noise and spatial

dependencies can then be evaluated across individual time se-

ries. Equally, the third dimension could be used for multimodal

data projected within the same grid, informing the inference by

multiple sampling modalities.

Third, the smoothing parameter may be constrained by prior

knowledge or independent estimation from the data, even if eval-

uating a set of models over a plausible range is arguably themost

robust approach. One may alternatively rely on the properties of

the inferred maps, as suggested in our validation analyses. All

competing spatial modeling frameworks rely on chosen param-

eters to some degree; ours is reduced to a single readily inter-

pretable one.

Fourth, no model could perfectly remedy defects in the data

itself, such as inadequate or biased coverage. The former can

be mitigated by confining inference to spatial locations exhibit-

ing sufficient sampling density; the latter, analogously to struc-

tured missingness, is not easily remediable within this or any

other inferential framework, and presents no more or less of a

problem.

Fifth, GeoSPM, like SPM itself, is a platform for standard fre-

quentist statistical inference, revealing the organization of

spatially structured variables without causal implications of any
12 Patterns 3, 100656, December 9, 2022
kind. But, also like SPM, it is open both to

Bayesian extensions, and causal modeling

upstream or downstream of the core

framework. There are many ways of

querying data, both with classical mass

univariate and Bayesian analyses of this

kind. Although not illustrated here, model

comparison using the F-statistic is a com-

mon application that could be enabled by

GeoSPM. For example, one could ask

whether household income has an effect

on the regional prevalence of diabetes,

having accounted for other demographic

variables, by comparing (general linear)
models that do and do not include household income as an

explanatory variable.

Finally, the SPM approach, in any formulation, is designed for

topological inference, not discrimination between distributed

spatial patterns, which may also arise in healthcare, and re-

quires explicit modeling of spatial interactions that only a multi-

variate model could conceivably deliver. Indeed, such use

would violate the underlying assumption of benign regional

dependence, as do analogous attempts in the domain of

lesion-deficit mapping of the brain.36 GeoSPM maps may

nonetheless be used to select features where the fragility

of the multivariate model, or the applicable data regime,

compel it.

SUPPLEMENTAL INFORMATION
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Supplemental Note 

S1 Bibliographic analysis 

Geospatial field bibliometrics were computed through a search of the titles and abstracts of the 

entire medical corpus from Microsoft Academic Graph from January 1990-March 2019 cited at 

least once (17.1 million papers), filtered by keyword string matching (non case-sensitive) within 

abstracts on the following terms: "geo*" & "map*" & "illness*|disease*|health*". This returned 

1897 papers, with mean citations (normalised by the average citation count of a paper in that 

journal) 1.67 (sd 2.87). 

 

Figure S1. Overlapped histograms of the decimal log-transformed annual citation rates of 1897 identified journal papers at the 
intersection of spatial analysis and medicine cited more than once (blue), and an identically filtered random sample of non-spatial 
biomedical papers (orange), published between 1990 and 2019. The untransformed distributions are significantly different on a Mann-
Whitney U test, p<0.001. 

 

S2 Supplemental methods 

S2.1.1 Synthetic data and generative models 

We start by defining a spatial domain as a rectangular subset � ≔ �0, �� � �0, 	� ⊂ ℝ� for some �, 	 ∈
ℕ�, and restrict � and 	 to positive integers so that  

� � �0, �� � �0, 	� � � ��� � 1, ��
�

���

�

���
� �� � 1, �� 

has a natural decomposition into � � 	 grid cells with coordinates ��, �� ∈ �� ≔ �1, … , � � �1, … , 	 . 

Assuming that there are ! binary factors in the generative model, the simulated response variables 

can be written as the components of a random vector " � �#�, … , #$�% ∈ �0,1 $, which is sampled at 
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random grid cells & ∈ �� in the underlying space. Our data generation mechanism is based on the 

factorisation of the joint distribution of " and & as 

Pr�", &; )� = Pr�" | &;  )�Pr�&� 

so that the response variables �#�, … , #$�% are conditioned on location & with model parameters ) 

fixed at �+�, +�, … �%. & is distributed independently of " and uniformly over ��.  

The conditioning allows breaking down the distribution of " spatially, by partitioning the grid �� into 

a small number of (not necessarily) continuous regions ,� ⊆  �� : � �  0, … , . –  1 for which local 

distributions P��"; )� ≔  Pr�" | & ∈  ,�;  )� can be specified for each region, k. As ! ∈ �1,2} for the 

models considered here, at most four probabilities are required for each of these local distributions. 

The partitions are based on arrangements of fractal shapes, shown in Figure S2 for the two bivariate 

models and in Figure S3 for the univariate models.  

