## SUPPLEMENTAL MATERIAL

| C. neoformans strains used in this study |                                                           |         |            |  |
|------------------------------------------|-----------------------------------------------------------|---------|------------|--|
| Strain                                   | Genotypes                                                 | Parents | References |  |
| H99S                                     | МАТа                                                      |         | (1)        |  |
| YSB64                                    | MATα hog1Δ::NAT-STM#177                                   | H99S    | (2)        |  |
| YSB188                                   | MATα pka1Δ::NAT-STM#191                                   | H99S    | (2)        |  |
| YSB349                                   | MATa skn7::NAT-STM#201                                    | H99S    | (3)        |  |
| YSB488                                   | MATa mbs1∆∷NAT-STM#150                                    | H99S    | (3)        |  |
| YSB501                                   | $MAT\alpha$ fzc34 $\Delta$ ::NAT-STM#231                  | H99S    | (3)        |  |
| YSB510                                   | MATα fzc1Δ::NAT-STM#116                                   | H99S    | (3)        |  |
| YSB552                                   | MATα ire1Δ::NAT-STM#224                                   | H99S    | (2)        |  |
| YSB676                                   | MATa atf1::NAT-STM#220                                    | H99S    | (3)        |  |
| YSB718                                   | MATa fzc29::NAT-STM#225                                   | H99S    | (3)        |  |
| YSB774 <i>MATα fzc24::NAT-STM#292</i>    |                                                           | H99S    | (3)        |  |
| YSB815                                   | YSB815 <i>MATα yap1::NAT-STM#296</i>                      |         | This study |  |
| YSB1074                                  | SB1074 <i>MATα fzc33</i> Δ:: <i>NAT-STM</i> #43           |         | (3)        |  |
| YSB1099                                  | <i>MAT</i> α <i>bzp3</i> Δ:: <i>NAT</i> - <i>STM</i> #146 | H99S    | (3)        |  |
| YSB1106                                  | MATα crl6Δ::NAT <b>-</b> STM#231                          | H99S    | (3)        |  |
| YSB1172                                  | MATα mln1Δ::NAT-STM#146                                   | H99S    | (3)        |  |
| YSB1209                                  | <i>MATα fzc46</i> Δ:: <i>NAT-STM</i> #177                 | H99S    | (3)        |  |
| YSB1290                                  | MATa yap1::NAT-STM#296                                    | H99S    | This study |  |
| YSB1302                                  | <i>MAT</i> α <i>mcm1</i> Δ:: <i>NAT-STM</i> #218          | H99S    | (3)        |  |
| YSB1311                                  | MATα gat204Δ::NAT-STM#218                                 | H99S    | (3)        |  |
| YSB1339                                  | MATa_fkh2\Delta::NAT-STM#219                              | H99S    | (3)        |  |
| YSB1396                                  | MATa clr1A::NAT-STM#242                                   | H99S    | (3)        |  |
| YSB1435                                  | SB1435 MATα hob4Δ::NAT-STM#159                            |         | (3)        |  |
| YSB1464                                  | 31464 <i>ΜΑΤα usv101</i> Δ:: <i>NAT-STM</i> #191          |         | (3)        |  |
| YSB1585                                  | SB1585 <i>MATα hob5</i> Δ:: <i>NAT-STM</i> #219           |         | (3)        |  |
| YSB1592                                  | MATα jjj1Δ::NAT-STM#240                                   | H99S    | (3)        |  |
| YSB1834                                  | <i>MAT</i> α <i>clr3</i> Δ:: <i>NAT</i> - <i>STM</i> #102 | H99S    | (3)        |  |
| YSB1842                                  | $MAT \alpha fzc51 \Delta$ :: $NAT$ - $STM$ #159           | H99S    | (3)        |  |
| YSB1846                                  | MATα fzc14Δ::NAT <b>-</b> STM#43                          | H99S    | (3)        |  |
| YSB1850                                  | $MAT\alpha \ hcm1\Delta::NAT-STM\#177$                    | H99S    | (3)        |  |
| YSB1894                                  | MATα bzp4Δ::NAT-STM#295                                   | H99S    | This study |  |
| YSB1895                                  | MATα bzp4Δ::NAT-STM#295                                   | H99S    | This study |  |
| YSB1898                                  | MATa rds2A::NAT-STM#242                                   | H99S    | (3)        |  |
| YSB1969                                  | MATα bud32Δ::NAT-STM#296                                  | H99S    | (2)        |  |
| YSB2001                                  | <i>MAT</i> α <i>hob3</i> Δ:: <i>NAT-STM</i> #211          | H99S    | (3)        |  |
| YSB2108                                  | <i>MAT</i> α <i>zfc3</i> Δ:: <i>NAT</i> - <i>STM</i> #232 | H99S    | (3)        |  |

