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Introduction 
This supplementary text expands on the main text by providing additional explanation, technical details, and fine-
grained results. The overall workflow of this study, including its application of standard and novel analytical 
methods, are displayed in Supplementary Figure 1.   

Phenotypes 
Phenotypes were selected to represent different stages of substance use across two commonly used licit 
substances: tobacco and alcohol. Five such phenotypes were widely available across participating studies: four 
measures of smoking including whether and when an individual begins smoking (smoking initiation and age of 
initiation of smoking), usual amount smoked among smokers (cigarettes per day), and whether an individual is 
a current or former smoker (smoking cessation); and one measure of alcohol use (drinks per week). Whenever 
possible, measures of smoking include cigarette smoking only, as use of other nicotine delivery types were rarely 
reported across studies. The one exception was for the Amish cohort in the Trans-Omics for Precision Medicine 
(TOPMed) project1, as nearly all individuals in that study smoked small cigars. Phenotypes were defined as 
reported in our previous work2. 

Smoking Initiation (SmkInit)  

1. Binary phenotype with any participant reporting ever being a regular smoker in their life (current or former) 
coded “2”, while any participant who reported never being a regular smoker in their life coded “1”. 

2. Does not include information about pipes/cigar/chew, or other non-cigarette forms of tobacco use. 
3. This phenotype was measured in a variety of ways. 

a. Have you smoked over 100 cigarettes over the course of your life? 
b. Have you ever smoked every day for at least a month? 
c. Have you ever smoked regularly?  

Age of Initiation of Regular Smoking (AgeSmk) 

1. Age (in years) at which an individual started smoking cigarettes regularly 
2. Does not include information about pipes/cigars/chew, or other non-cigarette forms of tobacco use. 
3. Measured in a variety of ways: 

a. At what age did you begin smoking regularly? 
b. How long have you smoked? Combined with What is your current age? 

Cigarettes per Day (CigDay) 

1. Defined as the average number of cigarettes smoked per day, either as a current smoker or former 
smoker. Individuals who either never smoked, or for whom there is no available data (e.g., someone was 
a former smoker, but for whom former smoking was never assessed) were set to missing. 

2. For studies that collected a quantitative measure of cigarettes per day, where the respondent is free to 
provide any integer (e.g., 13 cigarettes per day) responses were binned as follows. 

a. 1 = 1–5 
b. 2 = 6–15 
c. 3 = 16–25 
d. 4 = 26–35 
e. 5 = 36+ 

3. For studies with pre-defined bins, the pre-defined bins were used. 
4. Does not include information about pipes/cigars/chew, or other non-cigarette forms of tobacco use. 
5. Cigarettes per day was measured with a single question for most contributing studies using, for example: 

a. How many cigarettes do you smoke per day? 
b. How many cigarettes did you smoke per day? 

Smoking Cessation (SmkCes)  
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1. Binary phenotype with current smokers coded as “2”, former smokers coded as “1”, and never smokers 
coded as missing. 

2. Does not include information about pipes/cigars/chew, or other non-cigarette forms of tobacco use. 
3. Usually measured through a combination of questions, including: 

a. Do you currently smoke? and Have you ever smoked regularly? 
b. Do you smoke? and Have you smoked over 100 cigarettes in your entire life? 

Drinks per Week (DrnkWk) 

1. Defined as the average number of drinks a participant reported drinking each week, aggregated across 
all types of alcohol. If a study recorded binned response ranges (e.g., 1–4 drinks per week, 5–10 drinks 
per week) we used the midpoint of the range. For example, if an individual reported 1–5 drinks per week, 
we assume they drank 2.5 drinks per week on average. 

2. This was measured in a variety of ways. 
a. In the past week, how many alcoholic beverages did you have? 
b. Thinking about the past year, on the average how many drinks did you have each week? 

3. This phenotype was left-anchored at 1 and log-transformed prior to analysis, in order to prevent outliers 
from having undue leverage on analyses. 

Study inclusion and generation of summary statistics 
The present project involved a major expansion of a previous effort2 including new sets of summary statistics 
from studies that had not previously participated. Summary statistics from studies that had previously participated 
were either directly re-used, or they were updated (e.g., larger N, improved imputation) and re-shared for meta-
analysis. The full list of studies is provided in Supplementary Table 1.  

Data from 28 studies were obtained through the Trans-Omics for Precision Medicine (TOPMed) program1, a 
consortium of studies with deep whole genome sequencing, using genotype calls from freeze 8. To ease 
computational burden for single-variant tests, we generated marginal summary statistics from each TOPMed 
study individually, which were then included in the meta-analysis. Relevant phenotypic data was either acquired 
directly from a dbGaP accession or from the study investigators directly and analyzed centrally. In TOPMed, only 
smoking phenotypes were available for the current analysis. 

Generation of individual summary statistics and ancestry considerations 

Documents outlining the phenotype definitions and analysis plan were shared with participating investigators. 
Local study personnel conducted GWAS according to this plan and shared summary statistics, imputation 
quality, and other relevant information such as study design or ascertainment, for meta-analysis. Study personnel 
were asked to impute their genotypes to the Haplotype Reference Consortium3 (for European ancestries) or 
1000 Genomes4 phase 3 (for non-European ancestries) using an imputation server such as the Michigan 
Imputation Server5 (https://imputationserver.sph.umich.edu; the TOPMed reference panel and imputation server 
were not yet available at the time requests to participating studies were made). A few studies, including 23andMe 
and UK Biobank, were imputed using local reference panel resources, which were combinations of 1000 
Genomes, Haplotype Reference Consortium, and additional markers from the UK10K6,7. All studies were 
imputed using either Minimac or IMPUTE8. 

The analytical plan requested that study analysts use RVTESTS9, BOLT-LMM10, or SAIGE11 to conduct the 
GWAS. Some groups had in place an existing robust analytical pipeline, which was also acceptable. Standard 
covariates included sex, age, age squared, and genetic principal components. Contributing study investigators 
were instructed to determine the number of genetic principal components and include any additional study-
specific covariates associated with their particular study (e.g., genotyping batch, site). Studies composed 
primarily of closely related individuals (for example, family studies) first regressed out covariates, inverse-
normalized the residuals as necessary, and then tested additive variant effects under a linear mixed model with 
a genetic kinship matrix for all phenotypes. Some studies of unrelated individuals followed the same analysis for 
quasi-continuous phenotypes (AgeSmk, CigDay, DrnkWk), but estimated additive genetic effects under a logistic 
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model for binary phenotypes (SmkInit and SmkCes). Differences in the analytical choices between samples of 
related or unrelated individuals, and the use of linear or logistic models, were based on an attempt to strike a 
balance between methodological and practical concerns. Many participating studies were large, necessitating 
the use of computationally efficient approaches, like mixed-effects models, that can account for complex family 
structures through use of kinship matrices as a random effect. This approach has been shown to work well for 
genetic association studies of binary phenotypes with high sample prevalence12,13, has been used successfully 
previously14,15, and allows ready inclusion of all individuals within a family sample. The per-study statistics were 
further normalized prior to running the full meta-analysis to help ensure comparability of effect across studies. 

For studies composed primarily of a single major genetic ancestral group, the GWAS analysis plan was applied 
only to that group. For example, studies were often composed primarily of individuals of European ancestries, 
with a small number (e.g., < 100) individuals of a different major ancestral group. In those cases, summary 
statistics were provided only for individuals of European ancestries. If a given study was composed of multiple 
large ancestry groups, two types of summary statistics were shared in some cases: 1) results based on all 
individuals in the sample regardless of ancestry, resulting in up to five sets of summary statistics, one for each 
available phenotype; and 2) results stratified by ancestry, resulting in up to 4×5=20 sets of summary statistics, 
one for each available phenotype/ancestry combination. Throughout this article, we refer to ancestral groups 
using terminology from the 1000 Genomes Project4 as follows:  

1. “African” (AFR), composed primarily of individuals with admixed African and European ancestries, 
primarily from the United States and the United Kingdom, and who may variously self-identify as Black, 
African American, etc.; 

2. “American” (AMR), composed of individuals with admixed American, European and African ancestries, 
primarily from the United States, and who may variously self-identify as Hispanic, Latino/Latina, etc.; 

3. “East Asian” (EAS), composed of individuals with East or Northeast Asian ancestries, primarily including 
individuals from the People’s Republic of China, Japan, and the United States; 

4. “European” (EUR) composed of individuals of European ancestries from the United States, Western 
Europe, and Australia, and who may self-identify as White, European American, etc.  

Supplementary Table 1 provides study names, sample sizes, and genomic controls for each meta-analysis 
(multi-ancestry as well as stratified AFR, AMR, EAS, and EUR) and phenotype. Additionally, Extended Data 
Figure 1a shows a scatterplot of all studies, along with 1000 Genomes4, in the allele frequency-based MDS 
space of components 1–4. 

In general, ancestry assignment was conducted by contributing studies themselves, often based on principal 
components analysis (PCA) projection onto 1000 Genomes. Ancestry stratification in 23andMe was done using 
a method developed by the company, which is slightly different from other cohorts. Briefly, 23andMe split 
genomic data into short windows of approximately 300 SNPs. Haplotypes within each window were classified as 
one of multiple reference populations (reference populations were derived from the Human Genome Diversity 
Project, HapMap, 1000 Genomes, and 23andMe customers who have reported having four grandparents from 
the same country). A hidden Markov model was then used to assign probabilities for each reference population. 
Final ancestry assignment is based on classification thresholds defined by 23andMe. 

TOPMed is composed of individual studies which all were sequenced jointly1, and we used all available 
genotypes to identify major ancestries within TOPMed studies. To do this, we grouped individuals in freeze 8 of 
TOPMed (N = 106,612) using 1000 Genomes phase 3 as a reference for the four major continental ancestry 
groups, or recent admixtures thereof. Both datasets were subsetted to shared common variants (MAF > 1%, 
variant missingness < 1%) and LD-pruned using PLINK16 such that, within 100kb windows, variants with a 
pairwise r2 < 0.01 are retained before shifting 5 variants and repeating the stepwise procedure. LD pruning was 
conducted on all variants, ancestry notwithstanding, as prior work has indicated that pruning has minimal effect 
on the LD within 1000 Genomes17. Five ancestry groups were created from the 1000 Genomes reference 
populations: African (ESN, GWD, LWK, MSL, YRI, ACB, ASW), East Asian (CDX, CHB, CHD, CHS, KHV, JPT), 
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European (CEU, FIN, GBR, IBS, TSI), South Asian (BEB, GIH, ITU, PJL, STU), and American (CLM, MXL, PEL, 
PUR). Acronyms are defined as by the 1000 Genomes project4. We then applied multinomial logistic regression 
within 1000 Genomes using the first 15 genetic principal components as predictors, and ancestry groups as the 
predictand. This fitted model was then applied to TOPMed to make ancestry group assignments. Individuals 
were classified into an ancestry group if they had a probability > 0.80 of assignment to that group. These groups 
were then used to generate ancestry-stratified summary statistics for meta-analysis. We note that the ancestry 
assigned using this method does not necessarily match the ancestry, ethnicity, or culture to which an individual 
self-identifies. 

Per-study quality control 

For each contributing study, we inspected the reported phenotypic distributions for outliers or other unusual 
distributional characteristics. All summary statistics were oriented to human genome build GRCh38. Results on 
a different build were lifted over using LiftOver (https://genome.ucsc.edu/cgi-bin/hgLiftOver). For each variant, 
effect direction, reference/alternate allele, and corresponding allele frequency were modified as necessary such 
that the reference allele matches the reference allele in human reference genome hg38. Minor allele frequency 
was used to ensure ambiguous alleles were properly oriented to the reference genome within ancestries. Due 
to the complexity of calling and coding for insertions and deletions, they were not aligned to any reference 
dataset. We generated and inspected summary information including allele-frequency-stratified QQ plots, 
Manhattan plots, genomic controls, and positive control loci (e.g., CHRNA5 and CYP2A6 for CigDay; ADH1B 
and ALDH2 for DrnkWk). For smaller to medium (N < ~10,000) sets of results, we removed studies where the 
genomic control value based on common variants MAF>.01 was greater than 1.1 or less than .9. For larger 
studies, we did not apply a max threshold, as true polygenic signal may result in larger genomic controls18. No 
larger study had a genomic control less than .9.  

Variants with MAF <= 0.1% were removed from all sets of summary statistics due to low expected imputation 
accuracy. Imputation for individuals with non-European ancestry performs less well because 1000 Genomes 
phase 34 is the largest reference panel available at the time this work was completed, and so a stricter MAF filter 
of 1% was applied to studies of primarily non-European ancestry. In all sets of summary statistics, we excluded 
variants with imputation quality less than 0.3. 

Creation of ancestry-specific reference panels from TOPMed 
GWAS analyses were based on summary statistics from participating studies. Many of these analyses benefited 
from the use of a reference panel with individual-level genotypes to approximate linkage disequilibrium among 
neighboring genetic variants. For studies of EAS and EUR ancestries, this is relatively simple using either 
HapMap19 or 1000 Genomes4, which have large samples of individuals matched closely to these ancestries. For 
individuals with more recent ancestry admixture, such as individuals who frequently self-identify as African-
American or Latino/a, large sequenced reference panels have not been readily available. To create ancestry-
specific TOPMed reference panels that match as closely as possible the ancestry of non-TOPMed studies we 
considered two options: 1) using all available TOPMed individuals of the same continental ancestry; and 2) 
selecting a reference sample of TOPMed individuals, regardless of classified continental ancestry, such that the 
selected centroid of this sample in MDS space is as close as possible to each target non-TOPMed study’s MDS 
centroid. We compared the results of both approaches in TOPMed to each other, and to the use of 1000 
Genomes reference panels. 