In these images, a single pixel represents a grid cell, and the shading indicates the distinct 

distributions P��"; )�. The resolution of the bivariate models is 220 by 210 grid cells, whereas the 

resolution of the univariate models is 120 by 120 grid cells. Geometry for the fractal shapes is 

constructed by recursively substituting the edges of a (start) shape with a simple curve (Figure S4) 

and then rasterising the resulting polygon into the grid using MATLAB’s poly2mask function. We wish 

to examine the effect of noise and interactions in our numerical experiments, which leads us to 

consider two distinct parameterisations of the distributions P�.  

S2.1 Parameterisation of 23�"; )� for Examining Noise 

The first parameterisation is expressed in terms of a function p45678�∙� with parameters : and ;: 

P��"; )�  �  p45678�#�, #�;  :, ;�, : �  +�, ; �  +� � < 

p45678�∙�  is summarised in Table S1. The parameters : and ; are simply the values of the marginal 

probabilities p45678�=� �  1� and p45678�=� �  1� and are sufficient for defining p45678�#�, #�;  :, ;� if 

#�and #� are assumed to be independent.  

 

Figure S2. The four distinct regions ,� ∶  � �  0, … , 3, of the joint conditional probability Pr�" | &;  )� for the snowflake model (left) 
and the anti-snowflake model (right). 
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Figure S3. The two distinct regions ,� ∶  � �  0, 1 of the conditional probability Pr�# | &;  +� for the univariate models: snowflake model 
(left), anti-snowflake model (middle) and snowflake field model (right). 

 

Figure S4. The geometric construction used for the fractal shapes. Koch snowflake on the left, Koch anti-snowflake on the right. 

p45678�#�, #�; :, ;� =� � 0 =� � 1 p45678�=��
=� � 0 �1 � ;��1 � :� �1 � ;�: 1 � ;
=� � 1 ;�1 � :� ;: ;

p45678�=�� 1 � : : 1

Table S1. Probability table for the bivariate local distribution function p45678�#�, #�;  :, ;� 

As we move in � from one region to the next, we simulate spatially distinct conditions of the variables 

#�and #� by changing the regional expectations @���#�, #��A through p45678�#�, #�;  :, ;�: For the four 

regions of the bivariate models in Figure S2, the corresponding expectations are listed in Table S2, 

together with the respective values for : and ;. In the absence of uncertainty, the models generate 

the expected values in each region exactly, thus ,B only generates observations �0, 0�, ,� only �1, 0�, 

and so on.  

As more uncertainty (i.e., noise) is introduced—by adjusting the values for : and ;—the overall 

pattern of observations still holds, but other values have a non-zero probability of occurrence: ,B 

mostly generates observations �0, 0�, ,� mostly �1, 0�, and so on, until a maximum level of 

uncertainty is reached and each observation is equally probable in every region. By expressing : and 

; in terms of a single parameter C ∈ �0, … ,0.5A (the last two columns in Table S2), we can easily vary 

the degree of observation noise from a spatially deterministic and regionally differentiated form, to 

one where all regional differentiation is lost (see Figure S5 for an example). 
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 @���#�, #��A → … : → … ; → … :�C� ;�C�
,B �0,0� 0 0 C C
,� �1,0� 1 0 1 – C C
,� �0,1� 0 1 C 1 – C
,G �1,1� 1 1 1 – C 1 – C

H�I. JKLMNO�PKOQ �0.5,0.5� 0.5 0.5   

Table S2. Expected values of #�and #� in each region of the Snowflake and Anti-Snowflake models shown in Figure 1 for the given 
values of : and ;.  

The parameter vector ) in P��"; )� for the bivariate models is determined by C as shown in Table S2 

and has the following structure: 

) � )R , )R ≔ �C, 1 – C, C, 1 – C, C, C, 1 – C, 1 – CA 

We consider the deviation of observed values of " when C is non-zero from the expected values when 

C is 0 as simulating noise induced by confounding variables that are not captured in the data. Its 

effect of degrading the observable spatial differentiation of the variables of interest is key in our 

analysis of the performance of GeoSPM, and so we treat C as an independent variable in these 

numerical experiments. 

 

Figure S5. Random realisations of the bivariate Snowflake model for different levels of C (from left to right). 