## Table S1. C. neoformans strains and primers used in this study

| YSB2134  | <i>MAT</i> α <i>zap104</i> Δ:: <i>NAT-STM</i> #204         | H99S    | (3)        |
|----------|------------------------------------------------------------|---------|------------|
| YSB2171  | $MAT \alpha fzc49 \Delta$ :: $NAT$ - $STM$ #5              | H99S    | (3)        |
| YSB2211  | MATα liv1Δ::NAT-STM#213                                    | H99S    | (3)        |
| YSB2221  | <i>MATα fzc45</i> Δ:: <i>NAT-STM</i> #58                   | H99S    | (3)        |
| YSB2231  | MATα zfc4Δ::NAT-STM#210                                    | H99S    | (3)        |
| YSB2244  | MATα hlh4Δ::NAT-STM#295                                    | H99S    | (3)        |
| YSB2250  | <i>MATα fzc1</i> 7Δ:: <i>NAT-STM</i> #240                  | H99S    | (3)        |
| YSB2295  | MATα hsf2Δ::NAT-STM#205                                    | H99S    | (3)        |
| YSB2320  | $MAT\alpha$ , fzc18 $\Delta$ ::NAT-STM#212                 | H99S    | (3)        |
| YSB2326  | <i>MATα.fzc16</i> Δ:: <i>NAT-STM</i> #212                  | H99S    | (3)        |
| YSB2329  | MATα hlh3Δ::NAT-STM#208                                    | H99S    | (3)        |
| YSB2381  | MATα ada2Δ::NAT-STM#232                                    | H99S    | This study |
| YSB2382  | MATα ada2Δ::NAT-STM#232                                    | H99S    | This study |
| YSB2447  | <i>MATα.fzc30</i> Δ:: <i>NAT-STM</i> #230                  | H99S    | (3)        |
| YSB2481  | MATα hap1Δ::NAT-STM#240                                    | H99S    | (3)        |
| YSB2493  | MATα sre1Δ::NAT-STM#240                                    | H99S    | (3)        |
| YSB2723  | $MAT$ α yap1 $\Delta$ ::YAP1-GFP-NEO                       | YSB1290 | This study |
| YSB2952  | MATα irk5Δ:: NAT-STM#213                                   | H99S    | (2)        |
| YSB3026  | MATα hob7Δ::NAT-STM#159                                    | H99S    | (3)        |
| YSB3096  | MATa nrg1::NAT-STM#123                                     | H99S    | (3)        |
| YSB3300  | <i>MAT</i> α <i>gat201::NAT-STM</i> #273                   | H99S    | This study |
| YSB3301  | MATa gat201::NAT-STM#273                                   | H99S    | This study |
| YSB3405  | MATa ADA2-GFP                                              | H99S    | This study |
| YSB3699  | <i>MATα cdc2801</i> Δ:: <i>NAT-STM</i> #191                | H99S    | (2)        |
| YSB3714  | MATα pos5Δ::NAT-STM#58                                     | H99S    | (2)        |
| YSB4081  | ΜΑΤα cap10Δ::ΝΕΟ                                           | H99S    | This study |
| YSB5408  | $MAT$ α $bzp4\Delta$ :: $BZP4$ p $NEO$ -m $Cherry$         | YSB1895 | This study |
| YSB5499  | MATα bzp4Δ::BZP4 pNEO                                      | YSB1895 | This study |
| YSB6052  | MATα gat201Δ::NAT bzp4Δ::NEO                               | YSB3300 | This study |
| YSB6054  | $MAT$ a yap $1\Delta$ ::NAT ada $2\Delta$ ::NEO            | YSB815  | This study |
| YSB6055  | $MAT\alpha$ yap1 $\Delta$ ::NAT bzp4 $\Delta$ ::NEO        | YSB815  | This study |
| YSB6167  | MATα gat201Δ::NAT ada2Δ::NEO                               | YSB3300 | This study |
| YSB6169  | $MAT$ α $ada2\Delta::NAT$ $bzp4\Delta::NEO$                | YSB2382 | This study |
| YSB6695  | $MAT$ α yap1 $\Delta$ ::NAT gat201 $\Delta$ ::NEO          | YSB815  | This study |
| YSB6745  | MATα gat201Δ::GAT201-GFP-NEO                               | YSB3300 | This study |
| YSB10417 | МАТа Р <sub>Н3</sub> :GAT201::НҮG                          | H99S    | This study |
| YSB10418 | MATα P <sub>H3</sub> :GAT201::HYG yap1Δ::NAT               | YSB815  | This study |
| YSB10419 | MATα $P_{H3}$ :GAT201::HYG ada2Δ::NAT                      | YSB2381 | This study |
| YSB10420 | MATα P <sub>H3</sub> :GAT201::HYG<br>yap1Δ::NAT ada2Δ::NEO | YSB6054 | This study |