Following the same procedure for generation of TOPMed summary statistics described above, we grouped 
individuals available from freeze 8 of TOPMed using 1000 Genomes phase 34 as a reference for the four major 
continental ancestry groups, or admixtures thereof. To further improve ancestry group assignment in TOPMed 
for creation of linkage disequilibrium (LD) reference panels, we used the Online Augmentation Decomposition 
Procrustes transformation (OADP), wherein the PCs of each individual within TOPMed were mapped to the 1000 
Genomes reference PC space using a Procrustes transformation, as implemented in the Fast and Robust 
Ancestry Prediction by using Online singular value decomposition and Shrinkage Adjustment (FRAPOSA) 
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software20. Visual inspection of the 1000 Genomes PC space identified five extreme outliers from the AFR group, 
who were removed prior to further analysis (individual IDs HG01880, NA19625, NA20274, NA20299, NA20314). 
Extended Data Figure 1b shows the projection of OADP transformed PCs of 1000 Genomes individuals onto 
TOPMed individuals. We then evaluated and compared two methods of ancestry prediction based on 1000 
Genomes: multinomial logistic regression and k-nearest neighbor clustering, both applied to the first 15 OADP 
PCs from 1000 Genomes with continental ancestry group as outcome. First, the fitted multinomial model was 
used to predict the ancestry groups of the TOPMed participants. Individuals were classified into an ancestry 
group if they had a probability > 0.99 of assignment to that group, otherwise, they were set to missing; 1,785 
individuals (~1%) were not assigned for this reason. For comparison, a k-nearest neighbor algorithm was used 
as implemented in FRAPOSA with k = 20 and weights set to uniform. Individuals were classified into an ancestry 
group if they had a probability > 0.875 of assignment to that group, otherwise, they are set to missing; 9,034 
individuals were not assigned for this reason.  

There was substantial agreement in ancestry classification between the multinomial regression approach and 
the k-nearest neighbor algorithm. That is, for TOPMed individuals with a prediction probability above 0.99 for the 
multinomial regression model and above 0.875 for the k-nearest neighbor algorithm, meaning they were 
classified using both methods, the two classification methods disagreed less than 0.5% of the time (N = 522 
individuals were assigned different ancestries across methods). The major difference between the multinomial 
regression classification and the k-nearest neighbor approach is in assignment of individuals with relatively 
recently admixed ancestry. Despite a much more liberal decision threshold (probability > 0.875 for k-nearest 
neighbor versus probability > 0.99 for multinomial regression) the k-nearest neighbor algorithm still resulted in 
far more unassigned individuals (N = 9,034), as compared to multinomial regression (N = 1,785 individuals 
unassigned). Because ancestry is continuous, and because a major goal of the reference panel creation is in 
matching, to the extent possible, individuals of AFR or AMR ancestries, leaving such a large group of individuals 
unassigned would result in more poorly matched reference panels, particularly for studies with large numbers of 
individuals of AFR and AMR ancestries. Given these reasons, and to be consistent with the generation of 
summary statistics in TOPMed, we moved forward with the multinomial logistic regression method, and assigned 
TOPMed individuals to one of the major continental ancestry groups.  

Next, we evaluated the extent to which the TOPMed ancestry groups were comparable with the ancestries 
represented in all other studies that contributed summary statistics. To make these two data sources 
commensurate, we projected the TOPMed principal components (based on individual-level genotypes) onto the 
ancestry space defined by multidimensional scaling of allele frequencies from all studies that contributed 
summary statistics to our meta-analytic effort. This process involved several steps. First, we took the first three 
MDS components from allele frequencies for all TOPMed studies of AFR or AMR ancestry (19 AFR TOPMed 
studies and 8 AMR TOPMed studies), as well as their PC centroids based on the first three principal components. 
Second, we used a Procrustes transformation to map the matrix of PCA centroids to the matrix of MDS 
components, such that the squared distance between the two matrices was minimized. This produced a rotation 
matrix, translation vector, and scale factor that were then applied to the three principal components in the full 
TOPMed sample (three components were selected because the fourth and greater components essentially 
distinguished only one study form the rest). We were then able to make comparisons of all TOPMed individuals 
and non-TOPMed studies in the same space, computing a distance matrix for all points (Supplementary Figure 
3a).  

Ancestry specific TOPMed reference panels 

Once TOPMed individuals (based on PCA) and per-study study summary statistics (based on MDS) were in the 
same multidimensional space as described above, we compared two approaches to creating reference panels. 
In the first approach, for each study, we simply selected all TOPMed individuals from the closest TOPMed 
ancestry (e.g., for 23andMe AFR we used all individuals in TOPMed classified as AFR from our multinomial 
regression approach). This approach has the dual benefit of being extremely simple and replicable while 
maximizing the sample size for each reference panel created. We compared this approach to a more involved 
one, which identified, for each study, a reference panel tailored as closely as possible to the ancestral 
characteristics of that study. This is advantageous, for example, for conditional analyses21 that benefit from a 
tailored reference panel for each contributing study in the meta-analysis. To create such tailored panels, we 
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iteratively selected TOPMed individuals from any ancestry group, one at a time, such that the allele-frequency-
based MDS centroid of the selected TOPMed individuals was as close as possible to the target study MDS 
location. More specifically, after the single closest (by Euclidean distance) TOPMed individual to a target study 
is found, all possible combinations of centroids are computed with the closest individual plus every other 
individual one at a time. The distance between the target study and all possible combinations of centroids is 
computed and the second individual is selected such that the distance between the target study and selected 
centroid (now based on two individuals) is minimized. This iterative procedure is repeated until a set number of 
individuals, who may be of multiple ancestries, are selected as the TOPMed reference panel for a given target 
study. To provide an illustration, we present a picture of this process using HCHS_SOL in Supplementary 
Figure 3b-f.  

To evaluate the performance of these alternative approaches, we compared the LD structure of each TOPMed 
study to the ‘matched’ reference panel created from the iterative selection of 10,000 TOPMed individuals (“10k 
selected”), all TOPMed individuals of the same continental ancestry (“all ancestry”), and all 1000 Genomes 
individuals of the same continental ancestry. Because we have individual-level genotype data for each TOPMed 
individual as well as TOPMed study-level genotype data, a close similarity in LD structure between the original 
TOPMed study and the potential reference panel provides a way to directly compare the performance of the two 
reference panel options. To do this we extracted TOPMed genotype data from chromosome 20 (filtered to MAF 
> 0.05) for all individuals in a target TOPMed study, termed the ‘original sample’. After removing individuals from 
the target study, we did the same for the two TOPMed reference panel options, termed ‘all ancestry sample’ and 
‘10k selected sample’, as well as for 1000 Genomes. For all four sets of genotype files we then calculated LD 
(r2) using VCFtools with a LD window of 100kb for comparison. Supplementary Table 3a includes descriptive 
statistics (means and standard deviations of r2 values) and similarity measures between each possible reference 
panel (i.e., 1000 Genomes, TOPMed all ancestry, and 10k selected TOPMed individuals) and the original 
TOPMed study individuals (the original sample which functions as the gold standard). We found that the mean 
and standard deviations of the LD r2 values were similar between the original TOPMed studies and all ancestry 
sample options, though 1000 Genomes tended to produce the most dissimilar distributions compared to the 
original samples. We also found that all ancestry and 10k selected reference samples have higher LD r2 
correlations with the original TOPMed studies compared to 1000 Genomes, suggesting that the LD structure of 
each original TOPMed study is better approximated using the TOPMed all ancestry or 10k selected reference 
samples. 

A second comparison of the reference sample matches was performed using conditional and joint analysis in 
GCTA-COJO22, a widely-used software tool to conduct conditional genetic association analysis, with the idea 
that the best reference panel is the one in which conditional analysis results are most similar to those produced 
using the original study to construct the panel (the gold standard). For each target TOPMed study, GWAS 
summary statistics for CigDay (or SmkInit if CigDay was not available in a given study) were used as summary-
level statistics along with the reference sample options defined above. In addition, we also used each TOPMed 
study’s own participants as a reference panel, which is a gold standard against which the other reference panel 
options could be compared. We subsetted all summary statistics to chromosomes 15 and 19, as these 
chromosomes harbor variants with large and reliable associations with CigDay (and SmkInit). For each set of 
TOPMed summary statistics the top variant, as indicated by minimum P-value in a given TOPMed cohort, was 
identified and a +/-500kb region was extracted around this variant. We then ran conditional analysis in two ways: 
1) by conditioning on the same single top SNP for each set of TOPMed summary statistics and reference panel 
options, and 2) using a stepwise model selection procedure (‘cojo-slct’), with a MAF threshold of 0.01 and P-
value threshold of 5⨯10-3, to identify independently associated SNPs within the region for each pair of summary 
statistics and reference sample files. We use a lenient P-value threshold to ensure that at least one independent 
variant would be identified for each set of summary statistics, thus allowing for better comparisons across the 
reference panel options. The purpose of these comparisons was to determine if using each reference sample 
would result in a similar number of independent SNPs identified compared to the original sample gold standard, 
as well as to assess the similarity across reference samples of conditional beta estimates and P-values after 
conditioning on the same SNP. In this comparison, shown in Supplementary Table 3b, we observed that using 
all TOPMed individuals of the same ancestry performs as well as, or better, than the 10k selected TOPMed 
reference panel, both of which outperformed the use of 1000 Genomes itself as the reference panel. This effect 
was most pronounced for chromosome 19 comparisons. Both types of TOPMed reference samples (TOPMed 
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all ancestry and 10k selected TOPMed individuals) identified a larger number of independently associated SNPs 
than the original study reference sample, with the 10k selected sample being slightly more similar than the 
TOPMed all ancestry reference sample, but both were more similar than 1000 Genomes. Lastly, while the 
distributions of conditional beta estimates and P-values were relatively similar regardless of the reference sample 
option, the correlations and differences in these values between each reference sample option and the original 
TOPMed study sample showed the greatest similarity using the TOPMed all ancestry reference sample. Given 
that the TOPMed all ancestry reference samples well approximated the LD structure of the original TOPMed 
studies and showed very high agreement for conditional analysis, we used for simplicity and improved 
replicability the TOPMed all ancestry reference samples for further downstream analyses. 

Genome-wide association meta-analysis methods 
Fixed-effects meta-analysis methods 

We conducted four standard fixed-effects meta-analyses – stratified meta-analyses for each of the four main 
ancestry groups – for each of our five phenotypes (20 total fixed-effects meta-analyses) using a genome-wide 
significance threshold of 𝑃 < 5 × 10!". Refer to Supplementary Table 1 for the list of studies included for each 
phenotype for each meta-analysis. We used the software package rareGWAMA 
(https://github.com/dajiangliu/rareGWAMA) for all meta-analyses. The method aggregates Z-scores across 
studies with 𝑍!"#$ =

∑ &!'!!

(∑ &!
"

! )
#/", where 𝑍# is the 𝑍-score statistic in study 𝑘. The weight 𝑤# is defined by 𝑤# =

,𝑁#𝑝#(1 − 𝑝#)𝑅#$, where 𝑝# is the variant allele frequency, and 𝑅#$ is the imputation quality in study 𝑘. Thus, the 
meta-analysis is aware of sample size, variance of the variant, and imputation quality (“imputation quality” for 
TOPMed whole genome sequencing studies were set to 1.0 for all variants). 

Multi-ancestry meta-analysis methods 

We conducted the multi-ancestry meta-analyses using MEMO (Mixed Effect Meta-Regression for Optimal Trans-
ethnic Meta-analysis) implemented in the rareGWAMA package again using a genome-wide significance 
threshold of 𝑃 < 5 × 10!". The full model can be described as follow: 

𝑏*+ =$𝐶,+𝛾*,

-

,./

+ 𝑒*+ + 𝜖*+ , (1) 

where 𝑏%# is the genetic effect for the 𝑗th variant in the 𝑘th study, 𝑒*+ ∼ N(0, 𝜏0) is the random effect that captures 
unexplained heterogeneity, and 𝐶&# was the 𝑙th axis of genetic variation (or MDS component) for the 𝑘th study 
with 𝐶'# = 1. Correspondingly, 𝛾%& captures the effect of the 𝑙th axis of genetic variation for the 𝑗th variant with 
𝛾%' as an intercept in the model. Finally, 𝜖*+ ∼ N20, 𝑠*+0 4 is the random error term and 𝑠%#$  is the standard error 
corresponding to 𝑏%#.  
 