Of course, real data also exhibit additive measurement noise. To simulate measurement noise an 

observation S ∈ ℝ$ with location T ∈ � is derived from " and & by adding random effects sampled 

from multidimensional uniform distributions: 

S � " + V,                   V ∼ uniformly on X�  � . . .  �  X$ , X6  �  �0, 0.005A 
T � & + Y,                Y ∼ uniformly on �0, 1�  �  �0, 1� 

A practical benefit of applying ‘spatial noise’ Y to & is that the probability of two randomly drawn 

elements �Z6, [6� and \Z� , [�] coinciding at the same location [6  �  [� is minimised. This is relevant 

for the geostatistical method used for validation in these numerical experiments, because such 

collisions would produce singular, non-positive definite covariance matrices, when predicting 

observations and need to be removed from any data set prior to model estimation.  
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As GeoSPM only operates in terms of the discrete space ��, it always applies the congruency T ≡ & 

and so the added noise Y has no effect. We will also consider an alternative method for resolving 

spatially coincident observations—by averaging observations from the same location—and provide 

corresponding results for kriging below. 

We can now summarise the procedure for generating a spatially-referenced data set of size _ and 

noise level CB as follows: 

1. Draw a uniform sample of _ grid cell coordinates `6 ∈ �1, … , � � �1, … , 	 , P: 1, … , _ 

2. For each grid cell coordinate `6 draw a sample b6 from P�\"; )R], where `6 ∈ ,� 

3. Obtain an observation Z6 at location [6 by adding small amounts of random noise to b6 and `6:  
Z6 � b6 + V6 
[6 � `6 + Y6 

S2.1.2 Parameterisation of 23�"; )� for Examining Interactions 

A common feature of regression modelling is the inclusion of interaction terms, when there is 

reasonable belief that the marginal effect of one variable depends on the value of another. In a spatial 

setting, an interaction could be described as the degree to which the observation of a value of one 

variable is affected by the value of another variable at the same location. Therefore, GeoSPM’s ability 

to detect interactions merits additional evaluation.  

Here, a second parameterisation of the local distributions P� can be motivated by interpreting the 

spatial response introduced earlier as a concentration instead of a measure of closeness. The 

constituent probabilities of the P� are then the regionally expected concentrations of their respective 

observations �#�, #�� ∈ ��0, 0�, �1, 0�, �0, 1�, �1, 1� . As the response of local univariate regression 

models, these concentrations should have approximately additive structure, given the objective is to 

model interactions. To this end, we define the P� as a function p64c8d�ec654�∙� with parameters :B, L�, L� 

and LG, which we assign from a global parameter vector ) for each region ,�: 

P��"; )�  �  p64c8d�ec654�#�, #�;  :B, L�, L�, LG�, :B �  +� , L6  �  +� � 6< 

Table S3 provides a definition of p64c8d�ec654�∙�. The parameters L6 approximate the effect sizes 

induced by the observations of the variables �#�, #�� in the local univariate regression models, 

which—due to their binary values—correspond to the effect of #�, #� and their interaction #� � #� on 

the concentration or response. This is only an approximation of effect size, because of the non-linear 

fall-off of the Gaussian kernels used to synthesize the response. 

p64c8d�ec654�#�, #�; :B, L�, L�, LG� =� � 0 =� � 1
=� � 0 :B :B + L�
=� � 1 :B + L� :B + L� + L� + LG

Table S3. Probability table for the bivariate local distribution function p64c8d�ec654�#�, #�; :B, L�, L�, LG� 
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The parameters L6 define the respective probabilities relative to the parameter :B, the probability of 

generating the observation �0, 0�. The L6 have a maximum range of �– 1, … ,1A, subject to the 

conditions that each :6 is a valid probability �:6 ∈ �0, … ,1A� and that all the resulting probabilities add 

up to 1: 

:� �  :B  +  L� 

:� �  :B  +  L� 

:G �  :B  + L�  +  L�  +  LG 

1 �  4:B + 2L� + 2L� + LG 

For the interaction experiments, we define the same four distinct regions ,B...G as for the bivariate 

snowflake model (shown on the left of Figure 1) in the noise parameterisation and vary the magnitude 

of the interaction effect LG in region ,G. In detail, in region ,B, all observations are equiprobable, 

representing the null state, as all three effects L�, L� and LG are 0. ,� and ,� are regions where we 

either observe a non-zero effect L� for variable #� or a non-zero effect L� for variable #� but no effect 

that corresponds to their interaction. 

Finally, we construct region ,G to model an interaction effect LG at different intensities while keeping 

:B constant at a non-zero level and assuming L� � L�. Based on (arbitrarily) setting :B to a small 

non-zero value of 0.025 and obeying all constraints, LG can range between 0 and 0.9. Given :B and a 

value for LG we can derive L� � L�  �  � – ijk – el
i  . The regional probabilities chosen for the experiments 

are summarised in Table S4 (including null values for when LG � 0), where we picked 6 equally 

spaced settings between 0.25  and 0.5 for the interaction effect LG in ,G. 