| Primers used in this study |                                                             |                                                 |
|----------------------------|-------------------------------------------------------------|-------------------------------------------------|
| Name                       | Primer description                                          | Sequence (5' to 3')                             |
| B2927                      | GAT201 5' flanking region primer 1                          | TCCGTTGAGATAGCGTTG                              |
| B2928                      | GAT201 5' flanking region primer 2                          | TCACTGGCCGTCGTTTTACATGGTGGAGGTGTAGGACTG         |
| B2929                      | GAT201 3' flanking region primer 1                          | CATGGTCATAGCTGTTTCCTGCTCAACCACCTTTTTTGTGC       |
| B2930                      | GAT201 3' flanking region primer 2                          | GGGAATCTGGTGTCAGTATTG                           |
| B2931                      | <i>GAT201</i> diagnostic screening primer, pairing with B79 | AACCTTGCCTAACAACCC                              |
| B2932                      | <i>GAT201</i> Southern blot probe primer 1                  | GTCGGAATGACAAAGGAGATAC                          |
| B2933                      | <i>GAT201</i> Southern blot probe primer 2                  | GGGGGAATAAAGGATAATGC                            |
| B2183                      | ADA2 5' flanking region primer 1                            | GGATGATGGAATCGTATGC                             |
| B2184                      | ADA2 5' flanking region primer 2                            | TCACTGGCCGTCGTTTTACATTATCCACCCTCGGCTTC          |
| B2185                      | ADA2 3' flanking region primer 1                            | CATGGTCATAGCTGTTTCCTGGCGAACGGTATGACAACTATG      |
| B2186                      | ADA2 3' flanking region primer 2                            | GGACGAAAACATTGCTCTCAAC                          |
| B2182                      | ADA2 diagnostic screening primer,<br>pairing with B79       | TCAGCAGCAGGTAAAC                                |
| B9851                      | ADA2 Southern blot probe primer 1                           | GAGGATGATGGAATCGTATG                            |
| B9852                      | ADA2 Southern blot probe primer 2                           | CAAAAGCAAGTTGGACAGAG                            |
| B3738                      | BZP4 5' flanking region primer 1                            | CGCCCTTTCTATTGTTACAC                            |
| B3739                      | BZP4 5' flanking region primer 2                            | TCACTGGCCGTCGTTTTACGATGACAGGAGGGATGAATC         |
| B3740                      | BZP4 3' flanking region primer 1                            | CATGGTCATAGCTGTTTCCTGGGGAGAATAACGACTCAATGT<br>C |
| B3741                      | BZP4 3' flanking region primer 2                            | TCATTGCTGACTGGGAAG                              |
| B3736                      | <i>BZP4</i> diagnostic screening primer, pairing with B79   | AAAGAGGCGGTGTTGAAG                              |
| B3737                      | BZP4 Southern blot probe primer                             | AGCCAGGTAATCTTGGAGG                             |
| B1586                      | YAP1 5' flanking region primer 1                            | TTGCTGCGATGTGGTCTTG                             |
| B1587                      | YAP1 5' flanking region primer 2                            | GCTCACTGGCCGTCGTTTTACACAAAGGGTCAACAAGGG         |
| B1588                      | YAP1 3' flanking region primer 1                            | ATCTTGATGGAGGGGGTTGG                            |
| B1589                      | YAP1 3' flanking region primer 2                            | CATGGTCATAGCTGTTTCCTGAACGACGACCATCGCAGTAG       |
| B1590                      | YAP1 diagnostic screening primer, pairing with B79          | TGGTGCTCAAGAGGGAAGTTAG                          |
| B2871                      | YAP1 Southern blot probe primer                             | CTACTCTGTGGTGGCGTAAG                            |
| B9966                      | GAT201 LP (GFP tagging)                                     | CTCGAGCGTTTCCTATTCCTGTTGTG                      |
| B9967                      | GAT201 RP (GFP tagging)                                     | GCGGCCGCAGGAAGGAAAGCACTTGGTAAC                  |
| B9968                      | GAT201 sequencing primer 1<br>(GFP tagging)                 | CTATGCATTGGATCAATTG                             |
| B9969                      | GAT201 sequencing primer 2<br>(GFP tagging)                 | CCATACTCCCGCCCGCAAC                             |
| B9970                      | <i>GAT201</i> sequencing primer 3 ( <i>GFP</i> tagging)     | CGGGAATTGGTGTCGCATC                             |
| B10107                     | GAT201 screening primer<br>(GFP tagging)                    | TCATCCGCCTAAATGTCC                              |
| B3148                      | YAP1 LP (GFP tagging)                                       | GGATCCATGCAGTCCGCACTCACCCC                      |
| B3149                      | YAP1 RP (GFP tagging)                                       | GGATCCGGTGCTCAAGAGGGAAGTTAG                     |