We fitted a series of nested models within the full model described above (equation 1). First, we fitted the model 
that only contains an intercept. In other words, we excluded all axes of genetic variation as well as the random 
effect. The hypothesis test was performed to examine if the intercept was significantly different from zero. Next, 
we included the first 𝑙 MDS components in the model. For each successive model, we added one more 
component up to 4 total MDS components. Hypothesis tests were performed for each model to test whether 
each 𝛾 was significantly different from zero. Finally, for the full model, we tested whether all four 𝛾’s, as well as 
whether the variances of random effects (𝜏$) were significantly different from zero. Because all statistical tests 
were performed on the same data, which implied a correlation between them, statistical significance for our final 
model was calculated using Gaussian copula approach to synthesize information from all models. In addition to 
estimation of effect sizes, 𝑏%#, and their variances, 𝑠%#$ , we also performed genomic control (GC) based on minor 
allele frequency for rare variants (MAF < 1%) for each participating study.  
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Per study ancestry variation, 𝐶&#, is calculated using multidimensional scaling (MDS) based on allele frequencies. 
We defined the genetic distance between 2 studies, i.e. study 𝑘 and 𝑘′, with 𝐽 variants, as:  

𝑑##! = ,𝛴%?𝑓%# − 𝑓%#!A
$, (2) 

where 𝑓%# and 𝑓%#( are the allele frequency for the 𝑗th variant for study 𝑘 and 𝑘′, respectively. We used the first 
four axes of genetic variation (i.e., we set 𝐿 = 4 in equation 1 above; see Extended Data Figure 1a). In this way, 
MDS component 1 largely separated EAS from other ancestries, component 2 separated AFR from other 
ancestries, component 3 separated northern vs. southern EUR ancestries, and component 4 separated AMR 
ancestries from others. 
 
Methods for genetic studies of admixed populations is an area of research under active development23–25. The 
current multi-ancestry GWAS meta-analysis method, which uses cohort-level information, can be viewed as 
complementary to other recent approaches for admixed samples using local ancestry. Tractor23, for example, 
uses individual-level data in a regression model with local ancestry as a covariate to generate GWAS summary 
statistics. The use of Tractor, or similar methods, by individual cohorts for inclusion in the overall multi-ancestry 
meta-analysis may be useful in estimating effect sizes in future work. 

Region definition and conditional analysis methods 

In reporting the number of regions identified for all meta-analyses, we defined 1MB regions surrounding every 
genome-wide significant variant, collapsing any overlapping regions into a single region. We used a stringent 
genome-wide significance threshold of 𝑃 < 5 × 10!" for all meta-analyses because we included variants with 
MAF down to 0.01 (or 0.001 for EUR-stratified results) and variants that might be exclusive to a single ancestry 
resulting in a greater number of independent tests. 
 
We performed sequential forward selection to identify independent variants for each region as defined above. 
Specifically, we initialized the set of independently associated variants (denoted by Φ), starting with the top 
association signal in the region. For each iteration, conditioning on variants in Φ, we performed conditional 
association analyses for all remaining variants. If the top association signal after the conditional analysis 
remained significant, we added the top variant to the set Φ, and then repeated the conditional association 
analysis. If the top variant after the conditional analysis was no longer significant, we stopped and reported 
variants in the set Φ as the final set of independent variants for that region. We used the same single variant 
significance threshold (𝑃 < 5 × 10!") as in the marginal meta-analysis to determine statistical significance with 
the sequential forward selection results and imposed a limit of 10 independent variants per locus (beyond 
approximately 10 iterations, the stability of LD approximated from the external reference panel declines 
significantly). Unlike existing conditional meta-analysis methods that use only final meta-analytic results (e.g., 
genome-wide complex trait analysis; GCTA-COJO22), here we make use of study-level summary statistics. 
Therefore, our method is better able to estimate correlations between score statistics than existing methods 
when contributing summary association statistics contain missing values, as described previously21. 
 
Conditional analysis using summary statistics requires external estimates of non-independence among effects 
of distinct variants. Non-independence between genetic variants was estimated based on linkage disequilibrium 
patterns for each contributing study estimated from the TOPMed ‘all ancestry’ reference samples, as described 
above. This resulted in reference sample sizes of N = 28,665 AFR, N = 19,737 AMR, N = 4,918 EAS, N = 51,656 
EUR. Each set of ancestry-stratified fixed-effects results were matched with their relevant reference panel in the 
analysis (AFR summary statistics with AFR TOPMed panel, AMR with AMR, etc.). For multi-ancestry conditional 
analyses, we created TOPMed-based reference samples by combining the per ancestry TOPMed reference 
panels, defined above, resulting in a diverse ancestry reference panel (N = 104,976) cohorts in which to estimate 
LD. 

Allelic effect size moderation methods 
The multi-ancestry meta-analysis model, including the first four per study MDS components, was used to identify 
variants that showed moderation of effect sizes across ancestries. Extended Data Figure 1a shows MDS plots 
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based on the allele frequencies of each study cohort across phenotypes. Studies are colored by ancestry if they 
were largely ancestrally homogeneous (>90% of the sample from a single ancestry group), otherwise, studies 
that contained individuals of multiple ancestries are shown in grey and labeled as ‘other’ ancestry. We did not 
stratify studies by ancestry because the multi-ancestry method, MEMO, effectively accounts for this by 
incorporating MDS components. The first MDS component separates EAS studies, the second MDS component 
separates AFR studies, the third MDS component separates Northern and Southern EUR studies, and the fourth 
component separates AMR studies. We used these MDS components to aid in interpretation of multi-ancestry 
results of allelic moderation across ancestry. 
 
For each independent variant, we evaluated evidence for allelic effect size moderation. In order to do this, the 
MEMO model was extended into a mixture model representing variants with homogeneous effects (i.e., models 
with only an intercept term) and those with possible heterogeneous effects (moderation) on at least one axis of 
genetic variation. Six sub-models were compared: an intercept only (null) model, as well as models that included 
0 to 4 MDS components. A likelihood was derived as, 

𝐿(𝑦) =F𝑝)*+,, 𝑝?𝑏%|𝑁𝑈𝐿𝐿A + 𝑝)-,. J K𝑞%' 𝑝 M𝑏%N𝑀𝑅'(𝑗)P + ⋯+ 𝑞%/ 𝑝 M𝑏%N𝑀𝑅/(𝑗)PR
%∈1")

, (3) 

where 𝑝?𝑏%|𝑁𝑈𝐿𝐿A and 𝑝?𝑏%|𝑀𝑅&A are, respectively, the likelihoods of the variant 𝑗 effect sizes under the null 
model and the meta-regression models with 𝑙 axes of genetic variation;  𝑝)*+,, and 𝑝)-,. are the probabilities of 
locus 𝑎 carrying zero or at least one causal variants, respectively. The term 𝑞%& is the probability that the model 
with 𝑙 axes of genetic variation best fit the data. The model with the largest posterior probability per variant was 
selected as the best fitting model to capture any genetic effect heterogeneity. Variants in which the model with 
0 MDS components was selected were considered to have homogeneous effects across ancestries. Variants in 
which the selected models had 1 to 4 MDS components were considered heterogenous along the respective 
axis of genetic variation (e.g., if the selected model for variant 𝑗 contained 2 MDS components, variant 𝑗 was 
considered heterogeneous across component 2, generally indexing an AFR cline). We then took all 
heterogeneous variants and evaluated the strength of the evidence for effect size moderation. To aid in 
interpretation, we preferred heterogeneous variants that were polymorphic in two ancestry-stratified meta-
analyses. For example, if the MEMO model including MDS component 4 fit best for variant 𝑗, that variant existed 
in 2+ ancestry-stratified meta-analyses, and 𝛾%/ was significantly different from zero, then we considered variant 
𝑗 to be “strongly” heterogeneous on component 4 (AMR GWAS). The significance threshold of  𝛾%/ was .05 with 
a Bonferroni correction for the total number of heterogeneous variants for a given phenotype. While we grouped 
ancestry into four main categories for analytic purposes, genetic ancestry (as shown in Extended Data Figure 
1a) was continuous, largely without clear boundaries to definitively group individuals. Therefore, we caution 
against interpreting results as representing group differences. 

Locus definition and fine mapping methods 
Fine-mapping was conducted in both the EUR-stratified and multi-ancestry meta-analytic results. Because the 
method used for fine-mapping assumes a single causal variant within each locus, we relied on a reduced locus 
size definition, based on LD approximated from a TOPMed reference panel. Specifically, we subsetted the 
TOPMed sample such that the ancestry proportions roughly matched the full GSCAN sample (81% EUR, 9% 
EAS, 7% AMR, and 3% AFR) to create an LD reference panel (N = 23,033). From this LD reference panel we 
extracted all variants with MAF > 0.001 that were in the significantly associated regions (N = 1,449) defined in 
‘Region definition and conditional analysis methods’ above. Then, for every independent variant, we found all 
variants in LD with the target variant (r2 > 0.1), taking the minimum and maximum positions to define a locus 
around the target variant. If an independent variant did not exist in the TOPMed reference panel, we used +/- 
250kb around the variant to define the locus around the target variant. As above, we collapsed any overlapping 
regions into a single locus. This resulted in a greater number of loci that are more likely to satisfy the assumption 
of containing a single causal variant. This LD-based procedure is how loci were defined throughout this 
manuscript and supplementary note. 
 
To conduct multi-ancestry fine-mapping, we selected the best fitting MEMO model (described in the section 
above) to approximate the Bayes factor for variant 𝑗 in a locus by 
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𝛬% = 𝑒𝑥𝑝 X
𝑋% − (𝑇 + 1)𝑙𝑛𝐾

2
] , (4) 

Where 𝑋% denotes the chi-squared test statistic for variant 𝑗, 𝑇 denotes the number of axes of genetic variation 
included in the best fitting model (i.e., 0 to 4 PCs), and 𝐾 denotes the number of studies contributing to the 
GWAS. Using the approximate Bayes factor, we calculated posterior inclusion probabilities (PIP) per variant as 

𝜋% =
𝛬%
∑ 𝛬22

, (5) 

We then derived 90% credible intervals by ranking variants within a locus by their single posterior estimate and 
selecting variants until the cumulative posterior probability reached 0.90. 
 
For EUR-stratified fine-mapping, we approximated per variant Bayes factors as above with 𝑇 = 0. We derived 
90% credible intervals by ranking variants within a locus by their Bayes factor and selecting variants until the 
cumulative posterior probability reaches 0.90. Multi-ancestry and EUR-stratified fine-mapping results, based on 
identical loci, were compared to better describe the resolution gains attributable to inclusion of diverse genetic 
ancestries. 

Genome-wide association meta-analysis results 
Post-meta-analysis filters and quality control 

To help ensure that results were not driven solely by one or two studies, meta-analytic results were filtered for 
variants that were polymorphic in at least three studies and had an effective sample size >= 0.01 of the maximum 
sample size for that analysis. The effective sample size is defined as 𝑁344 = ∑ 𝑁#𝑟#$# , where 𝑁# is the sample 
size in study 𝑘 and 𝑟#$ is the imputation quality. We filtered out variants with MAF < 0.001 in the multi-ancestry 
and EUR stratified meta-analysis; we filtered out variants with MAF < 0.01 for AMR-, AFR-, and EAS-stratified 
meta-analyses.  

Ancestry specific meta-analysis and conditional analysis results 

Ancestry stratified meta-analytic results, including all independent variants, are shown in Supplementary Table 
2. Collapsing across phenotypes, we identified 1,300 regions (2,562 independent variants) in EUR stratified 
results, 18 regions (36 independent variants) in EAS stratified results, 3 regions (3 independent variants) in AFR 
stratified results, and 29 regions (32 independent variants) in AMR stratified results. Using results from the 
ancestry-stratified conditional analysis and a reduced locus definition (detailed in ‘Locus definition and fine-
mapping methods’ section above), we discovered a total of 1,918 loci in EUR stratified results, 19 in EAS 
stratified results, 3 in AFR stratified results, and 29 in AMR stratified results. 

Multi-ancestry meta-analysis and conditional analysis results 
Multi-ancestry meta-analytic results, including all independent variants, are shown in Supplementary Table 2, 
with Manhattan and QQ plots in Extended Data Figure 2 and Supplementary Figure 2, respectively. In multi-
ancestry models, we identified 738 regions (2,486 independent variants) for SmkInit, 33 regions (39 independent 
variants) for AgeSmk, 138 regions (243 independent variants) for CigDay, 132 regions (206 independent 
variants) for SmkCes, and 408 regions (849 independent variants) for DrinkWk. Using results from the multi-
ancestry conditional analysis and a reduced locus definition (detailed above), we discovered 1,346 for 
independent loci SmkInit, 33 for AgeSmk, 140 for CigDay, 128 for SmkCes, and 496 for DrnkWk. In total, multi-
ancestry results identified 3,823 independent variants, an increase of 1,190 variants (45.2%) over ancestry-
stratified conditional analysis results.  
 
To evaluate the increase in power by modeling genetic effect heterogeneity as in our multi-ancestry approach 
over that of simpler models, we compared the number of loci identified in the full multi-ancestry meta-regression 
results to those identified using models with identical data but without consideration of ancestry (essentially the 
fixed-effects MEMO sub-model without including per study MDS components or the random effect term). This 
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comparison yielded 50 more loci identified in the multi-ancestry results (a 2.4% increase). This illustrates the 
increased power to identify associated loci in our meta-regression random effects approach.  

Quality control and manual review of all significant loci 
We evaluated meta-analytic Cochrane’s Q and I2 statistics to evaluate effect heterogeneity across contributing 
studies for all independent variants within each locus for each set of ancestry stratified and multi-ancestry results. 
Q was considered significant after application of a Bonferroni correction for all tests (i.e., all independent variants) 
within a phenotype.  
 
Across phenotypes, 25 variants showed heterogeneity per the Q statistic in the EUR-stratified results, ten 
variants in EAS-stratified results, and two for AMR-stratified results. No variants showed heterogeneity in AFR-
stratified results. These variants are still reported and remained in downstream analyses, but caution is advised 
in the interpretation of their effect. Heterogeneity statistics are reported for all independent variants in 
Supplementary Table 2. 
 
