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Methods

Here we provide a detailed description of DFT and ML techniques. We note that some details may be 
redundant with the main text, but we reiterate those for completeness. 

Dataset
The curated dataset used in this study is derived from the OCELOT (Organic Crystals in Electronic and 
Light-Oriented Technologies) database of DFT computed properties for organic, -conjugated molecules 
and crystal structures.1 A detailed description of the methods to generate the high-throughput data is 
provided elsewhere.1 In brief, the -conjugated molecules were obtained from the crystal structures in 
the OCELOT database using the OCELOT API.1 Each molecule is fragmented to obtain the largest, 
contiguous -conjugated fragment that is then used for the subsequent DFT calculations (see Figure S1). 
The DFT structure optimizations, single-point energies, and TDDFT evaluations for the low-lying excited 
states are performed with (ionization potential) IP-tuned LC-HPBE functionals derived for each distinct 
molecule and the Def2SVP basis set.2-4 Entries that do not contain all the DFT/TDDFT values or have 
erroneous values are removed. All calculations are performed in Gaussian 16 Rev. A.03.5

ML models and training
ML model training was performed in PyTorch version 1.10 and used Cuda 11.4 for GPU acceleration.6, 7 A 
five-fold cross-validation method was implemented instead of a fixed train-test data split for training the 
models as the dataset, though it contains 25k molecules and 200k energy entries, is small. Moreover, this 
method provides insights into the trained models' generalizability over the dataset's diversely sampled 
chemical space. All models, except models with evidential deep learning, were subject to five-fold cross-
validation. The performance metrics reported here are the averaged results of five-fold cross-validation 
and the respective standard deviations. The hyperparameters for each model are tuned with Optuna 
version 2.10, where the metric R2 is maximized.8 The hyperparameters for all models were obtained using 
only one random 80:20 split of the dataset. The mean squared error (MSE) loss function was used for 
training all models except the evidential deep learning models. The two-dimensional molecular 
descriptors and extended connectivity fingerprints (ECFP) that were used as the input features to some 
models are generated with RDKit 2021.3.5.9, 10 The two-dimensional descriptors are normalized by first 
dividing each feature by its maximum absolute value and then fitting each feature to the normal 
distribution. A list of descriptors can be found in the comma separated-values (CSV) file of SI.

The first-generation models were trained with Scikit-Learn version 0.24.2 with training accelerated by 
Scikit-learn-intelex version 2021.2.11 The classical ML algorithms used were ridge regression (RR), support 
vector machine (SVM), and kernel ridge regression (KRR). Two model sets were generated – one with only 
molecular descriptors as input features and the other with molecular descriptors and ECFP, where the 
length of the bit vector of ECFP was tuned along with the other hyperparameters of the model. 

Tuning a support vector regression model requires finding the optimal weights such that they minimize 𝑤 

the slack variables  and , which represent the errors of  above and below the target  respectively 𝜁 𝜁 ∗ 𝑓(𝑥𝑖) 𝑦𝑖

(see equations 1-4). Here, we tuned the kernel along with and . During parameter tuning, we chose 𝑓 𝐶 𝜖



between the linear function kernel, polynomial function kernel, radial basis function kernel, and the 
sigmoid function kernel. 
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2
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For both ridge regressions, the cost is minimized by tuning the weights, . Unlike standard linear 𝐶 𝑤 

regression, a regularization term  is added to the sum of the squared errors. The regularization term was 𝜆

varied between 0.1 and 2 when the ridge regression model hyperparameters were tuned.

Kernel ridge regression keeps the regularization term, , but applies a kernel function, , to the input 𝜆 𝑓 

features (see equations 5-6). During parameter tuning, the kernels were varied using the same selection 
as for the support vector machine kernels but also included the Laplacian kernel. 

𝐶 =
1
2

 
𝑁

∑
𝑖

(𝑦𝑖  ‒  𝑤𝑇 𝑥𝑖)2  +  
1
2

𝜆||𝑤||2#(5)

𝐶 =   
𝑁

∑
𝑖 = 1

(𝑦𝑖   ‒  𝑤𝑇𝑓(𝑥𝑖) )2 +  𝜆||𝑤||2#(6)

For the second-generation feed-forward networks (FFN), the number of layers in the network, the number 
of nodes per layer, and the rate of node dropouts were tuned. While tuning the models, we used the ReLU 
activation function with the Adam optimizer, and the learning rate was held constant at 0.001.12, 13 Similar 
to the first-generation models, two model sets were generated – one that used only the molecular 
descriptors as input and one that used both molecular descriptors and ECFP bit-vectors with their length 
tuned. 