 ,B ,� ,� ,G�4mnnA ,G�B.�oA ,G�B.GA ,G�B.GoA ,G�B.iA ,G�B.ioA ,G�B.oA
:B 0.25 0.125 0.125 0.025 0.025 0.025 0.025 0.025 0.025 0.025
L� 0 0.25 0 0.225 0.1625 0.15 0.1375 0.125 0.1125 0.1
L� 0 0 0.25 0.225 0.1625 0.15 0.1375 0.125 0.1125 0.1
LG 0 1 1 0 0.25 0.3 0.35 0.4 0.45 0.5
:� 0.25 0.375 0.125 0.25 0.1875 0.175 0.1625 0.15 0.1375 0.125
:� 0.25 0.125 0.375 0.25 0.1875 0.175 0.1625 0.15 0.1375 0.125
:G 0.25 0.375 0.375 0.475 0.6 0.625 0.65 0.675 0.7 0.725

Table S4. Approximate effect sizes and derived probabilities for each region of the interaction experiments. Region ,Gis the only region 
that is varied across experiments, by increasing the magnitude of the interaction effect LG specified in square brackets. 

As with the noise parameterisation, a data set of _ observations can be generated in a few simple 

steps. Again, we add random effects V and Y from multidimensional uniform distributions as defined 

above: 

1. Draw a uniform sample of _ grid cell coordinates `6 ∈ �1, … , � � �1, … , 	 , P: 1, … , _ 

2. For each grid cell coordinate `6 draw a sample b6 from P��"; )64c8d�ec654�, where `6 ∈ ,� and 

)64c8d�ec654 is the vector of combined regional parameters :B, L�, L� and LG for all four regions. 
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3. Obtain an observation Z6 at location [6 by applying small amounts of random noise to b6 and 

`6:  
Z6 � b6 + V6 
[6 � `6 + Y6 

This completes our description of the synthetic data used to establish the face validity of GeoSPM. 

S2.2 UK Biobank data 

UK Biobank provides a large collection of health and genetic information for its prospective cohort 

of more than 500 000 participants recruited between 2006 and 2010 with assessment centres 

throughout Great Britain (https://www.ukbiobank.ac.uk/) 24. 

We extracted a set of variables from UK Biobank in a region defined by a 35 km by 35 km square 

(spanning from 388000E, 423000N in the south-west corner to 269000E, 304000N in its north-east 

corner, in co-ordinates of the Ordnance Survey National Grid). The variables were sex (field 31), age 

(field 21022), body mass index (BMI, field 21001), household income (field 738) and the location of the 

participants (fields 20074 and 20075). Location information is based on the address to which the 

participants invitation was sent. Address verification and geo-coding was performed by UK Biobank 

using commercial software from Experian PLC and locations are provided at 100 metre and 1000 

metre resolutions, the latter being the resolution available to us. All location co-ordinates use the 

Ordnance Survey reference. UK Biobank provides one or more temporal instances for certain fields. 

For such fields, the value of the earliest instance was chosen, which was the case for BMI and 

household income. In addition, ICD-10 and ICD-9 diagnosis codes were gathered from a separate 

hospital inpatient data table named HESIN_DIAG provided through field 41259. From these diagnosis 

codes we defined an indicator variable for type 2 diabetes, whose value was set to 1 whenever a 

participant had a record of either an ICD-10 code in block E11 (“type 2 diabetes mellitus”) or at least 

one of a handful of relevant ICD-9 codes as specified in Table S7 in Supplemental Note. The number 

of participants with available data for all selected variables in the selected area of Birmingham was 

18193, resulting in a collection of as many individual locations and associated individual observations 

that was used in the subsequently described analysis.  

As a preliminary sanity check for the presence and degree of associativity, the diabetes indicator 

variable was entered as the response variable into a multiple Bayesian logistic regression model 

with a ridge prior. Sex, age, BMI, household income and the interaction between BMI and household 

functioned as predictors. Age, BMI and household income were centred at 0 and divided by their 

respective sample standard deviations. The interaction term was then formed as a simple 

multiplication. The model was evaluated by BayesReg version 1.9.1 [S1] in MATLAB. BayesReg uses a 

Markov Chain Monte Carlo (MCMC) Gibb’s sampler. Posterior parameters were estimated from a 

single chain of 250000 samples (after a burn-in period of the same number of samples), of which 

only every 5th sample was used for computing the estimate. The posterior means of the regression 

coefficients and their credible intervals were as follows: 
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Predictor Coefficient Posterior 
Mean ± SD 

95% Credible 
Interval 

t-Statistic ESS 

Sex 0.748 ± 0.054 (0.642 to 0.855) 13.79 82.2 

Age 0.313 ± 0.029 (0.257 to 0.371) 10.73 83.5 

BMI 0.719 ± 0.025 (0.670 to 0.769) 28.64 71.5 

Household Income -0.344 ± 0.036 (-0.416 to -0.274) -9.50 61.9 

BMI x Household Income 0.053 ± 0.028 (-0.001 to 0.108) 1.93 73.0 

Table S5. Results of the preliminary Bayesian logistic ridge regression analysis of the UK Biobank diabetes data set extracted for 
Birmingham. 