All multi-ancestry genome-wide significant regions were plotted with LocusZoom, were manually reviewed, and 
regions with apparently odd association patterns (e.g., no LD support within the locus) evaluated in detail. 
LocusZoom images were made using the LocusZoom standalone software 
(https://genome.sph.umich.edu/wiki/LocusZoom_Standalone) using TOPMed ancestry matched reference 
samples for LD information (the N=104,976 TOPMed sample described in the ‘conditional analysis’ section 
above) and the UCSC genome browser for dbSNP and gene positions. We set the most significant variant in the 
region as the reference variant upon which LD in the window is based. We report heterogeneity statistics in 
Supplementary Table 2 for multi-ancestry results, finding 43 variants with significant Q statistics. This is not 
unexpected given that many study-level summary statistics were stratified by ancestry before being included in 
the multi-ancestry models, and we are specifically interested in testing whether variant effect sizes differ by 
ancestry. 
 

Replicability of sentinel variants 

In all meta-analyses, we applied genomic control (GC) correction for low frequency variants (MAF < 1%). GC 
correction for common variants was not applied because high polygenic-based inflation of test statistics is 
expected18, especially with large sample sizes. We surmised that a strict GC control would be overly 
conservative. To evaluate this decision, we assessed the robustness of our results and the extent to which they 
are affected by population stratification in three ways.  
 
First, we used a novel statistical method (Replicability Assessment in Trans-Ethnic Studies; RATES) to assess 
replicability of each multi-ancestry sentinel variant. RATES is a trans-ancestry extension of MAMBA26 (Meta-
Analysis Model-based Assessment for replicability), a method for assessing the posterior probability of 
replicability of associations without the need for an independent replication sample. RATES leverages the 
strength and consistency of associations across cohorts, by incorporating study-level summary statistics and 
per-study allele frequency MDS components. For a given variant, RATES assigns a posterior probability by: 

𝑃𝑃𝑅% 	= 	𝑃b?𝑅% = 1c𝒃𝒋, 𝛙fA =
𝑃?𝑅% = 1c𝛙fA𝑝?𝒃𝒋c𝑅% = 1,𝛙fA

𝑝?𝒃𝒋c𝛙fA
, (6) 

where 𝒃𝒋 is a vector of effect size estimates across 𝑘 studies for variant 𝑗. 𝑅% is an indicator variable denoting a 
variant with replicable effect, and 𝛙f  is the hyperparameter estimate for the fitted RATES model based on the 
observed summary statistics.  
 
In the current analysis, we prepared per-study summary statistics (variant effect size estimates and their standard 
errors) for all sentinel variants as well as for randomly pruned null effect variants (variants that failed to achieve 
genome-wide significance and were located outside of associated loci), as well as the first four per-study MDS 
components, as required by RATES. For each chromosome, we included 2000 null variants, and ran the RATES 
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model by each chromosome for all five traits. The resulting posterior probabilities then served as a metric for 
assessing replicability of sentinel variants as well as the loci in which they were contained. 
 
In general, the posterior probability of replicability was high, with only 17 variants (of 1,449) falling below a 
threshold of < .99. We removed these variants and their associated regions from downstream analyses (i.e., 
conditional analysis, allelic heterogeneity, fine-mapping). Seventeen variants (and loci) were removed for this 
reason; two for SmkInit (chr3:38609794, chr6:79798179), two for CigDay (chr2:134785856, chr18:45078216), 
10 for SmkCes (chr2:106169084, chr11:79227043, chr15:42576159, chr3:173570664, chr15:26719238, 
chr2:160587711, chr13:100261629, chr16:15127835, chr13:57909623, chr11:11839580), and three for DrnkWk 
(chr1:102463444, chr18:43149880, chr18:27674354). 

Second, we used LD Score Regression (LDSC)27 to further probe replicability of results and possible influence 
of population stratification (Supplementary Table 8). We inspected the intercept from LDSC for EUR and EAS 
ancestries and that from covariate-adjusted LDSC28 (cov-LDSC)  for AMR and AFR ancestries. Detailed 
procedures for LDSC and cov-LDSC are provided in ‘Heritability and Genetic Correlation’ section below, 
including the choice of reference panel. Briefly, we used LD scores estimated in a random subsample of TOPMed 
reference samples of each ancestry (EUR, AFR, AMR, EAS) after excluding related individuals (< 4th degree). 
Intercepts that depart substantially from 1 have traditionally been interpreted as evidence for population 
stratification27,30. However, in many empirical applications of LDSC, the intercept often rises above one due to 
large sample sizes under the assumption of high polygenictiy10, which we expect is true for the current analysis 
given our sample sizes yielding a high number of GWAS hits. To mitigate the expected bias, we examined the 
attenuation ratio, (LDSC intercept – 1) / (mean 𝜒$ – 1), for each meta-analysis result10.  

In Supplementary Table 8, LDSC intercepts for most meta-analysis results were close to 1 (range: 0.99-1.036) 
except for SmkInit in AMR ancestry and most phenotypes in EUR ancestry (range: 1.07-1.44). For those with 
elevated intercepts, the attenuation ratios were less than 1, consistent with the notion that these large intercepts 
are biased due to polygenicity, and that our type I errors were ultimately well controlled with respect to population 
stratification. The AFR ancestry-stratified analyses for AgeSmk and CigDay had the smallest sample sizes of 
any phenotype-ancestry combination (N=17,518 and N=20,157, respectively, for the LDSC analyses). This 
resulted in larger standard error estimates for SNP heritabilities, intercepts, and attenuation ratios than other 
phenotypes. The attenuation ratio is particularly important for genetic association results based on very large 
samples (e.g., >500K), where bias is induced in the intercept. Due to the relatively small sample sizes for 
AgeSmk and CigDay in AFR ancestries caution is warranted in interpretation of the attenuation ratio. Estimates 
of the genomic control factor and intercept may be more relevant. Taken together, the AgeSmk and CigDay 
LDSC analyses in AFR-stratified samples may be somewhat underpowered. 

Third, we evaluated the effects of stratification using within-family association analyses for N = 15,843 pairs of 
siblings from the UK Biobank. We regressed the residualized phenotype of each individual within a sibling pair 
on the deviation of that sibling’s genotype from the family mean: 

𝑦i2% = 𝛽k67gjk + 𝛽k87 M𝑔2%# − gjkP + 𝜀2% , (7) 
where 𝑦i2% is the residualized phenotypic value of individual 𝑖	in sibling pair 𝑗 after partialling out covariates of sex, 
age, age2, and the first 20 PCs, g34is the mean genotype of variant 𝑘 in sibling pair 𝑗, 𝑔2%# is the genotype of the 
𝑘th variant of individual 𝑖 in sibling pair 𝑗, and 𝜀2% 	is the random error.  
 
Due to our small sibling sample size, we were underpowered to discover or even replicate individual variant 
associations. Instead, following Okbay et al.31 and Lee et al.32, we used a simple test of how often the full EUR 
stratified GWAS results without the UKB cohort and the within-family estimates had concordant signs. For this 
analysis, we considered only sentinel variants from the EUR fixed-effects meta-analyses that were polymorphic 
with MAF > 1% in the UK Biobank sibling data (N = 1,278 variants). 
 
For the sign test, the null hypothesis was that all GWAS results are driven entirely by population stratification, 
cryptic relatedness, or other confounding factors. In this case, the sign of the within-family estimates would be 
completely independent of the sign of the GWAS estimates, resulting in an expected sign concordance of 50%. 
To formally test this, we compared the observed sign concordance against the expected sign concordance under 
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the null hypothesis, which follows a binomial distribution with n equal to the number of sentinel variants and p, 
the concordance probability, equal to 0.5. Given that we expect at least some of the GWAS signal to be a true 
genetic effect, we used a one-sided alternative hypothesis of sign concordance > 50%.  
 
For every phenotype, the observed sign concordance was significantly greater than what we would expect under 
the null hypothesis that our GWAS results were driven by population stratification. For SmkInit we observed sign 
concordance of 68.1% (514/755 variants have concordant signs across within-family estimates and GWAS, P < 
2.2 × 10!9:, 95% CI [.65, 1]); AgeSmk 80% (16/20 variants, P = 0.006, 95% CI [.59, 1]); CigDay 63.5% (66/104 
variants, P = 0.004, 95% CI [.55, 1]); SmkCes 68.3% (56/82 variants, P = 0.0006, 95% CI [.59, 1]); and DrnkWk 
63.4% (201/317 variants, P = 1.04 × 10!:, 95% CI [.59, 1]). These results are consistent in magnitude with other 
large-scale association studies32, suggesting that population stratification is controlled to the same extent as 
other, similar, studies.  
 
Given the small sample size and reduced power in the within-sibling comparison, we also evaluated effect size 
sign concordance of sentinel variants based on EUR-stratified 23andMe summary statistics in EUR-stratified 
summary statistics with all cohorts included except 23andMe. Specifically, within 23andMe summary statistics 
we defined 1MB regions surrounding every genome-wide significant variant (P < 5 × 10!"), collapsing any 
overlapping regions into a single region. If applicable, we removed the 17 variants listed above with low posterior 
probabilities. We then extracted the variant from each region with the smallest P-value (i.e., the sentinel or lead 
SNP) from the EUR-stratified 23andMe summary statistics and the EUR-stratified summary statistics of all 
cohorts except 23andMe, comparing the fraction of variants with concordant directions of effect. For SmkInit we 
observed sign concordance of 97.4% (592/608 variants have concordant signs); AgeSmk 100% (2/2 variants); 
CigDay 100% (26/26 variants); SmkCes 94.3% (33/35 variants); and DrnkWk 94.8% (218/230 variants). All 
associated P-values were less than 1 × 10!9:. 

Allelic effect size moderation results 

Power analysis showed that we have 80% power to detect standardized heterogeneity effects as small as 
3.94×10-5 for MDS component 1 (𝛾9), 5.15×10-5 for MDS component 2 (𝛾$), and 0.0002 for both MDS 
components 3 (𝛾;) and 4 (𝛾/). This suggests that our tests for allelic heterogeneity were, in general, well powered 
to detect modest effect size moderation by ancestry. Full allelic heterogeneity results for each independent 
variant are shown in Supplementary Table 2, with a summary of findings for each phenotype below. 
 
For SmkInit, we found 524 variants (21.0% of independent variants) with heterogeneous effects identified based 
on model selection alone. Among these, 74 variants (3.0% of independent variants) showed strong evidence for 
allelic heterogeneity: 50 variants were heterogeneous on component 1, 17 variants were heterogeneous on 
component 2, 2 variants were heterogeneous on component 3, and 5 variants were heterogeneous on 
component 3.  
 
For AgeSmk, we found 7 variants (17.9% of independent variants) with heterogeneous effects identified based 
on model selection alone. Among these, 4 variants (10.3% of independent variants) showed strong evidence for 
allelic heterogeneity: 3 variants were heterogeneous on component 1, and 1 variant was heterogeneous on 
components 3.  
 
For CigDay, we found 57 variants (23.4% of independent variants) with heterogeneous effects identified based 
on model selection alone. Among these, 20 variants (8.2% of independent variants) showed strong evidence for 
allelic heterogeneity: 16 variants were heterogeneous on component 1, and 4 variants were heterogeneous on 
component 2.  
 
For SmkCes, we found 31 variants (15.1% of independent variants) with heterogeneous effects identified based 
on model selection alone. Among these, 7 variants (3.4% of independent variants) showed strong evidence for 
allelic heterogeneity: 4 variants were heterogeneous on component 1 and 3 variants were heterogeneous on 
component 2.  
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Finally, for DrnkWk, we found 183 variants (21.5% of independent variants) with heterogeneous effects identified 
based on model selection alone. Among these, 31 variants (3.6% of independent variants) showed strong 
evidence for allelic heterogeneity: 15 variants were heterogeneous on component 1, 5 variants were 
heterogeneous on component 2, 6 variants were heterogeneous on component 3, and 5 variants were 
heterogeneous on component 4.  
 
We investigated whether our allelic heterogeneity findings were driven by differential imputation quality across 
ancestries, LD score differences, or population differentiation (Fst values). For every independent variant we 
computed per ancestry LD scores using all TOPMed cohorts that contributed to the multi-ancestry meta-analysis, 
calculated the mean imputation quality scores across all contributing cohorts to the SmkInit GWAS for each 
ancestry, and again using the TOPMed cohorts, computed Fst values for each pair of ancestry groups (i.e., 
pairwise EUR-EAS, EUR-AFR, EUR-AMR, AFR-AMR, AFR-EAS, and AMR-EAS). We then compared the 
distributions of each of these (LD scores, imputation quality, and pairwise Fst) between the 3,032 variants with 
no evidence of heterogeneity and the 136 variants with strong evidence of heterogeneity. We also compared the 
distributions between variants that were heterogeneous on each MDS components and those with no evidence 
of heterogeneity (e.g., comparison between the 88 variants showing allelic heterogeneity across MDS 
component 1 and those with no evidence of heterogeneity on any MDS component). 
 