| B3152  | YAP1 sequencing primer 1<br>(GFP tagging)                                            | CCAACACGGCCGCGTTCCTCG                    |
|--------|--------------------------------------------------------------------------------------|------------------------------------------|
| B3153  | YAP1 sequencing primer 2<br>(GFP tagging)                                            | TGAAGGTGATGGAAAAAGAGA                    |
| B3154  | YAP1 sequencing primer 3<br>(GFP tagging)                                            | TCATCCCCTTCCATTTCC                       |
| B3155  | YAP1 sequencing primer 4<br>(GFP tagging)                                            | ACTCTGGATGAGATTCGGG                      |
| B9346  | YAP1 screening primer<br>(GFP tagging)                                               | AGTCGTGGGGATGTTCTTGG                     |
| B6514  | ADA2 diagnostic screening primer,<br>pairing with B79<br>(GFP chromosol integration) | CGTCCTCCAGATGAAGAAG                      |
| B6515  | ADA2 5' flanking region primer 1<br>(GFP chromosomal integration)                    | CAAGAGAGAGGATGCCAAG                      |
| B6516  | ADA2 5' flanking region primer 2<br>(GFP chromosomal integration)                    | GCTCACAGAGCCACCGCCACCTCCATTGAGCCTAATCTCA |
| B6517  | ADA2 3' flanking region primer 1<br>(GFP chromosomal integration)                    | GCCACTCGAATCCTGCATGCGCAAATTTATAGTCACTATT |
| B6518  | ADA2 3' flanking region primer 2<br>(GFP chromosomal integration)                    | TTTTGGAAGCACCTTGCC                       |
| B6628  | ADA2 Southern blot probe primer<br>(GFP chromosomal integration)                     | AAAGCGGATAGCGGAACTC                      |
| B9003  | BZP4 LP with XhoI cut site<br>(mCherry tagging)                                      | CTCGAGCGCTTTCGCAATGTCAGG                 |
| B9004  | BZP4 RP with NotI cut site<br>(mCherry tagging)                                      | GCGGCCGCTCTTGACATTGAGTCGTT               |
| B9005  | <i>BZP4</i> sequencing primer<br>( <i>mCherry</i> tagging)                           | GTTACTGTTACAGCGAAC                       |
| B9348  | <i>BZP4</i> screening primer<br>( <i>mCherry</i> tagging)                            | GCGAGAGTGGTTGGTTAGTG                     |
| B1026  | M13 Forward extended                                                                 | GTAAAACGACGGCCAGTGAGC                    |
| B1027  | M13 Reverse extended                                                                 | CAGGAAACAGCTATGACCATG                    |
| B79    | Screening primer                                                                     | TGTGGATGCTGGCGGAGGATA                    |
| B1454  | NAT split marker primer 1                                                            | AAGGTGTTCCCCGACGACGAATCG                 |
| B1455  | NAT split marker primer 2                                                            | AACTCCGTCGCGAGCCCCATCAAC                 |
| B1886  | NEO split marker primer 1                                                            | TGGAAGAGATGGATGTGC                       |
| B1887  | NEO split marker primer 2                                                            | ATTGTCTGTTGTGCCCAG                       |
| B5751  | HYG split marker primer 1                                                            | CGAAGAATCTCGTGCTTTC                      |
| B5752  | <i>HYG</i> split marker primer 2                                                     | ATTGACCGATTCCTTGCG                       |
| B4017  | HYG Forward extended                                                                 | GCATGCAGGATTCGAGTG                       |
| B4018  | HYG Reverse extended                                                                 | GTGATAGATGTGTTGTGGTG                     |
| B17609 | <i>GAT201</i> 5' flanking region primer 1                                            | GGTCGGAATGACAAAGGAGA                     |
| B17610 | <i>GAT201</i> 5' flanking region primer 2<br>(H3 promoter replacement)               | GCCACTCGAATCCTGCATGCTGCGTGGGTGGCGCTGTGCT |
| B17611 | <i>GAT201</i> 3' flanking region primer 1<br>(H3 promoter replacement)               | CACCACAACACATCTATCACATGTCAAAGTACTCCCACGA |
| B17612 | <i>GAT201</i> 3' flanking region primer 2<br>(H3 promoter replacement)               | AAAACAGGCAGGTACGGTTG                     |
| B679   | qRT-PCR primer for ACT1                                                              | CGCCCTTGCTCCTTCTTCTATG                   |
| B680   | qRT-PCR primer for ACT1                                                              | GACTCGTCGTATTCGCTCTTCG                   |
| B8640  | qRT-PCR primer for CAP10                                                             | ATTCATTCCCGATTGGCG                       |
| B7163  | qRT-PCR primer for CAP10                                                             | GAGAACCAAACAGACGACG                      |