In general, each network is a sequence of fully connected layers  where  accepts the chemical ℎ1 … ℎ𝑛 ℎ1

features, , as input. These are either the RDKit-created features or those concatenated with the ECFP 𝑥 

bit-vectors. The final layer  output the estimation of a molecule's electronic property (see equations 7-ℎ𝑛

8). The number of layers was tuned via Optuna, and the models have between one and five layers, 
depending on the properties they predict and the features that provide their input. 

ℎ1  =  𝑔1(𝑊𝑇
1 𝑥  +  𝑏1)#(7)

ℎ𝑛 =  𝑔𝑛(𝑊𝑇
1 ℎ𝑛 ‒ 1  +  𝑏𝑛)#(8)

The third-generation models were created with message-passing neural networks (MPNN) for quantum 
chemistry.14 The MPNN utilizes a graph-based representation of molecules where nodes represent atoms 
and edges represent bonds. The nodes and edges are associated with features like the type of atom and 
the type of bond on which the MPNN operates to provide a learned representation of the molecule. The 

learning process for MPNNs involves  message-passing steps. During each step , the features  𝑇 𝑡 < 𝑇 ℎ𝑡
𝑣



associated with a node  are updated using an update function . The information  to update the 𝑣 𝑈𝑡 𝑚𝑡

feature is gathered by the message function  from features  of atoms  in the neighborhood of  and 𝑀𝑡 ℎ 𝑡
𝑤 𝑤 𝑣

associated bonds  as described by equations 9 and 10.𝑒𝑣𝑤

𝑚𝑡 =  ∑
𝑤 ∈ 𝑁(𝑣)

𝑀𝑡(ℎ𝑡
𝑣,ℎ 𝑡

𝑤,𝑒𝑣𝑤 )#(9)

ℎ𝑡 + 1
𝑣 = 𝑈𝑡(ℎ𝑡

𝑣,𝑚𝑡 + 1
𝑣 )#(10)

To fetch the learned representation after  message-passing steps, the set2set model, as described by 𝑇

Gilmer et al., was used.14 The representation from the MPNN was then passed to 2-layer FFN for molecular 
property prediction. The molecular graphs for MPNNs were created from SMILES and embedded with 
atom and bond features using the deep graph library 0.7.2 (DGL) and DGL-Lifesci v0.2.8 Python 
packages.15, 16 The atom and bond features used for generating the MPNN input are listed in Table 1 and 
Table 2, respectively. The tuned hyperparameters for these models were the number of message-passing 
steps (1-10), the number of set2set steps (1-10), the depth of the set2set layer (1-10), the output feature 
size of MPNN (32-256), hidden features for edge network (32,256) and the FFN dropout rate (0-1). An 
Adam optimizer with a learning rate of 0.0001 was implemented. The early stopping algorithm with 
patience of 20 was used to prevent overfitting. 

The fourth-generation models used the same MPNN network as the third-generation. However, the 
output features from MPNN were concatenated with molecular or DFT descriptors before being passed 
to the FFN. The hyperparameter tuning process was the same as that of the third-generation models.

The evidential uncertainty for fourth-generation models was evaluated by factoring the code to include 
an evidential deep learning layer.17 The evidential deep learning assumes that the prediction  of a (𝑦)

model is from a Gaussian distribution  with unknown mean and variance . Accordingly, the mean (𝑁) (𝜇,𝜎2)
and variance are represented as –

𝜇 ~ 𝑁(𝛾,𝜎2𝜐 ‒ 1)#(11)

𝜎2 ~ Γ ‒ 1(𝛼,𝛽)#(12)

where,  is the gamma function, and  are parameters. The posterior distribution follows a normal Γ 𝛾,𝜐,𝛼,𝛽

inverse gamma distribution from which the prediction ( ) and epistemic uncertainty ( ) are 𝐸[𝜇] 𝑉𝑎𝑟[𝜇]

computed from the following equations:

𝐸[𝜇] =  𝛾#(13)

𝑉𝑎𝑟[𝜇] =  
𝛽

𝜐(𝛼 ‒ 1)
#(14)

The loss function  for training the evidential deep learning model includes a negative likelihood loss 𝐿(𝑥)

 that is responsible for maximizing the model prediction and an evidential loss  which 𝐿𝑁𝐿𝐿(𝑥) 𝐿𝐸𝐿(𝑥)

minimizes the evidence of errors.

