Supplementary Figures S1-S5.

Urinary microbiome of reproductive-age healthy European women

Svetlana Ugarcina Perovic, Magdalena Ksiezarek, Joana Rocha, Elisabete Alves Cappelli,

Márcia Sousa, Teresa Gonçalves Ribeiro, Filipa Grosso, Luisa Peixe

0.05

Figure S1. *Corynebacterium* **putative novel species 1-5.** Neighbor-joining tree based on *rpoB* gene sequences showing the phylogenetic relationships between *Corynebacterium* selected closely related type strains and putative novel species. Nucleotide sequences were extracted from draft/complete genomes obtained from the NCBI Assembly Database, for which the accession numbers are shown next to the strain designation. Bootstrap percentages (based on 1000 replications) are shown at nodes. Only values above 80% are shown. Bar, 0.05 substitutions per nucleotide position. Figure S1A represents isolates sequenced with primers F- CGWATGAACATYGGBCAGGT and R- TCCATYTCRCCRAARCGCTG with ~450 bp amplicon, while figure S1B includes isolated sequenced with primers F- CNTCBCACTAYGGNCGNATG and R- GAVCGNGCGTGRATCTTYTC with ~1700 bp amplicon.

Figure S2. Genus-level community structure types of healthy FUM by culturomics.

(i) Hierarchical clustering of Bray-Curtis dissimilarity distance matrices on the relative proportions of CFU/ml within individual urine samples. (ii) Bars below dendrogram denote community structure types. (iii) Heatmap of relative abundances of bacterial genera within each urinary microbiota. Only genera that are at least 1% abundant in at least one sample are shown in order of decreasing prevalence (from top to bottom). Asterisk (*) denotes detection only by culturomics and not by community amplicon sequencing.

Figure S3. Genus-level community structure types of healthy FUM by community amplicon sequencing.

(i) Hierarchical clustering of Bray-Curtis dissimilarity distance matrices on the relative proportions of reads for each OTU within individual urine samples. (ii) Bars below dendrogram denote community structure types. (iii) Heatmap of relative abundances of bacterial genera within each urinary microbiota. Only genera that are at least 1% abundant in at least one sample are shown in order of decreasing prevalence (from top to bottom). Asterisk denotes detection only by community amplicon sequencing and not by culturomics.

Cluster Dendrogram

Figure S4. Species-level hierarchical clustering including 19 samples characterized by culturomics (c) and amplicon sequencing (as). Hierarchical clustering was based on Bray-Curtis dissimilarity distance matrices, for which all species detected were included. A cutoff value of 0.8 was used to define the clusters (dashed orange line). Samples clustered into the same CST by both methodologies are shown in green boxes.

Abiotrophia defectiva*	Corynebacterium	Peptoniphilus coxii
Acinetobacter spp.*	tuberculostearicum	Peptoniphilus duerdenii
Actinomyces europaeus	Cutibacterium acnes	Peptoniphilus lacrimalis
Actinomyces spp.*	Dermabacter spp.*	Prevotella bivia
Actinomyces	Dialister micraerophilus	Prevotella corporis
urogenitalis*	Dialister propionicifaciens	Prevotella disiens
Actinomyces viscosus*	Enterococcus faecalis	Propionimicrobium
Actinotignum schaalii	Escherichia coli	lymphophilum
Anaerococcus tetradius	Facklamia hominis	Pseudoclavibacter spp.*
Atopobium minutum	Fannyhessea vaginae	Rhizobium radiobacter*
Bacillus simplex*	Finegoldia magna	Slackia exigua*
Bacillus spp.	Fusobacterium nucleatum	Staphylococcus aureus*
Bacteroides vulgatus	Granulicatella adiacens*	Staphylococcus epidermidis
Bifidobacterium spp.*	Lactobacillus crispatus	Staphylococcus haemolyticus
Campylobacter ureolyticus	Lactobacillus delbrueckii	Staphylococcus hominis
Citrobacter koseri	Lactobacillus gasseri	Staphylococcus lugdunensis*
Collinsella aerofaciens	Lactobacillus iners	Staphylococcus spp.
Corynebacterium	Lactobacillus jensenii	Streptococcus agalactiae
aurimucosum	Limosilactobacillus mucosae	Streptococcus anginosus
Corynebacterium coyleae	Limosilactobacillus	Streptococcus gordonii*
Corynebacterium jeikeium	vaginalis	Streptococcus spp.
Corynebacterium riegelii	Mobiluncus curtisii	Veillonella parvula
Corynebacterium simulans	<i>Moraxella</i> spp.*	Winkia neuii
2	Peptoniphilus	
	asaccharolyticus	
* species detected by amplicon sequencing in relative abundance < 0.1%		

Figure S5. Venn-Euler diagram showing the number of species (N = 297) detected by culturomics and/or amplicon sequencing. The size of the circles and intersections is proportional to the number of species detected. Species detected by both methodologies are listed in alphabetical order. (RA, relative abundance)