| B8684 | qRT-PCR primer for CAP59  | GCTATTAGAGGCTACAAGCG     |
|-------|---------------------------|--------------------------|
| B8685 | qRT-PCR primer for CAP59  | GGGTGAACAACCTATCGTG      |
| B8643 | qRT-PCR primer for CAP60  | ACGCTATGAACGAAGAGGC      |
| B8644 | qRT-PCR primer for CAP60  | GGAGTGAAAACAGAGTTGGG     |
| B8645 | qRT-PCR primer for CAP64  | CAAGGAAAGGGCATTCAGAG     |
| B8646 | qRT-PCR primer for CAP64  | TCAGAAAGCATTGCCTGG       |
| B9422 | qRT-PCR primer for GAT201 | GGAGTATGGCTGAAATCTG      |
| B6290 | qRT-PCR primer for GAT201 | GGAGTATGGCTGAAATCTGG     |
| B6651 | qRT-PCR primer for YAP1   | CCATGCCCGTTAACAGTCGC     |
| B2871 | qRT-PCR primer for YAP1   | CTACTCTGTGGTGGCGTAAG     |
| B9420 | qRT-PCR primer for BZP4   | TCTTTCCCAAGTAGCATTCCTCG  |
| B9421 | qRT-PCR primer for BZP4   | GCTCGTCATCCCAACTATCAAAAC |
| B6368 | qRT-PCR primer for ADA2   | TGATGCCGAAATGGCTGTAA     |
| B2187 | qRT-PCR primer for ADA2   | TTCATCTGGAGGACGAGTG      |