𝐿𝐸𝐿(𝑥) = |𝑦 ‒ 𝛾| ∙  (2𝜐 + 𝛼)#(15)

𝐿(𝑥) =  𝐿𝑁𝐿𝐿(𝑥) +  𝜆𝐿𝐸𝐿(𝑥)#(16)



The hyperparameter  in the loss function was set to 0.2 for training the models with uncertainty 
quantification.17 The errors are recalibrated with a Python-based uncertainty toolbox package by 
minimizing the miscalibration area.18 The recalibration of uncertainty uses a black-box optimizer to find a 
standard deviation scalar factor that produces the best recalibration. The hyperparameters of the model 
MPNN and FFN are the same as those without uncertainty quantification.

 

Hyperparameter tuning
As mentioned before, the hyperparameters for each model are tuned with Optuna version 2.10, where 
the metric R2 is maximized. We used the median pruner to prune the trials with default parameters of no 
warmup steps and five startup trials. We performed 20 trials, excluding the pruned trials, to obtain the 
final hyperparameters for five-fold cross-validation. We do not find any trends in the optimized 
hyperparameters. All the best-trained ML models for every property from each generation are publicly 
available with the hyperparameters in the params.json file. The final parameters for some of the models 
are also provided in Tables S6-S11.

Tables

Table S1. Statistics of the OCELOT chromophore v1 dataset. All values are in eV.

Property Minimum Maximum Mean Standard 
deviation

HOMO -11.109 -4.428 -7.312 0.672
LUMO -4.221 2.306 -0.622 0.696

HL 3.249 11.372 6.689 1.012
VIE 4.422 11.136 7.527 0.635
AIE 4.268 10.892 7.319 0.624
CR1 0.001 0.835 0.208 0.096
CR2 0.002 0.872 0.212 0.1
HR 0.051 1 0.421 0.184

VEA -4.203 2.203 -0.445 0.681
AEA -4.386 1.813 -0.692 0.664
AR1 0.013 0.956 0.247 0.096
AR2 0.025 0.758 0.238 0.087
ER 0.073 1 0.485 0.175

S0S1 1.003 6.31 3.569 0.643
S0T1 0.009 4.442 2.462 0.548



Table S2. The R2 values for ML model trained on a single property, and the unified ML model trained to 
predict multiple properties. 

Model Epochs VEA VIE S0S1 S0T1 HR

Single 500 0.91 0.82 0.72 0.81 0.37

Unified 500 0.88 0.80 - - -

Unified 500 0.84 0.76 0..67 0.74 -

Unified 500 0.84 0.75 0.66 0.73 0.27

Unified 1000 0.84 0.76 0.68 0.74 0.28



Table S3. Performance metrics computed for first-generation ML models. The MAE is reported in eV for 
all models. The values are averaged over three independently trained models. The input features for these 
models are the molecular features and ECFP. The values are averaged over five-fold cross-validation 
models.

RR SVM KRR
Property

R2
MAE R2 MAE R2 MAE

HOMO 0.49±0.007 0.355±0.005 0.51±0.007 0.345±0.005 0.51±0.017 0.349±0.004

LUMO 0.60±0.007 0.338±0.004 0.64±0.006 0.315±0.002 0.64±0.013 0.320±0.005

H-L 0.39±0.011 0.594±0.007 0.41±0.007 0.579±0.004 0.42±0.012 0.578±0.008

VIE 0.70±0.007 0.262±0.003 0.74±0.005 0.24±0.003 0.73±0.005 0.249±0.003

AIE 0.71±0.006 0.256±0.001 0.75±0.005 0.232±0.003 0.74±0.009 0.242±0.002

CR1 0.23±0.012 0.062±0.001 0.23±0.010 0.063±0.001 0.26±0.013 0.06±0.001

CR2 0.27±0.014 0.062±0.001 0.26±0.016 0.062±0.001 0.31±0.014 0.060±0.001

HR 0.27±0.007 0.119±0.001 0.30±0.005 0.111±0.001 0.31±0.008 0.115±0.001

VEA 0.72±0.009 0.276±0.001 0.78±0.007 0.243±0.003 0.77±0.008 0.249±0.004

AEA 0.73±0.008 0.266±0.002 0.78±0.003 0.234±0.001 0.78±0.006 0.24±0.003

AR1 0.27±0.013 0.063±0.001 0.34±0.013 0.057±0.001 0.35±0.010 0.059±0.001

AR2 0.29±0.005 0.055±0.001 0.36±0.014 0.051±0.001 0.35±0.014 0.052±0.001

ER 0.30±0.014 0.114±0.001 0.28±0.010 0.119±0.001 0.38±0.006 0.107±0.001

S0S1 0.50±0.011 0.345±0.003 0.56±0.013 0.321±0.004 0.57±0.008 0.321±0.003

S0T1 0.53±0.017 0.284±0.004 0.59±0.012 0.260±0.005 0.60±0.005 0.264±0.003



Table S4. Metrics for quantifying uncertainty estimates from the fourth-generation ML model with 
evidential learning. The metrics miscalibration area, sharpness, and negative log-likelihood (NLL) before 
and after recalibration are shown.