In total there were 70 mean comparisons with only three P-values below the Bonferroni corrected threshold: (1) 
significantly lower imputation quality in EAS ancestry for variants heterogeneous on MDS component 1 (M = .95, 
SD = .09) compared to variants with no evidence of heterogeneity (M = .97, SD = .04), t(111.6) = -5.11, P = 
1.36e-6; (2) significantly greater pairwise Fst between AFR and EAS ancestries for variants heterogeneous on 
MDS component 3 (M = .12, SD = .14) compared to variants with no evidence of heterogeneity (M = .02, SD = 
.02), t(9.94) = 13.95, P = 7.49e-8; and (3) significantly greater pairwise Fst between AFR and AMR ancestries 
for variants heterogeneous on MDS component 4 (M = .07, SD = .09) compared to variants with no evidence of 
heterogeneity (M = .02, SD = .03), t(9.75) = 5.71, P = .0002. The small number of mean differences across 
ancestries and a lack of clear pattern of results suggests that the identification of heterogeneous variants was 
not driven to a large extent by differential imputation quality, LD scores, or Fst across ancestries. 

Fine-mapping results 
We used fine-mapping with the inclusion of diverse ancestries to improve resolution of loci implicated at genome-
wide significance. Supplementary Table 4 includes multi-ancestry fine-mapping results for loci with less than 5 
variants in the 90% credible interval.  
 
Consistent with expectations based on prior work33,34 comparing multi-ancestry to EUR-stratified fine-mapping 
results, 90% credible intervals in multi-ancestry contained fewer variants and were smaller in size, on average, 
than EUR-stratified results (average reduction of 33.3% in the median number of variants and 24.3% in the 
median width). In multi-ancestry fine-mapping, across phenotypes, we found that an average of 27.9% of credible 
intervals contained less than five variants, and 9% of credible intervals contained a single variant. We found six 
loci in which credible intervals from the EUR-stratified results contained more than 975 variants. We re-ran 
comparisons after removing these loci and found the results to be highly similar and substantive conclusions 
unchanged. 
 
We evaluated to what extent the increased multi-ancestry fine-mapping resolution, over EUR-stratified results, 
was due to increased sample sizes or increased genetic diversity. We compared fine-mapping in multi-ancestry 
results to that of ‘downsampled’ multi-ancestry results in which we removed EUR ancestry cohorts until the total 
sample size was approximately equal to that of the EUR-stratified analysis for each phenotype. We found that 
in the 1,330 (62.1%) loci more precisely fine-mapped in the full trans-ancestry analysis, the credible intervals 
were 45.5% smaller in downsampled multi-ancestry results compared to EUR-stratified fine-mapping, suggesting 
that nearly half of the observed reduction in credible interval size is attributable to differences in sample size 
while the remainder is attributable to inclusion of diverse ancestries. These results highlight the importance of 
both increased sample size and inclusion of diverse ancestries. 
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Functional enrichment 
We combined findings from the multi-ancestry fine-mapping analyses with functional genomics data to test 
whether high priority genes were enriched in specific tissues, brain cell types, and gene pathways. We defined 
high priority genes here as those mapped from variants in fine-mapped credible intervals containing less than 
five variants based on the hg38 UCSC knownGene annotation database. These genes were compared to 
‘control’ genes identified in the same way, but from variants with PIP < 0.01 from the multi-ancestry fine-mapping. 
For variants that were not in a known gene, we assigned the nearest gene. The purpose of this analysis was to 
evaluate biological characteristics of the genes implicated in well fine-mapped regions compared to genes from 
variants with little evidence of causal association. 
 
To maximize power for comparison, we combined the high priority gene lists across all five phenotypes, resulting 
in 583 high priority genes associated with variants from the loci fine-mapped to less than five variants. In 335 of 
the 583 genes, fine-mapped variants were located within genes (i.e., not intergenic); the rest were located in 
intergenic regions (mean distance from the nearest gene of 181kb with a standard deviation of 303kb). We then 
estimated the relative risk of these 583 genes being in several annotation categories related to tissue expression, 
brain cell type, and specific gene pathways. The estimated relative risk is the ratio of the proportion of high 
priority genes that are in the annotation category to the proportion of control genes in the same annotation 
category. Using brain tissue expression as an example, the relative risk estimate would be the ratio of high 
priority genes enriched in brain tissue to the total number of high priority genes divided by the ratio of control 
genes enriched in brain tissue to the total number of control genes. 
 
For tissue expression, following previous work35, we obtained gene sets for the top 10% of enriched genes in 37 
GTEx36 tissue types and then calculated the relative risk for each of the 37 tissues. For cell type comparisons, 
we obtained gene sets for the top 10% of enriched genes in 39 brain cell types as described in Bryois et al.35, 
calculating the relative risk for each brain cell type. Lastly, for gene pathways, we used the C5 (gene ontology) 
gene sets and calculated the relative risk for each gene pathway. We removed gene sets with fewer than 10 
genes and those that did not exist either in our fine-mapped loci nor loci with PIP < 0.01, resulting in 7,115 gene-
sets. For each relative risk estimate we constructed 95% confidence intervals and P-values with 1,000 
replications each for tissue and cell type comparisons, and 100,000 replications for gene pathway comparisons.  
 
For all phenotypes, high priority genes had significantly greater enrichment in all 13 brain tissues compared to 
control genes after Bonferroni correction. These genes were strongly associated with telencephalon projecting 
excitatory and projecting inhibitory neurons within the central nervous system. Lastly, high priority genes were 
enriched for gene ontology terms related to neurogenesis, synapses, and neuron differentiation. Full results are 
shown in Supplementary Table 5 and Extended Data Figure 3. 
 

Multi-ancestry TWAS 
Multi-ancestry transcriptome-wide association analyses were performed using a novel method, the “trans-ethnic 
transcriptome-wide association method” (TESLA). TESLA uses a meta-regression similar to MEMO to model 
phenotypic effects across different studies in a trans-ethnic meta-analysis, accounting for potential genetic effect 
heterogeneity across ancestry. TESLA then performs TWAS using improved phenotypic effect estimates in the 
matched ancestry of the eQTL data, which substantially increases power over other TWAS methods. The power 
advantage increases with diversity of the GWAS data and with the extent of heterogeneity in the phenotypic 
effects across ancestries. 
 
Specifically, TESLA begins by fitting a series of models (𝑀[,]) based on the first 𝐿 MDS components. Genetic 
effect estimates for each 𝑀[,]model are given as:  

𝑀[,]: 𝑏%# =J𝐶&#𝛾%&

,

&>9

+ 𝜖%# , (8) 
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where 𝑏%# is the genetic effect for the 𝑗th variant in the 𝑘th study and 𝐶&# is the 𝑙th axis of genetic variation (or 
MDS component) for the 𝑘th study. Correspondingly, 𝛾%& captures the effect of the 𝑙th axis of genetic variation 
for the 𝑗th variant. Finally, 𝜖%#~ N(0,𝑠%#$ ) is the random error term and 𝑠%# is the standard error corresponding to 
𝑏%#. This is similar to the trans-ancestry MEMO model in equation 1 but without the random effect. 
 
Based on meta-regression coefficients (from equation 8), the phenotypic effects in the eQTL dataset are 
estimated for a series of models from 1 to 𝐿 MDS ancestry components. This is given by  

ℎb%
[,] = 𝐶u[,]𝛾i%

[,] 
where ℎb%

[,]are the estimated phenotypic effects of variant 𝑗, 𝐶u [,]	are the first 𝐿 MDS component values of the 
eQTL dataset, and 𝛾i%

[,] are the estimated effects of the 𝐿th MDS component from equation 8, all corresponding 
to the 𝑀[,] meta-regression model. From here, we used the vectors of phenotypic effect estimates (ℎb[,] =
Kℎb9
[,], . . . , ℎb?

[,]R) to construct a TWAS statistic for each 𝑀[,] model: 
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where the weights, 𝑤%, are taken from PrediXcan37 and were trained based upon 49 tissues from GTEx36 release 
version 8.  
 
For the current analysis, four MDS components were included resulting in calculation of four different TWAS 
statistics. We used a minimal p-value approach to find the overall P-value for the statistic. Specifically, we denote 
the P-values for the 4 statistics as 𝑃[9], . . . , 𝑃[/]. The minimal P-value statistic 𝑃∗ (i.e., 𝑚𝑖𝑛?𝑃[9], . . . , 𝑃[/]A) follows:  

𝑃𝑟(𝑃∗ < 𝑝∗) = 1 − 𝑃𝑟(𝑃∗ > 𝑝∗)
= 1 − 𝑃𝑟 M𝛷!9(1 − 𝑝∗) < 𝑈.8-1

9 < 𝛷!9(𝑝∗), . . . , 𝛷!9(1 − 𝑝∗) < 𝑈.8-1
/ < 𝛷!9(𝑝∗)P 

which can be evaluated using multivariate normal distributions. We calculated a combined cross-tissue P-value 
for each gene using the Cauchy combination38 method assigning equal weight to each tissue. This method is 
well-suited for combing P-values under a correlational structure and is computationally tractable with large 
quantities of data as we have here. 
 
Using a P-value threshold of 4.61×10-8 (Bonferroni correction for 22,121 genes in 49 tissues), we found 14,028 
gene-tissue associations for SmkInit, 177 associations for AgeSmk, 2,912 associations for CigDay, 2,193 
association for SmkCes, and 5,729 associations for DrnkWk (Supplementary Table 6). Based on multi-tissue 
TWAS results using the Cauchy combination test, we found 1,474, 41, 300, 251, and 667 unique genes 
associated with SmkInit, AgeSmk, CigDay, SmkCes, and DrnkWk, respectively. Across all phenotypes, we 
identified 2,179 unique genes. Genes identified for AgeSmk were found in an average of 4.3 tissues (SD = 7.6 
tissues) including an average of 0.8 brain tissues (SD = 1.6), SmkInit genes were found in an average of 9.5 
tissues (SD = 11.0 tissues) including an average of 2.5 brain tissues (SD = 3.4), CigDay genes were found in an 
average of 9.7 tissues (SD = 11.6 tissues) including an average of 2.6 brain tissues (SD = 3.3), SmkCes genes 
were found in an average of 8.7 tissues (SD = 10.0 tissues) including an average of 2.2 brain tissues (SD = 3.2), 
and DrnkWk genes were found in an average of 8.6 tissues (SD = 11.2 tissues) including an average of 2.2 brain 
tissues (SD = 3.4). 
 
To better understand tissue specificity, we ran parallel and factor analysis of the correlation matrix of TWAS P-
values across tissues for each gene. For each phenotype parallel analysis39 suggested that two components 
explained the majority of the variance in P-values. More than half of the variance was explained by the first 
component for each phenotype (53.7–55.2%), suggesting a general effect across tissues. The second 
component explained 3.5–3.8% of the variance and was represented primarily by brain tissues, possibly 
illustrating brain-specific gene expression effects.  
 
We then combined the main TWAS results with pathway information to better identify and prioritize key pathways 
related to tobacco and alcohol use. A weighted regression approach40 was used with TWAS P-values from each 
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GTEx tissue to quantify the enrichment of identified genes in the gene pathway domains of molecular function, 
cellular component, and biological processes (C5 collection from Gene Ontology)41. Similar to the main TWAS 
analysis, we calculated a combined cross-tissue P-value for each gene using the Cauchy combination38 method 
assigning equal weight to each tissue. We included all results for which a pathway was significantly enriched 
based on the combined cross-tissue P-value in Supplementary Table 7 (using a Bonferroni P-value correction 
for 10,187 pathways and 5 phenotypes; P-value < 9.82×10-7). Results highlighted important biological pathways 
for tobacco and alcohol use phenotypes, which were broadly enriched across tissues. For example, 
acetylcholine-gated channel pathways were enriched in multiple brain tissues for SmkInit, CigDay, and SmkCes. 
Behavioral response to nicotine pathways, that similarly contain nicotinic receptor (CHRN) genes, were 
significantly enriched across tissues for CigDay and SmkCes. Dopamine receptor signaling and binding 
pathways, of obvious relevance to neurotransmission, were significantly enriched across tissues for SmkInit, 
CigDay, and DrnkWk, and alcohol dehydrogenase activity pathways for DrnkWk were enriched in 26 tissues, 
including 7 (of 13) brain tissues. 
 

Heritability and genetic correlation 
We used univariate LD Score Regression27 (LDSC) to estimate the heritability of each phenotype and genetic 
correlations between our five phenotypes for EAS and EUR. For populations with more recent admixture 
backgrounds (AFR and AMR), existing reference panels of matching ancestry (e.g., 1000G African American) 
may not be representative of the sample studied here due to differences in admixture proportion and timing 
which can result in varying LD structures across samples. For this reason, we used covariate-adjusted LD score 
regression28 (cov-LDSC) for heritability and genetic correlation estimation in the AFR and AMR populations 
where we calculated in-sample LD scores and adjusted them by genetic principal components.  
 