The results showed that there is a reasonably strong association between type 2 diabetes and all 

main terms, but evidence for an interaction between BMI and household income appears to be weak. 

On the basis of this preliminary analysis, we directed our attention to the spatial variability of diabetes 

and the question of how much of this spatial variability is driven by the other variables. We defined a 

progression of four models, listed in Table S6.  

Model Type 2 Diabetes Sex Age BMI Household Income BMI x Household 

Income 

1 ∎ � � � � �
2 ∎ ∎ ∎ ∎ � �
3 ∎ ∎ ∎ ∎ ∎ �
4 ∎ ∎ ∎ ∎ ∎ ∎

Table S6. The four GeoSPM models used for the Birmingham data from UK Biobank. 

It is important to keep in mind that unlike in this preliminary analysis, in these GeoSPM models, 

type 2 diabetes is no longer a response variable but an explanatory or independent variable, which 

means its effect is marginalised relative to the other variables in each model. By applying a single 

colour map to all regression coefficient maps across models, the intensity and nature of 

topological changes—in the marginalised contribution of each variable—become visible, not only 

within a single model but over the ensemble of four models. Similarly, changes in the extent and 

location of significant areas, due to the addition of variables as we move from one model to the 

next, allow us to assess patterns of spatial variability. Lastly, using intersections between 

significant areas of multiple variables, we can identify areas of significant conjunctions between 

those variables[S2]. 

 

S2.3 Kriging 

Kriging[S3] is an ensemble of linear least-squares regression techniques for predicting the value of a 

random field at an unsampled location from observations at other locations. It is commonly used 

when interpolating spatially-referenced point data over a surface and provides a measure of the 
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uncertainty in its predictions. In statistics and machine learning, kriging is essentially an application 

of multivariate Gaussian process prediction. Crucially, kriging requires an explicit model of the 

spatial covariance and cross-covariance of the data, which needs to be chosen a priori. As the 

random field is generally assumed to be second-order stationary and isotropic, the covariance can 

be expressed as a function of the Euclidean distance between a pair of points, independently of their 

actual location in the spatial domain. A theoretical variogram is the quasi-dual form of a covariance 

model (it is slightly more generic in some situations). An overview of some common theoretical 

variograms is shown in Figure S6. Parameters required by the selected model are estimated from 

the data and substituted for the true values when computing the predictions. The covariance and 

cross-covariance model we used for all kriging predictions presented in the main text is the family 

of Matérn functions[S4] together with an added “nugget” component. The Matérn model exhibits 

adaptable smoothness controlled by a parameter x and is recommended as a sensible default choice 

in the literature[S5], [S6]. The nugget component adds a discontinuous jump to the covariance function 

at coincident points and captures variance due to measurement error. Its relative strength is 

specified by a single numeric parameter. Additional parameters of the Matérn model are the sill, 

which determines its contribution to the covariance, as well as the range which reflects its spatial 

scale. For the main results reported in Figures 3 and 4, as well as Figures S7–S11, we left parameter 

x fixed at its default gstat setting of 0.5, whereas for the extended comparison of kriging covariance 

models reported in Sections S3.4, S3.5, S3.6 and S3.7), x was estimated within a pre-specified range 

of [0.1, 5]. 

In cases where the experimental data contained several variables, gstat estimated a linear model of 

coregionalization (LCM), which expressed all required auto- and cross-covariances as linear 

combinations of a Matérn function and a nugget component. The range parameter is constrained by 

gstat to be the same for all covariances in the LCM and was estimated from the first variable in the 

data prior to estimating the LCM. We configured gstat to use ordinary (co-)kriging with a constant 

but unknown mean in a global search window. 

In addition to the Matérn model, we present a wider comparison of results with the kriging models 
shown in Figure S6 in Section S3. 
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Figure S6. A range of common theoretical variograms to be fitted to the synthetic model data in the kriging experiments. 