## References

- 1. Perfect JR, Ketabchi N, Cox GM, Ingram CW, Beiser CL. 1993. Karyotyping of *Cryptococcus neoformans* as an epidemiological tool. J Clin Microbiol 31:3305-9.
- 2. Lee KT, So YS, Yang DH, Jung KW, Choi J, Lee DG, Kwon H, Jang J, Wang LL, Cha S, Meyers GL, Jeong E, Jin JH, Lee Y, Hong J, Bang S, Ji JH, Park G, Byun HJ, Park SW, Park YM, Adedoyin G, Kim T, Averette AF, Choi JS, Heitman J, Cheong E, Lee YH, Bahn YS. 2016. Systematic functional analysis of kinases in the fungal pathogen *Cryptococcus neoformans*. Nat Commun 7:12766.
- 3. Jung KW, Yang DH, Maeng S, Lee KT, So YS, Hong J, Choi J, Byun HJ, Kim H, Bang S, Song MH, Lee JW, Kim MS, Kim SY, Ji JH, Park G, Kwon H, Cha S, Meyers GL, Wang LL, Jang J, Janbon G, Adedoyin G, Kim T, Averette AK, Heitman J, Cheong E, Lee YH, Lee YW, Bahn YS. 2015. Systematic functional profiling of transcription factor networks in *Cryptococcus neoformans*. Nat Commun 6:6757.



₋ittman's medium



**Figure S1.** Capsule production of 49 transcription factor mutants in *C. neoformans.* (A) WT (H99S) and 49 transcription factor mutant strains were grown in YPD liquid medium at 30 °C with shaking for 16 h, washed with PBS, and spotted onto Littman's (LIT) solid medium. Cells were further incubated for 2 days at 37 °C. Each graph indicates relative capsule size of transcription factor mutants that exhibited statistically significant changes in capsule production ( $\pm$ 30% difference relative to wild type as cutoff). Two biologically independent experiments were performed and representative data are shown here. Each measurement was repeated for 20 cells per condition. Error bars indicate standard deviation. Statistical analysis was performed using one-way ANOVA with Bonferroni's multiple-comparison test. (\*, *P* < 0.05; \*\*, *P* < 0.001; \*\*\*\*, *P* < 0.0001). (B) WT (H99S) and 13 transcription factor mutant strains were grown in YPD liquid medium at 30 °C with shaking for 16 h, washed with PBS, and spotted onto EBS solid medium. Cells were further incubated for 2 days at 37 °C. Each graph indicates relative capsule size of transcription factor mutants that exhibited statistically significant changes in capsule production ( $\pm$ 30% difference relative to wild type as cutoff). Two biologically independent experiments were performed and representative data are shown here. Each measurement was repeated for 20 cells per condition. Error bars indicate standard deviation. Statistical analysis was performed using one-way ANOVA with Bonferroni's multiple-comparison test (\*, *P* < 0.05; \*\*, *P* < 0.01; \*\*\*\*, *P* < 0.0001). (C) Expression level of *CAP* genes increases under capsule-inducing condition. The expression level of capsule biosynthesis genes was determined using qRT-PCR with cDNA from total RNA samples of WT (H99S) grown in basal YPD medium and three capsule-inducing media. *CAP10*, *CAP59*, *CAP60*, and *CAP64* expression levels were normalized by actin gene (*ACT1*) expression. Each strain grown in YPD medium dium