For both LDSC and cov-LDSC, we calculated in-sample LD scores using genotypes of TOPMed reference 
samples. Approximately 20% of the reference samples were randomly selected for each ancestry (6k, 4k, 1k, 
and 10k for AFR, AMR, EAS, EUR) after removing related individuals (>= 4th degree) using relatedness 
estimates released by the TOPMed Consortium. LD scores based on random subsamples (greater than 10% of 
the total sample size) were shown to yield stable estimates of heritability with relatively lower computational 
burden and well-controlled intercept bias28. Within smaller subsamples (e.g., less than 10%), intercepts tended 
to rise above one even when there was no true confounding, but this bias was better controlled with larger 
subsampling proportions. Within each population in the TOPMed reference panel, variants were subsetted to 
HapMap3 with MAF > .05, and variants in high LD regions were removed, in line with the original cov-LDSC 
recommendations28. In EAS and EUR populations, where we used standard LDSC, LD scores were calculated 
using 1cM window sizes, since LD scores tend to plateau outside of this window range for these populations27. 
The AFR and AMR populations tend to show long-range LD due to recent admixture, thus we used a 20cM 
window size. When calculating LD scores for AFR and AMR, we accounted for 50 PCs to mitigate a potential 
downward bias in LDSC heritability estimates due the use of linear mixed-effects models for some contributing 
summary statistics28. We calculated 50 PCs in each TOPMed reference sample where LD was calculated, using 
LD-pruned (plink1.9 --indep-pairwise 100kb 5 .1) variants with MAF > .05. Based on these methods per ancestry 
and trait heritability estimates are shown in Supplementary Table 8. Cross-trait genetic correlations for each 
ancestry group are shown in Supplementary Table 9. 
 
Using EUR-stratified results for our five smoking and alcohol use phenotypes, we calculated genetic correlations 
with all UK Biobank phenotypes to inform the relationship that substance use has with a broad array of 
phenotypes curated in UK Biobank, including diseases, biomarkers, behaviors, and lifestyles. We used pre-
calculated summary statistics for UKB phenotype (http://www.nealelab.is/uk-biobank). A total of 4,065 
phenotypes were initially considered including 2,328 binary, 1,192 categorical, 274 continuous (rank-based 
inverse normalized), and 271 ordinal phenotypes. To calculate genetic correlations, we used LDSC with 
HapMap3 variants and 1000G-based pre-calculated European LD scores. 
 
To further interpret the pattern of genetic correlations, we performed affinity propagation clustering42, which 
searches for clusters that maximize net similarity by recursively “passing messages” between data points. It 
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produces a set of exemplars, which are samples representative of each cluster. We applied “apclusterL” function 
assuming that our five smoking and drinking phenotypes contain enough information about the cluster structure. 
After removing phenotypes whose genetic correlations were not properly estimated mostly because of the 
negative heritabilities, we further excluded UKB phenotypes whose heritability Z-scores were less than three (N 
= 1,771) as genetic correlations with non-heritable traits are difficult to interpret. We also excluded UKB 
phenotypes whose genetic correlation estimates were greater than .80 or less than -.80 and those conceptually 
overlapping with our smoking phenotypes (e.g., “Number of cigarettes currently smoked daily) (N = 21) because 
they were likely to represent the same constructs with our phenotypes. This resulted in 1,141 phenotypes. We 
created a similarity matrix (1,141 × 5) using the absolute value of genetic correlations as a similarity metric. We 
chose to use absolute values since the strength of the relationship between any two given traits will be indexed 
by the absolute magnitude of the correlation coefficients and the sign of the effect would depend on the way a 
given phenotype is coded. This clustering algorithm classified each UKB phenotype in one of the five exemplar 
group (represented by our five smoking/drinking phenotypes). When applying hierarchical clustering at the 
exemplar-level, Age of Smoking Initiation and Smoking Initiation were grouped together while Cigarettes per Day 
and Smoking Cessation were grouped. The former (AgeSmk and SmkInit) and latter (CigDay and SmkCes) 
formed the broad smoking category at a higher-order level, distinct from Drinks per Week. To further interpret 
the results, we examined phenotypes with relatively high correlations in each exemplar. Visual display of 
clustering results is presented in Supplementary Figure 5. A list of genetic correlations and their assigned 
clusters is presented in Supplementary Table 10.  
 
To evaluate the reliability of our phenotypes across contributing cohorts, we computed leave-one-out genetic 
correlations for each of the largest five cohorts per phenotype. For example, we computed the genetic correlation 
between the largest contributing cohort (23andMe) and all other cohorts, leaving out 23andMe for each 
phenotype (EUR-based results shown in Supplementary Table 9). In general, all leave-one-out genetic 
correlations were high (close to 1) suggesting substantial phenotypic reliability across studies. Due to sampling 
variability, and because correlation estimates are not bounded in LDSC, some genetic correlations appeared to 
be greater than one. Leave-one-out genetic correlations within DrnkWk were somewhat smaller in magnitude 
than for the smoking phenotypes.  
 
When comparing cross-trait genetic correlations within ancestry (e.g., the genetic correlation between SmkInit 
and CigDay), we noticed an unexpected pattern in which DrnkWk was negatively correlated with CigDay and 
showed very small genetic correlations with AgeSmk and SmkCes (Supplementary Table 9). To better 
understand these patterns of correlation, we computed leave-one-out cross-trait correlations (restricted to EUR-
stratified summary statistics) and found that the genetic correlations for 23andMe differed slightly in magnitude 
and/or direction than for other cohorts. In other words, the genetic correlation between DrnkWk and CigDay, for 
example, is -0.16 in the full EUR sample but 0.07 when leaving the 23andMe cohort out (full results in 
Supplementary Table 9). This result could have arisen from confounder or collider bias between DrnkWk and 
ascertainment, or selection, into 23andMe participation. 23andMe provides a consumer service, and one might 
expect their consumers to self-select in ways that are different from research studies. That is, if both genetic 
variation and DrnkWk simultaneously influence consumer behavior to purchase 23andMe services, the 
associations between those variants and DrnkWk would be affected by collider bias if participation in 23andMe 
is conditioned on43.  
 
Relative to a meta-analysis including all studies except 23andMe, DrnkWk in 23andMe alone more strongly 
positively correlated with indicators of SES, including educational attainment (rg 0.035 vs. 0.063; from Lee et 
al.32) and income from the UK Biobank (rg 0.220 vs. 0.084), and negatively correlated with the Townsend index 
of deprivation from the UK Biobank (rg -0.101 vs. 0.152). Based on this, we re-estimated genetic correlations, in 
23andMe only, between DrnkWk and our smoking phenotypes (AgeSmk, CigDay, SmkCes, and SmkInit) after 
adjusting for both income and education. After this adjustment, genetic correlations between DrnkWk in 23andMe 
only and smoking phenotypes became more similar in magnitude to those obtained after excluding 23andMe 
cohorts. For example, DrnkWk in 23andMe was no longer significantly correlated with AgeSmk (rg changed from 
-0.18 to 0.02) and was less strongly correlated with SmkInit (rg changed from 0.41 to 0.26). The genetic 
correlation between DrnkWk and CigDay remained negative (rg = -0.190, SE = 0.024) even after income and 
education adjustment, though the magnitude decreased slightly. 
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To explore the issue further, we compared allele frequencies of a U.S. representative sample (AddHealth) with 
those from our 23andMe DrnkWk results and created summary statistics that indicate selection into 23andMe 
DrnkWk sample. We found that the selection into 23andMe DrnkWk is genetically correlated with education (rg 
= 0.124) and higher income (rg = 0.137) and, to a lesser degree, with higher alcohol consumption (rg = 0.06) 
(Supplementary Table 11). This was consistent with previous reports that highly educated individuals are 
overrepresented in the 23andMe sample44,45. However, given the positive, rather than negative, genetic 
correlation between selection into 23andMe and alcohol consumption, as well as the small magnitude of the 
association, it appeared that selection into 23andMe was not likely to largely explain the differential patterns of 
genetic correlations in 23andMe. Indeed, we applied a genomic SEM correction method46 and found the genetic 
correlation pattern between DrnkWk-23andMe and other phenotypes did not change appreciably after correcting 
for selection.  

Polygenic scoring 
We assessed how well polygenic risk scores (PRS) for each of our five phenotypes predicted those same 
phenotypes in an independent prediction sample composed of diverse ancestry individuals: the National 
Longitudinal Study of Adolescent to Adult Health47 (Add Health). Add Health used a school-based design to 
select a nationally representative sample of U.S. adolescents enrolled in grades 7 through 12 during the 1994-
1995 school year. Respondents were born between the years of 1974 and 1983 (mean birth year of 1979), and 
include diverse ancestries of African, Hispanic Admixed, East Asian, and European descent (terminology taken 
from Add Health). The mean age at the time of assessment used in the current analysis (Wave 4) was 29.1 (SD 
= 1.8 years).  

Score construction methods 

We used LDpred48, a Bayesian score generation method that takes into account LD information between 
variants, to construct all polygenic scores. Each reference LD dataset was cohort and ancestry specific, meaning 
that we used each validation sample as the LD reference panel when there were more than 1,000 individuals 
left after removing individuals with genetic relatedness coefficients above 0.025. For the East Asian validation 
dataset in Add Health, because there were less than 1,000 unrelated individuals, we used the East Asian subset 
of 1000 Genomes as the LD reference sample. For all scores we used an LD radius value of 350 and set the 
fraction of non-zero effects in the prior to 1. We used ancestry stratified meta-analytic results generated on all 
studies except for Add Health. Validation datasets were imputed to 1000 Genomes and then ~1.4 million 
HapMap3 variants (call rate > 98% and MAF > 1%, per ancestry) were extracted for polygenic score creation.  

Score prediction accuracy  

For each of the five phenotypes, there were meta-analytic summary statistics based on discovery samples of 
AFR, AMR, EAS, EUR, and all combined ancestries. The Add Health cohort included individuals of African, 
Hispanic Admixed, East Asian, and European ancestries, resulting in 20 polygenic scores per phenotype. 
Combining across phenotypes resulted in 100 polygenic scores. All scores were scaled to have a mean of zero 
and standard deviation of one. 
 
Prediction accuracy was estimated based on the regression of a given phenotype (SmkInit, AgeSmk, CigDay, 
SmkCes, and DrnkWk) on the polygenic score along with a set of standard controls, which included age, age2, 
sex, interaction between age and sex, and the first ten principal components. We first performed this regression 
without including the PRS. Then, the PRS predictor was added to the regression model and the difference in R2 
was calculated. For our quantitative phenotypes, AgeSmk, CigDay, and DrnkWk, the predictive power of the 
PRS was the change in the R2 between the regression without the PRS to the regression with the PRS. For our 
two binary phenotypes, SmkInit and SmkCes, we calculated the change in R2 on the liability scale49 from logistic 
regressions. 95% confidence intervals around all incremental R2 values were bootstrapped with the replications 
equal to twice the number of individuals in each model (with no less than 1000 replications). The variable number 
of bootstrap iterations (2x each model’s N) was necessary to obtain stable bias-corrected and accelerated (BCa) 
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intervals. For the two binary phenotypes, SmkInit and SmkCes, we measured the change in AUC from logistic 
regressions including only the standard covariates to the regression with the PRS. Bootstrapping was then 
performed, as implemented in the roc.test() function in the pROC R package, by drawing N (2x the number of 
individuals in the models) replicates from the data, computing the difference between the AUC of the two ROC 
curves, standardizing this difference by dividing by the standard deviation of the bootstrap differences, and then 
comparing to a normal distribution. Supplementary Table 12 first presents within ancestry results, meaning that 
we are using PRSs and outcome phenotypic data from the same, matching ancestry (i.e., AgeSmk PRS based 
on the AFR ancestry stratified meta-analysis to predict age of smoking initiation in the AFR ancestry validation 
samples). We then present across ancestry validation results in which the discovery sample (GWAS meta-
analysis) ancestry does not match the validation sample (Add Health) ancestry.  
 
In addition, we considered whether cross-ancestry scores significantly predicted phenotypes over and above 
within ancestry scores. In other words, for each ancestry validation sample, we compared a model including 
base covariates and the within-ancestry PRS to models that incrementally added other ancestry-based PRSs 
(in alphabetical order). For example, SmkInit validation models with AFR-ancestry validation samples, the 
predictors of the base model would include the standard covariates plus the AFR-based SmkInit PRS. This base 
model would then be compared to a model that additionally included the AMR-based SmkInit PRS. The second 
model would again be compared to additional models that each incrementally add the other ancestry scores 
(EAS-based SmkInit PRS and EUR-based SmkInit PRS). This resulted in four models that have a nested 
relationship. The purpose of this analysis was to evaluate whether there were incremental effects of cross-
ancestry PRSs over ancestry-matched scores. Full results, including the variance explained in outcome by all 
four ancestry PRSs (with 95% confidence intervals), are shown in Supplementary Table 12. Given the relatively 
small observed effect sizes and validation sample sizes for some ancestries, we caution that some comparisons 
may be underpowered to identify differences in the variance explained by polygenic scores between ancestries. 

Bias induced by discovery sample and target sample ancestry mismatch 

We estimated expected bias in polygenic prediction methods in non-European ancestries in three ways. First, 
we compared the distributions of each phenotype PRS, based on a ancestry-stratified meta-analysis, across all 
other ancestries (i.e., compare the distributions of EUR-based SmkInit polygenic scores in AFR, AMR, EAS, and 
EUR ancestries). Second, we combined all phenotypic data across ancestry and fit regression models including 
an interaction term between ancestry group and each PRS, with EUR ancestry as the reference group in order 
to test whether the PRS performed significantly differently in one ancestry versus another. We also adjusted for 
all standard covariates as in the validation models. In this way, the interaction terms tested whether the effect of 
each PRS differed significantly between the ancestry groups. Third, we again combined all phenotypic data 
across ancestry and fitted regression models including EUR-based PRS only. We compared predicted 
phenotypes from this model to observed phenotypes within each ancestry group. The predicted vs. observed 
results were repeated with the inclusion of the base covariates in addition to the EUR-based PRS. 
 