 

S3 Additional Results 

S3.1 Synthetic Experiment Results for Univariate Models 

 

Figure S7. Synthetic univariate snowflake models: Recovery scores for the single GeoSPM and kriging model term in the low (N = 600), 
middle (N = 1200) and high (N = 1800) sampling regime. Lines denote the mean score across 10 random model realisations, shaded 
areas its standard deviation to either side of the mean. GeoSPM degrades more slowly and gracefully as noise increases compared 

with kriging. 
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Figure S8. Synthetic univariate anti-snowflake models: Recovery scores for the single GeoSPM and kriging model term in the low (N 
= 600), middle (N = 1200) and high (N = 1800) sampling regime. Lines denote the mean score across 10 random model realisations, 
shaded areas its standard deviation to either side of the mean. Areas of overlapping performance are identified by additive shading. 

GeoSPM degrades more slowly and gracefully as noise increases compared with kriging. 

 

Figure S9. Synthetic univariate snowflake field models: Recovery scores for the single SPM and kriging model term in the low (N = 
600), middle (N = 1200) and high (N = 1800) sampling regime. Lines denote the mean score across 10 random model realisations, 
shaded areas its standard deviation to either side of the mean. Areas of overlapping performance are identified by additive shading. 
GeoSPM degrades more slowly and gracefully as noise increases compared with kriging. 
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S3.2 Synthetic Experiment Results for Term "y of the Bivariate Models 

 

Figure S10. Synthetic snowflake models: Recovery scores for GeoSPM and kriging model term #� in the low (N = 1600) and high (N = 
3200) sampling regime. Lines denote the mean score across 10 random model realisations, shaded areas its standard deviation to 
either side of the mean. Areas of overlapping performance are identified by additive shading. GeoSPM degrades more slowly and 

gracefully as noise increases compared to kriging. 

 

Figure S11. Synthetic anti-snowflake models: Recovery scores for GeoSPM and kriging model term #� in the low (N = 1600) and high 

(N = 3200) sampling regime. Lines denote the mean score across 10 random model realisations, shaded areas its standard deviation 
to either side of the mean. Areas of overlapping performance are identified by additive shading. GeoSPM degrades more slowly and 
gracefully as noise increases compared with kriging. 
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S3.3 Synthetic Experiment Results for Kriging When Averaging Coincident Observations 

 

Figure S12. Synthetic bivariate snowflake models: Recovery scores for kriging model term #� with a Matérn covariance function (blue) 
and a Gaussian covariance function (purple) in the high (N = 3200) sampling regime. Lines denote the mean score across 10 random 

model realisations, shaded areas its standard deviation to either side of the mean. In both cases coincident observations were 
averaged and reduced to one instead of adding a small amount of random noise to their locations as before. However, this did not 
change the performance in any meaningful way when compared with a Matérn covariance function with random noise added (as shown 
in Figure 3): That curve is almost identical to the averaged version displayed here in blue and was therefore left out. The Gaussian 
covariance function performs slightly worse than the Matérn covariance. This leads us to believe that kriging performance is not 

improved in our experiments by choosing a different coincident observation regime or covariance function (which is confirmed by the 
results presented in section S3.4) 
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S3.4 Extended Synthetic Experiment Results for Term "z of the Bivariate Model 

 

Figure S13. Synthetic snowflake models: Recovery scores for various kriging models with a nugget term in comparison with SPM for 
term #� and the high sampling regime (N = 3200). 

 

Figure S14. Synthetic anti-snowflake models: Recovery scores for various kriging models with a nugget term in comparison with 
SPM for term #� and the high sampling regime (N = 3200). 
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Figure S15. Synthetic snowflake models: Recovery scores for various kriging models without a nugget term in comparison with SPM 
for term #� and the high sampling regime (N = 3200). 

 

Figure S16. Synthetic anti-snowflake models: Recovery scores for various kriging models without a nugget term in comparison with 
SPM for term #� and the high sampling regime (N = 3200). 
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Figure S17. Synthetic snowflake models: Recovery scores for various kriging models with a nugget term in comparison with SPM for 
term #� and the low sampling regime (N = 1600). 

 

Figure S18. Synthetic anti-snowflake models: Recovery scores for various kriging models with a nugget term in comparison with 
SPM for term #� and the low sampling regime (N = 1600). 
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Figure S19. Synthetic snowflake models: Recovery scores for various kriging models without a nugget term in comparison with SPM 

for term #� and the low sampling regime (N = 1600). 