Figure S2. Yap1 and Ada2 co-regulate GAT201 induction under capsule-inducing conditions. (A) WT (H99S), cap10A (YSB4081), yap1A (YSB815), ada2A (YSB2382), yap1∆ ada2∆ (YSB6054), gat201∆ (YSB3300), bzp4∆ (YSB1895), and gat201∆ bzp4∆ (YSB6052) strains were grown in YPD liquid medium at 30°C for 16 h, washed with PBS, and spotted onto 10% fetal bovine serum (FBS) solid medium. The cells were further incubated for 2 days at 37°C. Three biologically independent experiments were performed, and representative data are shown. Each measurement was repeated on 70 cells for each condition. Mean values were shown with error bars indicating standard deviation. Statistical analysis was performed using one-way ANOVA with Bonferroni's multiple comparison test (\*, P < 0.05; \*\*, P < 0.01; \* \* P < 0.001; \*\*\*\*, P < 0.0001). (B) GAT201 expression levels were determined using qRT-PCR with cDNA from total RNA samples of WT (H99S), ada2∆ (YSB2382), yap1∆ (YSB815), and yap1∆ ada2∆ (YSB6054) grown in basal YPD and 10% fetal bovine serum (FBS) medium. GAT201 expression levels were normalized to actin gene (ACT1) expression. Each strain grown in YPD medium (time zero sample) was re-suspended in FBS liquid medium and further incubated for 2 h. Three biological replicate samples with three technical replicates were analyzed using QT-PCR. Mean values were shown with error bars indicating standard deviation. Statistical analysis was performed using one-way ANOVA with Bonferroni's multiple-comparison test (\*, *P* < 0.05; \*\*, *P* < 0.01; \*\*\*, *P* < 0.001; \*\*\*\*, *P* < 0.0001). (C) Construction of the GAT201 overexpression strains. The native promoter of GAT201 was replaced with the constitutively active H3 promoter linked to the hygromycin B resistance gene (see Methods and Materials). Positive transformants were confirmed by diagnostic PCR. All primer sets were listed in Table S1. The expected size of PCR-amplified DNA bands was indicated under each gel image. (D) GAT201 overexpression strains generated in wild-type, ada2∆, yap1∆, or yap1∆ ada2∆ strain backgrounds were grown in YPD liquid medium at 30°C for 16 h, washed with PBS, and spotted onto FBS solid medium. The cells were further incubated for two days at 37°C. Each measurement was repeated on 50 cells for each condition Mean values were shown with error bars indicating standard deviation. Statistical analyses were performed using Student's *t*-test (\* *P* < 0.05; \*\* *P* < 0.01; \*\*\* *P* < 0.001; \*\*\*\* *P* < 0.0001).



Figure S3. *BZP4*, *GAT201*, *YAP1*, and *ADA2* complemented strains showed similar capsule production level as the wild-type strain under capsule-inducing condition. WT (H99S), *cap10* (YSB4081), (A) *bzp4*Δ (YSB1895), *bzp4*Δ::*BZP4*-mCherry (YSB5408), *bzp4*Δ::*BZP4* (YSB5499), (B) *gat201*Δ (YSB3300), *gat201*Δ (YSB37201-*GFP* (YSB745)), (C) *yap1*Δ (YSB315), *yap1*Δ (::Y*AP1-GFP* (YSB2723)), and (D) *ada2*Δ (YSB2382), *ADA2-GFP* (YSB3405) strains were grown in YPD liquid medium at 30 °C for 16 h, washed with PBS, and spotted onto a Littman's (LIT) solid medium. Cells were further incubated for 2 days at 37 °C. Two biologically independent experiments were performed and representative data are shown here. Each measurement was repeated for 40 cells per condition. Error bars indicate standard deviation. Statistical analysis was performed using one-way ANOVA with Bonferroni's multiple-comparison test (\*, *P* < 0.05; \*\*, *P* < 0.01; \*\*\*, *P* < 0.001;