Miscalibration area Sharpness NLL
Property

Before After Before After Before After
HOMO 0.417 0.022 3.788 0.394 2.017 0.877
LUMO 0.102 0.014 0.441 0.297 0.387 0.462

H-L 0.484 0.046 54.475 0.861 4.366 2.264
VIE 0.129 0.021 0.191 0.295 0.823 0.111
AIE 0.131 0.013 0.148 0.225 0.618 0.003
CR1 0.467 0.017 0.002 0.057 529.693 -1.028
CR2 0.444 0.023 0.007 0.092 226.474 -0.774
HR 0.401 0.026 0.024 0.171 87.775 0.367

VEA 0.375 0.038 0.063 0.430 38.515 0.079
AEA 0.372 0.034 0.073 0.454 33.854 -0.041
AR1 0.464 0.023 0.004 0.082 559.042 -0.765
AR2 0.475 0.031 0.003 0.089 1716.917 -0.621
ER 0.428 0.031 0.015 0.145 174.737 0.273

S0S1 0.012 0.011 0.379 0.373 0.449 0.458
S0T1 0.345 0.028 0.146 0.678 18.477 0.094

Table S5. Performance metrics computed on the random split test dataset for the fourth-generation ML 
models with the evidential learning layer. The MAE is reported in eV for all models. 

Property R2 MAE

HOMO 0.58 0.304
LUMO 0.78 0.248

H-L 0.49 0.517
VIE 0.85 0.174
AIE 0.87 0.164
CR1 0.39 0.051
CR2 0.46 0.05
HR 0.46 0.096

VEA 0.93 0.146
AEA 0.94 0.125
AR1 0.47 0.052
AR2 0.48 0.044
ER 0.51 0.089

S0S1 0.74 0.257
S0T1 0.86 0.148



Table S6. The optimized hyperparameters used for the first-generation support vector machine models 
with ECFP2.

Property ECFP2 length Regularization Epsilon Kernel
HOMO 3807 1.25 0.172 RBF
LUMO 3789 1.72 0.143 RBF

HL 2817 1.86 0.587 Polynomial
VIE 3764 1.84 0.177 RBF
AIE 3429 1.99 0.0897 Polynomial
CR1 683 1.50 0.0699 RBF
CR2 3787 1.08 0.0568 Polynomial
HR 1735 0.941 0.129 Polynomial

VEA 2384 1.85 0.0500 RBF
AEA 1292 1.96 0.0931 Polynomial
AR1 1587 1.89 0.0357 RBF
AR2 1135 1.59 0.0421 Polynomial
ER 136 1.99 0.0229 RBF

S0S1 2621 1.96 0.103 Polynomial
S0T1 3698 1.83 0.0195 Polynomial



Table S7. The optimized parameters for first-generation support vector machine models without ECFP2. 

Property Regularization Epsilon Kernel

HOMO 1.99 0.335 Polynomial

LUMO 1.99 0.102 Polynomial

HL 1.99 0.511 RBF

VIE 1.99 0.101 Polynomial

AIE 1.99 0.0317 Polynomial

CR1 0.906 0.0628 Linear

CR2 0.329 0.0827 RBF

HR 1.11 0.0512 Polynomial

VEA 1.99 0.0302 Polynomial

AEA 1,99 0.0882 Polynomial

AR1 1.27 0.0131 RBF

AR2 0.963 0.0309 RBF

ER 1.12 0.171 Linear

S0S1 1.99 0.0845 Polynomial

S0T1 1.99 0.0859 Polynomial



Table S8. The optimized hyperparameters used for the second-generation models without ECFP2.

Property Dropout Hidden nodes Layers
HOMO 0.45 1405 1
LUMO 0.54 300 1

HL 0.50 337 2
VIE 0.62 3774 1
AIE 0.15 2740 1
CR1 0.47 3915 1
CR2 0.71 1590 1
HR 0.73 3331 1

VEA 0.09 3758 2
AEA 0.09 1626 3
AR1 0.51 3774 1
AR2 0.40 1655 1
ER 0.32 3926 2

S0S1 0.44 3897 1
S0T1 0.17 2470 2

Table S9. The optimized hyperparameters used for the second-generation models with ECFP2.