 

Figure S20. Synthetic anti-snowflake models: Recovery scores for various kriging models without a nugget term in comparison with 
SPM for term #� and the low sampling regime (N = 1600). 
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S3.5 Extended Synthetic Experiment Kriging Recoveries for Term "z of the Bivariate Model 

 

Figure S21. Kriging recoveries of term #� for the Bessel kernel. Columns represent increasing noise levels. Each row shows a 
combination of the synthetic model used and whether a nugget component was included in the variogram. 
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Figure S22. Kriging recoveries of term #� for the circular kernel. Columns represent increasing noise levels. Each row shows a 
combination of the synthetic model used and whether a nugget component was included in the variogram. 
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Figure S23. Kriging recoveries of term #� for the exponential kernel. Columns represent increasing noise levels. Each row shows a 
combination of the synthetic model used and whether a nugget component was included in the variogram. 
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Figure S24. Kriging recoveries of term #� for the Matérn kernel. Columns represent increasing noise levels. Each row shows a 
combination of the synthetic model used and whether a nugget component was included in the variogram. 
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Figure S25. Kriging recoveries of term #� for the spherical kernel. Columns represent increasing noise levels. Each row shows a 
combination of the synthetic model used and whether a nugget component was included in the variogram. 
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S3.6 Summary of Kriging Parameters for the Extended Synthetic Experiments 

 

Figure S26. Synthetic snowflakes model: Estimated partial sill parameters for the main (left) and nugget (right) variogram 
components in the high sampling regime (N = 3200). Lines denote the mean estimate across 10 random model realisations, shaded 
areas its standard deviation to either side of the mean. 

 

Figure S27. Synthetic snowflakes model: Estimated partial sill parameters for the main (left) and nugget (right) variogram 
components in the low sampling regime (N = 1600). Lines denote the mean estimate across 10 random model realisations, shaded 
areas its standard deviation to either side of the mean. At high levels of noise, estimates for some main components become 
unreliable, resulting in extreme values. 

 

Figure S28. Synthetic anti-snowflakes model: Estimated partial sill parameters for the main (left) and nugget (right) variogram 
components in the high sampling regime (N = 3200). Lines denote the mean estimate across 10 random model realisations, shaded 
areas its standard deviation to either side of the mean. 
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Figure S29. Synthetic anti-snowflakes model: Estimated partial sill parameters for the main (left) and nugget (right) variogram 
components in the low sampling regime (N = 1600). Lines denote the mean estimate across 10 random model realisations, shaded 
areas its standard deviation to either side of the mean. At high levels of noise, estimates for some main components become 
unreliable, resulting in extreme values. 

 

Figure S30. Synthetic snowflakes model: Estimated range parameters for the main variogram component in the high sampling 
regime (N = 3200, left) and low sampling regime (N = 1600, right). Lines denote the mean estimate across 10 random model 
realisations, shaded areas its standard deviation to either side of the mean. At high levels of noise, estimates unreliable, resulting in 
extreme values. 

 

Figure S31. Synthetic anti-snowflakes model: Estimated range parameters for the main variogram component in the high sampling 
regime (N = 3200, left) and low sampling regime (N = 1600, right). Lines denote the mean estimate across 10 random model 
realisations, shaded areas its standard deviation to either side of the mean. At high levels of noise, estimates unreliable, resulting in 
extreme values. 



25 

 

S3.7 Summary of Kriging Variograms for the Extended Synthetic Experiments 
S3.7.1 Bessel Kernel 

 

Figure S32. Synthetic snowflakes model: Empirical semivariograms and fitted Bessel kernel with a nugget component at three 
different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run of the 
experiments. 

 

Figure S33. Synthetic snowflakes model: Empirical semivariograms and fitted Bessel kernel without a nugget component at three 
different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run. 

 

Figure S34. Synthetic anti-snowflakes model: Empirical semivariograms and fitted Bessel kernel with a nugget component at three 
different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run. 

 

Figure S35. Synthetic anti-snowflakes model: Empirical semivariograms and fitted Bessel kernel without a nugget component at 
three different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run. 
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S3.7.2 Circular Kernel 

 

Figure S36. Synthetic snowflakes model: Empirical semivariograms and fitted circular kernel with a nugget component at three 
different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run. 

 

Figure S37. Synthetic snowflakes model: Empirical semivariograms and fitted circular kernel without a nugget component at three 
different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run. 

 

Figure S38. Synthetic anti-snowflakes model: Empirical semivariograms and fitted circular kernel with a nugget component at three 
different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run. 

 

Figure S39. Synthetic anti-snowflakes model: Empirical semivariograms and fitted circular kernel without a nugget component at 
three different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run. 
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S3.7.3 Exponential Kernel 

 

Figure S40. Synthetic snowflakes model: Empirical semivariograms and fitted exponential kernel with a nugget component at three 
different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run. 

 

Figure S41. Synthetic snowflakes model: Empirical semivariograms and fitted exponential kernel without a nugget component at 
three different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run. 

 

Figure S42. Synthetic anti-snowflakes model: Empirical semivariograms and fitted exponential kernel with a nugget component at 
three different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run. 