We found that when the ancestry of the PRS discovery sample does not match the ancestry of the target 
prediction sample, there is a general trend toward pathologizing non-EUR ancestries, particularly when the target 
sample is composed of individuals of AFR ancestries. In other words, while AFR ancestry individuals in Add 
Health generally initiate regular smoking at lower rates and at later ages and are more likely to be former smokers 
compared to other ancestry groups, most polygenic scores, particularly EUR based scores, predict that AFR 
ancestry individuals have the highest polygenic risk scores for these phenotypes (e.g., EUR based SmkInit 
scores result in mean PRS values of 1.49 for AFR validation ancestry and -0.55 for EUR validation ancestry). 
This prediction bias is readily removed by correcting for genetic principal components. 
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Batini, Andrew Bergen, Laura Bierut, Sean David, Sarah Gagliano Talium, Dana Hancock, Marcus Munafò, 
Jerry A. Stitzel, and Thorgeir Thorgeirsson, and oversight from Dajiang Liu and Scott Vrieze. 

Chiara Batini, Andrew Bergen, Laura Bierut, Sean David, Sarah Gagliano Talium, Dana Hancock, Marcus 
Munafò, and Thorgeir Thorgeirsson provided particularly helpful advice and feedback on various aspects of the 
study design and the manuscript.  

Cohort-level acknowledgements 

TOPMed (Trans-Omics for Precision Medicine) – WGS for the TOPMed program was supported by 
the National Heart, Lung and Blood Institute (NHLBI). Specific funding sources and acknowledgements for each 
study are provided below. Centralized read mapping and genotype calling, along with variant quality metrics and 
filtering were provided by the TOPMed Informatics Research Center (3R01HL-117626-02S1; contract 
HHSN268201800002I). Phenotype harmonization, data management, sample-identity quality control and 
general study coordination were provided by the TOPMed Data Coordinating Center (R01HL-120393; U01HL-
120393; contract HHSN268201800001I). We thank the studies and participants who provided biological samples 
and data for TOPMed. The views expressed in this manuscript are those of the authors and do not necessarily 
represent the views of the National Heart, Lung, and Blood Institute; the National Institutes of Health; or the US 
Department of Health and Human Services. 

23andMe, Inc. – 23andMe participants provided informed consent and participated in the research 
online, under a protocol approved by the external AAHRPP-accredited IRB, Ethical & Independent Review 
Services (E&I Review). Participants were included in the analysis on the basis of consent status as checked at 
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the time data analyses were initiated. The name of the IRB at the time of the approval was Ethical & Independent 
Review Services. Ethical & Independent Review Services was recently acquired, and its new name as of July 
2022 is Salus IRB (https://www.versiticlinicaltrials.org/salusirb). We would like to thank the research participants 
and employees of 23andMe for making this work possible. The full GWAS summary statistics for the 23andMe 
datasets will be made available to qualified researchers under an agreement with 23andMe that protects the 
privacy of the 23andMe participants. Please contact apply.research@23andme.com for more information and to 
apply to access the data. 

The following members of the 23andMe Research Team contributed to this study: Stella Aslibekyan, 
Adam Auton, Elizabeth Babalola, Robert K. Bell, Jessica Bielenberg, Katarzyna Bryc, Emily Bullis, Daniella 
Coker, Gabriel Cuellar Partida, Devika Dhamija, Sayantan Das, Sarah L. Elson, Teresa Filshtein, Kipper Fletez-
Brant, Pierre Fontanillas, Will Freyman, Pooja M. Gandhi, Karl Heilbron, Barry Hicks, David A. Hinds, Ethan M. 
Jewett, Yunxuan Jiang, Katelyn Kukar, Keng-Han Lin, Maya Lowe, Jey C. McCreight, Matthew H. McIntyre, 
Steven J. Micheletti, Meghan E. Moreno, Joanna L. Mountain, Priyanka Nandakumar, Elizabeth S. Noblin, Jared 
O'Connell, Aaron A. Petrakovitz, G. David Poznik, Morgan Schumacher, Anjali J. Shastri, Janie F. Shelton, 
Jingchunzi Shi, Vinh Tran, Joyce Y. Tung, Xin Wang, Wei Wang, Catherine H. Weldon, Peter Wilton, Alejandro 
Hernandez, Corinna Wong, Christophe Toukam Tchakouté. 

AACAC (African American Coronary Artery Calcification project of the MESA Family Study) – 
MESA Family is conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in 
collaboration with MESA investigators. Support is provided by grants and contracts R01HL071051, 
R01HL071205, R01HL071250, R01HL071251, R01HL071258, R01HL071259, by the National Center for 
Research Resources, Grant UL1RR033176. The Diabetes Heart Study (DHS) was supported by R01 HL92301, 
R01 HL67348, R01 NS058700, R01 AR48797, R01 DK071891, R01 AG058921, the General Clinical Research 
Center of the Wake Forest University School of Medicine (M01 RR07122, F32 HL085989), the American 
Diabetes Association, and a pilot grant from the Claude Pepper Older Americans Independence Center of Wake 
Forest University Health Sciences (P60 AG10484). The datasets used for the analyses described in this 
manuscript were obtained from dbGaP at http://www.ncbi.nlm.nih.gov/gap through dbGaP accession number 
phs001412. 

Add Health (National Longitudinal Study of Adolescent to Adult Health) – This research uses data 
from Add Health, funded by grant P01 HD31921 (Harris) from the Eunice Kennedy Shriver National Institute of 
Child Health and Human Development (NICHD), with cooperative funding from 23 other federal agencies and 
foundations. Add Health is currently directed by Robert A. Hummer and funded by the National Institute on Aging 
cooperative agreements U01 AG071448 (Hummer) and U01AG071450 (Aiello and Hummer) at the University 
of North Carolina at Chapel Hill. Add Health was designed by J. Richard Udry, Peter S. Bearman, and Kathleen 
Mullan Harris at the University of North Carolina at Chapel Hill. GWAS data were funded by Eunice Kennedy 
Shriver National Institute of Child Health and Human Development (NICHD) Grants R01 HD073342 (Harris) and 
R01 HD060726 (Harris, Boardman, and McQueen). Investigators thank the staff and participants of the Add 
Health Study for their important contributions. 

ALSPAC (Avon Longitudinal Study of Parents and Children) – We are extremely grateful to all the 
families who took part in this study, the midwives for their help in recruiting them, and the whole ALSPAC team, 
which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, 
volunteers, managers, receptionists and nurses. The UK Medical Research Council and Wellcome (Grant ref: 
217065/Z/19/Z) and the University of Bristol provide core support for ALSPAC. This research was performed in 
the UK Medical Research Council Integrative Epidemiology Unit (grant numbers MC_UU_00011/6, 
MC_UU_00011/7) and also supported by the National Institute for Health Research (NIHR) Bristol Biomedical 
Research Centre at University Hospitals Bristol NHS Foundation Trust and the University of Bristol. LZ is 
supported by a UK Medical Research Council fellowship (grant number G0902144). A comprehensive list of 
grants funding is available on the ALSPAC website (http://www.bristol.ac.uk/alspac/external/documents/grant-
acknowledgements.pdf). 

Descriptions of the ALSPAC cohort can be found in the two following articles: (1) Boyd A, Golding J, 
Macleod J, Lawlor DA, Fraser A, Henderson J, Molloy L, Ness A, Ring S, Davey Smith G. Cohort Profile: The 
‘Children of the 90s’; the index offspring of The Avon Longitudinal Study of Parents and Children (ALSPAC). 
International Journal of Epidemiology 2013; 42:111-127; (2) Fraser A, Macdonald-Wallis C, Tilling K, Boyd A, 
Golding J, Davey Smith G, Henderson J, Macleod J, Molloy L, Ness A, Ring S, Nelson SM, Lawlor DA. Cohort 
Profile: The Avon Longitudinal Study of Parents and Children: ALSPAC mothers cohort. International Journal of 
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Epidemiology 2013; 42:97- 110. Study data for individuals 22 years and older were collected and managed using 
REDCap electronic data capture tools hosted at the University of Bristol. REDCap (Research Electronic Data 
Capture) is a secure, web-based application designed to support data capture for research studies. The tool is 
described in detail in the following article: Paul A. Harris, Robert Taylor, Robert Thielke, Jonathon Payne, 
Nathaniel Gonzalez, Jose G. Conde, Research electronic data capture (REDCap) – A metadata-driven 
methodology and workflow process for providing translational research informatics support, Journal of 
Biomedical Informatics 2009; 42(2):377-381.  

Please note that the ALSPAC study website contains details of all the data that is available through a 
fully searchable data dictionary available here: http://www.bris.ac.uk/alspac/researchers/data-access/data-
dictionary/. Ethical approval for the study was obtained from the ALSPAC Ethics and Law Committee and the 
Local Research Ethics Committees. Details on the ethics committee/institutional review board that approved 
aspects of the study can be found here: http://www.bristol.ac.uk/alspac/researchers/research-ethics/. For more 
information about this dataset, see http://www.bristol.ac.uk/alspac/.  

AMISH (Genetics of Cardiometabolic Health in the Amish) – The Amish studies upon which these 
data are based were supported by NIH grants R01 AG18728, U01 HL072515, R01 HL088119, and R01 
HL121007. The Amish Research Program gratefully acknowledges the contributions of the participants and of 
the study staff. Robert M. Reed was supported by the Flight Attendants Medical Research Institute (FAMRI). 
The datasets used for the analyses described in this manuscript were obtained from dbGaP at 
http://www.ncbi.nlm.nih.gov/gap through dbGaP accession number phs000956.  

ARIC (Atherosclerosis Risk in Communities) – The Atherosclerosis Risk in Communities (ARIC) study 
has been funded in whole or in part with Federal funds from the National Heart, Lung, and Blood Institute, 
National Institutes of Health, Department of Health and Human Services, under contract numbers 
HHSN268201700001I, HHSN268201700002I, HHSN268201700003I, HHSN268201700004I, 
HHSN268201700005I. The authors thank the staff and participants of the ARIC study for their important 
contributions. The datasets used for the analyses described in this manuscript were obtained from dbGaP at 
http://www.ncbi.nlm.nih.gov/gap through dbGaP accession number phs001211. 

BAGS (Barbados Asthma Genetics Study) – The authors wish to thank the families in Barbados and 
volunteers participating in BAGS. We are grateful to Drs. Harold Watson and Clive Landis and Pissamai Maul, 
Trevor Maul, and Desiree Walcott for their contributions in the field and support at the Chronic Disease Research 
Centre. Funding for BAGS was provided by National Institutes of Health (NIH) R01HL104608, R01HL087699, 
HL104608 S1, R01AI132476, and R01AI114555. The datasets used for the analyses described in this 
manuscript were obtained from dbGaP at http://www.ncbi.nlm.nih.gov/gap through dbGaP accession number 
phs001143. 

BEAGESS (The Barrett’s and Esophageal Adenocarcinoma Genetic Susceptibility Study) – This 
study made use of data generated by investigators in the BEACON consortium through a grant funded by the 
US National Institutes of Health (NIH) (RO1CA136725) to Thomas L. Vaughan and David C. Whiteman (multiple 
PIs). In support of this work, T.L.V. was also supported by NIH grant KO5CA124911 and D.C.W. by a Future 
Fellowship grant FT0990987 from the Australia Research Council. Additional collaborators, sources of support 
and origin of the data and biospecimens are listed in the following publication: Levine DM, Ek WE, Zhang R, Liu 
X, Onstad L, Sather C, et al. A genome-wide association study identifies new susceptibility loci for esophageal 
adenocarcinoma and Barrett's esophagus. Nat Genet. 2013 Dec;45(12):1487–93. The dataset used for the 
analyses described in this manuscript was obtained from dbGaP at http://www.ncbi.nlm.nih.gov/gap through 
dbGaP accession number phs000869.  

Biobank Japan – The Biobank Japan (BBJ) Project was established in 2003 with the aim of the 
implementation of personalized medicine as a leading project of Ministry of Education, Culture, Sports, Science 
and Technology (MEXT). In collaboration with twelve cooperating institutes, the BBJ has recruited a total of 
200,000 people, suffering from at least one of the 47 target common diseases, in the first phase (5-year period) 

. BBJ has collected biospecimens including DNA and serum as well as various clinical and lifestyle information 
through interview or medical records by using standardized questionnaire. All participants gave written informed 
consent to this project and this study was approved by ethical committees of RIKEN and participating institutes. 
For more information about this study, please see https://biobankjp.org/english/plan/summary.html.  

BBJ was supported by the Tailor-Made Medical Treatment Program (the BioBank Japan Project) of the 
Ministry of Education, Culture, Sports, Science, and Technology (MEXT), and the Japan Agency for Medical 
Research and Development (AMED) (grant ID: JP17km0305002). We acknowledge all patients who participated 
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in the study. We thank the staff of the BBJ for their collecting and managing of clinical information and samples. 
We also thank the contributions of the Tohoku Medical Megabank Project, the Japan Public Health Center-based 
Prospective (JPHC) Study, the Japan Multi-Institutional Collaborative Cohort (J-MICC) Study. 