Figure S4. Multiple kinases regulate core capsule-regulating transcription factors under capsule-inducing condition. The expression level of *GAT201*, *YAP1*, *ADA2*, and *BZP4* was determined using qRT-PCR with cDNA from total RNA samples of WT (H99S), *pka1* $\Delta$  (YSB188), *bud32* $\Delta$  (YSB1969), *pos5* $\Delta$  (YSB3714), *ire1* $\Delta$  (YSB552), *cdc2801* $\Delta$  (YSB3699), *hog1* $\Delta$  (YSB64), and *irk5* $\Delta$  (YSB2952) grown in basal YPD and 10% fetal bovine serum (FBS) liquid medium. (A) *GAT201*, (B) *ADA2*, (C) *BZP4*, and (D) *YAP1* expression levels were normalized by actin gene (*ACT1*) expression. Each strain grown in YPD medium (time zero sample) was re-suspended in LIT or FBS liquid medium and further incubated for 2 h. Three to five biological replicate samples with three technical replicates were analyzed using qRT-PCR. Error bars indicate standard deviation. Statistical analysis was performed using Student *t*-test (\*, *P* < 0.05; \*\*, *P* < 0.001; \*\*\*\*, *P* < 0.0001).



Figure S5. Capsule-inducing condition affects gene expression patterns of wild type strain. (A) Hierarchical clustering exhibits RNA-seq analysis of wild type (H99S) strain under basal and capsule-inducing condition (Littman's media). The cut-off range of the fold change was 2 with *P* value < 0.05 calculated using modified Fisher's exact test. Three independent biological experiments performed by each set. A volcano plot of the RNA data was constructed using DESeq2 and plotted using R. (B) DAVID analysis-based enrichment scores of gene ontology (GO) terms for genes upregulated (red) or downregulated (blue) in response to capsule-inducing condition.



**Figure S6. Capsule-inducing condition changes gene expression patterns of wild type strain.** (A) Principal Component Analysis (PCA) of WT (H99S), *bzp4*Δ (YSB1895), *gat201*Δ (YSB3300), and *ada2*Δ (YSB2382) strains in basal and capsule-inducing conditions. (B) Hierarchical clustering and heatmap exhibit RNA-seq analysis of WT (H99S), *bzp4*Δ (YSB1895), *gat201*Δ (YSB3300), and *ada2*Δ (YSB2382) strains under basal and capsule-inducing conditions (Littman's media). A heatmap of RNA data that characterizes the role of the LIT treatment was constructed using DEBrowser.



Figure S7. *GAT201* regulates the expression level of *GAT204*. (A) The expression level of *GAT204* was determined using qRT-PCR with cDNA from total RNA samples of WT (H99S) and *gat201* $\Delta$  (YSB3300) grown in basal YPD medium and LIT media. *GAT204* expression levels were normalized by actin gene (*ACT1*) expression. Each strain grown in YPD medium (time zero sample) was re-suspended in LIT liquid medium and further incubated for 2 h. Three biological replicate samples with three technical replicates were analyzed using qRT-PCR. Error bars indicate standard deviation. Statistical analysis was performed using Student *t*-test (\*, *P* < 0.05; \*\*, *P* < 0.01; \*\*\*, *P* < 0.001; \*\*\*\*, *P* < 0.0001). WT (H99S), *cap10* $\Delta$  (YSB4081), *gat204* $\Delta$  (YSB1311), and *gat201* $\Delta$  (YSB3300) were grown in YPD liquid medium at 30 °C shaking incubator for 16 h, washed with PBS, and spotted onto (**B**) LIT and (**C**) FBS solid medium. Cells were further incubated for 2 days at 37 °C. Each graph indicates relative capsule size of transcription factor mutants that exhibited statistically significant changes in capsule production (±30% difference relative to wild type as cutoff). Two biologically independent experiments were performed using one-way ANOVA with Bonferroni's multiple-comparison test (\*, *P* < 0.05; \*\*, *P* < 0.01; \*\*\*\*, *P* < 0.001; \*\*\*\*, *P* < 0.0001).



**Figure S8. Measurement of the chitosan content on each mutant strain.** Each strain was grown at 30°C in liquid medium for 2 days, collected by centrifugation, washed, and used in the 3-methyl-2-benzothiazolinone hydrazone hydrochloride (MBTH) assay for the quantitative measurement of chitosan. Three biological replicates are shown. Error bars indicate standard deviation. Statistical analysis was performed using one-way ANOVA with Bonferroni's multiple comparison test. (\*, P < 0.05; \*\*, P < 0.01; \*\*\*\*, P < 0.001; \*\*\*\*, P < 0.0001).