 

Figure S43. Synthetic anti-snowflakes model: Empirical semivariograms and fitted exponential kernel without a nugget component 
at three different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run. 
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S3.7.4 Gaussian Kernel 

 

Figure S44. Synthetic snowflakes model: Empirical semivariograms and fitted Gaussian kernel with a nugget component at three 
different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run. 

 

Figure S45. Synthetic anti-snowflakes model: Empirical semivariograms and fitted Gaussian kernel with a nugget component at 
three different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run. 
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S3.7.5 Matérn Kernel 

 

Figure S46. Synthetic snowflakes model: Empirical semivariograms and fitted Matérn kernel with a nugget component at three 
different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run. 

 

Figure S47. Synthetic snowflakes model: Empirical semivariograms and fitted Matérn kernel without a nugget component at three 
different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run. 

 

Figure S48. Synthetic anti-snowflakes model: Empirical semivariograms and fitted Matérn kernel with a nugget component at three 
different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run. 

 

Figure S49. Synthetic anti-snowflakes model: Empirical semivariograms and fitted Matérn kernel without a nugget component at 
three different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run. 
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S3.7.6 Spherical Kernel 

 
 

Figure S50. Synthetic snowflakes model: Empirical semivariograms and fitted spherical kernel with a nugget component at three 
different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run. 

 

Figure S51. Synthetic snowflakes model: Empirical semivariograms and fitted spherical kernel without a nugget component at three 
different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run. 

 

Figure S52. Synthetic anti-snowflakes model: Empirical semivariograms and fitted spherical kernel with a nugget component at 
three different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run. 

 

Figure S53. Synthetic anti-snowflakes model: Empirical semivariograms and fitted spherical kernel without a nugget component at 
three different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run. 
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S3.7.7 Wave Kernel 

 

Figure S54. Synthetic snowflakes model: Empirical semivariograms and fitted wave kernel with a nugget component at three 
different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run. 

 

Figure S55. Synthetic anti-snowflakes model: Empirical semivariograms and fitted wave kernel with a nugget component at three 
different noise levels for terms Z1 and Z2 and their cross-covariance in the high sampling regime (N = 3200) for a single run. 

 

 

ICD-9 codes 

ICD-9 Group Description ICD-9 Codes in Group 

250.0 Diabetes mellitus without mention of 
complication 

250.00, 250.02 

250.1 Diabetes with ketoacidosis 250.10, 250.12 

250.2 Diabetes with hyperosmolarity 250.20, 250.22 

250.3 Diabetes with other coma 250.30, 250.32 

250.4 Diabetes with renal manifestations 250.40, 250.42 

250.5 Diabetes with ophthalmic manifestations 250.50, 250.52 

250.6 Diabetes with neurological manifestations 250.60, 250.62 

250.7 Diabetes with peripheral circulatory disorders 250.70, 250.72 

250.8 Diabetes with other specified manifestations 250.80, 250.82 

250.9 Diabetes with unspecified complication 250.90, 250.92 

Table S7. ICD-9 codes used in the extraction of the type II diabetes indicator variable. 
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S4 GeoSPM Software Overview 

GeoSPM is implemented as a well-structured collection of MATLAB classes and packages in the 

“geospm” and “hdng” namespaces, preventing name-collisions with a user’s existing MATLAB 

installation. It makes use of a separately provided SPM toolbox (synthetic_volumes_toolbox) to allow 

in-memory generation of SPM scan files, which we hope to integrate into SPM proper in the future. 

An overview of key classes and packages is shown in Figure S56. A potential user of GeoSPM invokes 

a single function – geospm.compute() – to initiate an analysis, passing a path to a working directory, 

a SpatialData object and a set of name-value options. All results will be stored as files in the given 

directory, including images of all regression coefficients and vector-based shape files demarking 

regions of significance for any applied thresholds. A SpatialData object can be constructed manually 

or obtained via loading a comma-separated value (CSV) file from disk via geospm.load_data(). In 

order to produce geo-referenced TIFF images, GeoSPM requires a SpatialData object to have an 

attached co-ordinate reference system. This can be specified when calling geospm.load_data() or 

manually, by creating a hdng.SpatialCRS object from an appropriate identifier. For example, 

‘EPSG:27700’ is the identifier for the Ordnance Survey National Grid used by UK Biobank. 

 

Figure S56. Class diagram of GeoSPM. 

Internally, geospm.compute() uses a SpatialAnalysis object to define a pipeline comprising a number 
of successive processing stages, each concerned with a clearly de-lineated task, such as 
transforming continuous locations to discrete grid co-ordinates, rendering a Gaussian kernel of 
desired size at each location of the data, running SPM itself, colour-mapping output images, and 
extracting vector-based areas of significance for each threshold.  
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