Property ECFP2 
length Dropout Hidden nodes Layers

HOMO 696 0.13 2080 3
LUMO 1661 0.27 3842 1

HL 1296 0.71 1547 1
VIE 616 0.78 2980 1
AIE 903 0.58 2141 1
CR1 1994 0.72 1170 1
CR2 408 0.90 3453 1
HR 1607 0.52 1970 1

VEA 1150 0.38 2620 1
AEA 1696 0.34 2999 1
AR1 1153 0.65 2133 1
AR2 1756 0.33 1560 5
ER 1060 0.56 3886 1

S0S1 1084 0.43 1522 1
S0T1 1359 0.36 3033 1



Table S10. The optimized hyperparameters used for the third-generation models.

Property FFN 
Droupout

Edge 
network 

size

MPNN 
output 

size

Number of 
set2set 

layer

Number of 
message-passing 

steps

Number of 
set2set 
steps

HOMO 0.92 83 240 8 5 10
LUMO 0.44 153 39 5 10 5

HL 0.96 139 45 4 9 5
VIE 0.57 102 173 9 5 1
AIE 0.45 128 221 6 8 5
CR1 0.70 65 195 10 10 4
CR2 0.12 176 75 6 10 7
HR 0.09 32 124 2 2 10

VEA 0.17 235 200 1 5 9
AEA 0.11 208 184 7 6 9
AR1 1.00 163 161 5 8 6
AR2 0.29 123 114 5 4 3
ER 0.43 125 249 2 9 10

S0S1 0.25 223 163 3 9 9
S0T1 0.75 195 234 1 7 4

Table S11. The optimized hyperparameters used for the fourth-generation models

Property FFN 
Droupout

Edge 
network size

MPNN 
output 

size

Number of 
set2set layer

Number of 
message-passing 

steps

Number of 
set2set 
steps

HOMO 0.74 164 39 3 9 4
LUMO 0.38 47 69 5 10 1

HL 0.82 227 42 2 10 1
VIE 0.56 122 134 7 10 5
AIE 0.85 206 67 10 5 6
CR1 0.98 244 76 9 9 7
CR2 0.90 93 67 2 7 9
HR 0.08 127 168 4 9 1

VEA 0.72 243 131 1 6 5
AEA 0.69 78 227 5 8 7
AR1 0.81 82 241 5 9 6
AR2 0.40 36 224 3 6 7
ER 0.08 181 114 4 6 3

S0S1 0.31 190 75 8 8 8
S0T1 0.54 161 165 6 9 6
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Figure S1. Schematic showing a molecule entry in the OCELOT database (left) and the corresponding 
fragment (right) obtained using OCELOT API. The OCELOT chromophore v1 dataset contains DFT computed 
electronic, redox and optical properties of the fragments.

Figure S2. The 33 molecules that are present in both QM9 and OCELOT chromophore v1 dataset.



Figure S3: Schematic representation of all ML pipelines explored in the investigation. The input is a SMILES 
representation (blue) of a molecule from which the input features (green) for the ML models (yellow) are 
generated for predicting the electronic property (orange/purple). Output from pretrained fourth-
generation models (purple) is used as input features for the ML pipeline on the bottom right.  

Figure S4. Learning rate for the fourth-generation ML model with molecular descriptors as the 
concatenated feature for prediction of AEA.
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Figure S5. Schematic representation of the architecture of the fourth-generation model with evidential 
uncertainty layer to predict the uncertainty for a prediction.
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Figure S6. Select calibration curves for uncertainty estimates from the fourth-generation ML model with 
evidential learning for (top) VIE, (middle) S0S1, and HOMO (bottom). The plots on the left are for 
uncertainty estimates from the ML model and recalibrated estimates are on right.



Figure S7. Predictions from the fourth-generation ML model with evidential learning on the test dataset 
for properties (column 1 top to bottom) AEA, AIE, CR2, CR1, AR1, AR2, and (column 2 top to bottom) ER, 
H-L, VEA, S0S1, S0T1, HOMO, LUMO. The histograms on the left plot represent the distribution of the 
corresponding DFT evaluated property in the test dataset. Scatter plots on the right represent the 
chemical space of the test dataset. The data points where the uncertainty is greater than 10% of the DFT 
values are gray.
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