Y.O. was supported by JSPS KAKENHI (22H00476), and AMED (JP21km0405211, JP21ek0109413, 
JP21ek0410075, JP21gm4010006, and JP21km0405217), JST Moonshot R&D (JPMJMS2021, JPMJMS2024), 
Takeda Science Foundation, Bioinformatics Initiative of Osaka University Graduate School of Medicine, and 
Center for Infectious Disease Education and Research (CiDER), Osaka University, and Institute for Open and 
Transdisciplinary Research Initiatives, Osaka University. 

BLTS (Brisbane Longitudinal Twin Study) – The Brisbane Longitudinal Study acknowledges funding 
from the Australian National Health and Medical Research Council grants 1031119 and 1049911. For more 
information about this study, contact Nathan A. Gillespie (nathan.gillespie@vcuhealth.org).  

EOCOPD (Boston Early-Onset COPD Study) – The Boston Early-Onset COPD Study was supported 
by the following NIH grants: R01 HL075478, R01 HL089856, and R01 HL113264. The dataset used for the 
analyses described in this manuscript was obtained from dbGaP at http://www.ncbi.nlm.nih.gov/gap through 
dbGaP accession number phs000946. 

CADD (Center on Antisocial Drug Dependence) – The Center on Antisocial Drug Dependence (CADD) 
data were funded by grants from the National Institute on Drug Abuse (P60 DA011015, R01 DA012845, R01 
DA035804). The Genetics of Adolescent Drug Dependence (GADD) acknowledges the contributions of the 
participants and study staff. For more information about this study, contact John K. Hewitt 
(john.hewitt@colorado.edu).  

CFS (Cleveland Family Study) – The Cleveland Family Study has been supported by National Institutes 
of Health grants [R01-HL046380, KL2-RR024990, R35-HL135818, and R01-HL113338]. Brian E. Cade was 
funded by NIH grants K01HL135405 and R03HL154284. The dataset used for the analyses described in this 
manuscript was obtained from dbGaP at http://www.ncbi.nlm.nih.gov/gap through dbGaP accession number 
phs000954. 

China Kadoorie Biobank – The China Kadoorie Biobank (CKB) baseline survey and the first re-survey 
were supported by the Kadoorie Charitable Foundation in Hong Kong. Long-term follow-up was supported by 
the Wellcome Trust (212946/Z/18/Z, 202922/Z/16/Z, 104085/Z/14/Z, 088158/Z/09/Z), the National Key Research 
and Development Program of China (2016YFC0900500, 2016YFC0900501, 2016YFC0900504, 
2016YFC1303904), and the National Natural Science Foundation of China (91843302). DNA extraction and 
genotyping was funded by GlaxoSmithKline and the UK Medical Research Council (MC-PC-13049, MC-PC-
14135). The project is supported by core funding from the UK Medical Research Council 
(MC_UU_00017/1,MC_UU_12026/2, MC_U137686851), Cancer Research UK (C16077/A29186; 
C500/A16896), and the British Heart Foundation (CH/1996001/9454) to the Clinical Trial Service Unit and 
Epidemiological Studies Unit and to the MRC Population Health Research Unit at Oxford University. CKB 
gratefully acknowledges the participants in the study, the members of the survey teams in each of the 10 regional 
centres, and the project development and management teams based at Beijing, Oxford and the 10 regional 
centres. 

CHS (Cardiovascular Health Study) – This CHS research was supported by NHLBI contracts 
HHSN268201200036C, HHSN268200800007C, HHSN268201800001C, N01HC55222, N01HC85079, 
N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086, 75N92021D00006; and NHLBI 
grants U01HL080295, R01HL085251, R01HL087652, R01HL105756, R01HL103612, R01HL120393, and 
U01HL130114 with additional contribution from the National Institute of Neurological Disorders and Stroke 
(NINDS). Additional support was provided through R01AG023629 from the National Institute on Aging (NIA). A 
full list of principal CHS investigators and institutions can be found at CHS-NHLBI.org. 

The provision of genotyping data was supported in part by the National Center for Advancing 
Translational Sciences, CTSI grant UL1TR001881, and the National Institute of Diabetes and Digestive and 
Kidney Disease Diabetes Research Center (DRC) grant DK063491 to the Southern California Diabetes 
Endocrinology Research Center. The content is solely the responsibility of the authors and does not necessarily 
represent the official views of the National Institutes of Health.The dataset used for the analyses described in 
this manuscript was obtained from dbGaP at http://www.ncbi.nlm.nih.gov/gap through dbGaP accession number 
phs001368. 

COGEND (Collaborative Genetic Study of Nicotine Dependence) – This research was supported by 
P01 CA089392, U01 HG004422, and R01 DA036583. Funding support for genotyping which was performed at 
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the Johns Hopkins University Center for Inherited Disease Research was provided by the NIH "Genome-wide 
Association Studies in the Genes and Environment Initiative" (U01HG004438) and the NIH contract "High 
throughput genotyping for studying the genetic contributions to human disease" (HHSN268200782096C). We 
also acknowledge funding from R01 DA026911. For more information about this study, contact Laura J. Bierut 
(laura@wustl.edu). 

COPDGene (Genetic Epidemiology of COPD) – COPDGene was supported by U01 HL089897 and 
U01 HL089856 from the National Heart, Lung, and Blood Institute. The content is solely the responsibility of the 
authors and does not necessarily represent the official views of the National Heart, Lung, and Blood Institute or 
the National Institutes of Health. COPDGene is also supported by the COPD Foundation through contributions 
made to an Industry Advisory Board that has included AstraZeneca, Bayer Pharmaceuticals, Boehringer-
Ingelheim, Genentech, GlaxoSmithKline, Novartis, Pfizer, and Sunovion. A full listing of COPDGene 
investigators can be found at: http://www.copdgene.org/directory. The dataset used for the analyses described 
in this manuscript was obtained from dbGaP at http://www.ncbi.nlm.nih.gov/gap through dbGaP accession 
number phs000951. 

CRA (The Genetic Epidemiology of Asthma in Costa Rica) – This study was supported by NHLBI 
grant P01 HL132825. We wish to acknowledge the investigators at the Channing Division of Network Medicine 
at Brigham and Women's Hospital, the investigators at the Hospital Nacional de Niños in San José, Costa Rica 
and the study subjects and their extended family members who contributed samples and genotypes to the study, 
and the NIH/NHLBI for its support in making this project possible. The dataset used for the analyses described 
in this manuscript was obtained from dbGaP at http://www.ncbi.nlm.nih.gov/gap through dbGaP accession 
number phs000988. 

deCODE (deCODE Genetics/AMGEN, Inc.) – The authors are thankful to the Icelandic participants and 
staff at the Patient Recruitment Center. The work at deCODE genetics / Amgen was supported in part by the 
National Institute of Drug Abuse (NIDA grants, R01-DA017932 and R01-DA034076). For more information about 
this study, email info@decode.is.  

ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints) – The 
Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points (ECLIPSE) study (SCO104960, 
NCT00292552) was sponsored by GSK. The dataset used for the analyses described in this manuscript was 
obtained from dbGaP at http://www.ncbi.nlm.nih.gov/gap through dbGaP accession number phs001472. 

EGCUT (Estonian Genome Center) – The EGCUT studies were supported by the European Union 
through the European Regional Development Fund (Project No. 2014-2020.4.01.15-0012), by the Estonian 
Research Council grant PUT (PRG687), and by the Estonian Research Council grant PUT (PRG1291). We 
acknowledge the Estonian Biobank research team. Data analyses were carried out in part in the High-
Performance Computing Center of University of Tartu. 

eMERGE (Electronic Medical Records and Genomics) – Samples and associated genotype and 
phenotype data used in this study were provided by the Mayo Clinic. Funding support for the Mayo Clinic was 
provided through a cooperative agreement with the National Human Genome Research Institute (NHGRI), Grant 
number: U01HG004599; and by grant HL75794 from the National Heart Lung and Blood Institute (NHLBI). 
Funding support for genotyping, which was performed at The Broad Institute, was provided by the NIH 
(U01HG004424). Assistance with phenotype harmonization and genotype data cleaning was provided by the 
eMERGE Administrative Coordinating Center (U01HG004603) and the National Center for Biotechnology 
Information (NCBI). The datasets used for analyses described in this manuscript were obtained from dbGaP at 
http://www.ncbi.nlm.nih.gov/gap through dbGaP accession number phs000203. 

Funding support for the Personalized Medicine Research Project (PMRP) was provided through a 
cooperative agreement (U01HG004608) with the National Human Genome Research Institute (NHGRI), with 
additional funding from the National Institute for General Medical Sciences (NIGMS) The samples used for 
PMRP analyses were obtained with funding from Marshfield Clinic, Health Resources Service Administration 
Office of Rural Health Policy grant number D1A RH00025, and Wisconsin Department of Commerce Technology 
Development Fund contract number TDF FYO10718. Funding support for genotyping, which was performed at 
Johns Hopkins University, was provided by the NIH (U01HG004438). Assistance with phenotype harmonization 
and genotype data cleaning was provided by the eMERGE Administrative Coordinating Center (U01HG004603) 
and the National Center for Biotechnology Information (NCBI). The datasets used for the analyses described in 
this manuscript were obtained from dbGaP at http://www.ncbi.nlm.nih.gov/gap through dbGaP accession 
number phs000170. 
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FinnTwin, FINRISK, & NAG-FIN (Finnish Twin Cohort) – The Finnish Twin Cohort/Nicotine Addiction 
Genetics-Finland study was supported by Academy of Finland Center of Excellence in Complex Disease 
Genetics (grant numbers: 213506, 129680, 312073) , the Academy of Finland (grants 100499, 205585, 118555,  
141054, 265240, 263278, 264146  to J. Kaprio), Sigrid Juselius Foundation (to J. Kaprio) ,  Global Research 
Awards for Nicotine Dependence (GRAND) , ENGAGE – European Network for Genetic and Genomic 
Epidemiology, FP7-HEALTH-F4-2007, grant agreement number 201413,  DA12854 to P.A.F. Madden,  and AA-
12502, AA-00145, and AA-09203 to R.J. Rose, AA15416 and K02AA018755 to D.M. Dick. We thank all the 
participants for taking part in the studies and the research staff, who have been involved in data collection and 
genotyping. For more information about this study, contact Jaakko Kaprio (jaakko.kaprio@helsinki.fi).  

FHS (Framingham Heart Study) – The Framingham Heart Study is conducted and supported by the 
National Heart, Lung, and Blood Institute (NHLBI) in collaboration with Boston University (NIH grants 
75N92019D00031; 2U54HL120163; R01HL092577). The FHS gratefully acknowledges the contributions of the 
participants and staff of the study. This manuscript was not prepared in collaboration with investigators of the 
Framingham Heart Study and does not necessarily reflect the opinions or views of the Framingham Heart Study, 
Boston University, or NHLBI. Funding for SHARe Affymetrix genotyping was provided by NHLBI Contract N02-
HL64278. SHARe Illumina genotyping was provided under an agreement between Illumina and Boston 
University. Funding for Affymetrix genotyping of the FHS Omni cohorts was provided by Intramural NHLBI funds 
from Andrew D. Johnson and Christopher J. O’Donnell. Chunyu Liu was funded by NIH grant R01AA028263. 
The datasets used for the analyses described in this manuscript were obtained from dbGaP at 
http://www.ncbi.nlm.nih.gov/gap through dbGaP accession number phs000974. 

GeneSTAR (Genetic Studies of Atherosclerosis Risk) – GeneSTAR was supported by the National 
Institutes of Health/National Heart, Lung, and Blood Institute (U01 HL72518, HL087698, HL112064) and by a 
grant from the National Institutes of Health/National Center for Research Resources (M01-RR000052) to the 
Johns Hopkins General Clinical Research Center. GeneSTAR thanks our participants and staff for their valuable 
contributions. The datasets used for the analyses described in this manuscript were obtained from dbGaP at 
http://www.ncbi.nlm.nih.gov/gap through dbGaP accession number phs001218. 

GENOA (Genetic Epidemiology Network of Arteriopathy) – Support for GENOA was provided by the 
National Heart, Lung and Blood Institute (U01 HL054457, U01 HL054464, U01 HL054481, R01 HL087660, and 
R01 HL119443) of the National Institutes of Health. We would like to thank the families that participated in the 
GENOA study. The datasets used for the analyses described in this manuscript were obtained from dbGaP at 
http://www.ncbi.nlm.nih.gov/gap through dbGaP accession number phs001345. 

GENSalt (Genetic Epidemiology Network of Salt Sensitivity) – GenSalt was supported by research 
grants (U01HL072507, R01HL087263, and R01HL090682) from the NHLBI and partially supported by the 
National Institute of General Medical Sciences of the NIH under Award Number P20GM109036 and the Collins 
C. Diboll Private Foundation, New Orleans, LA. The datasets used for the analyses described in this manuscript 
were obtained from dbGaP at http://www.ncbi.nlm.nih.gov/gap through dbGaP accession number phs001217. 

GERA (Genetic Epidemiology Research in Adult Health and Aging) – We are grateful to the Kaiser 
Permanente Northern California members who have generously agreed to participate in the Kaiser Permanente 
Research Program on Genes, Environment, and Health. Genotyping of the GERA cohort was funded by a grant 
from the National Institute on Aging, National Institute of Mental Health, and National Institute of Health Common 
Fund [RC2 AG036607]. Support for GERA participant enrollment, survey completion, and biospecimen collection 
for the Research Program on Genes, Environment and Health was provided by the Robert Wood Johnson 
Foundation, the Wayne and Gladys Valley Foundation, the Ellison Medical Foundation, and Kaiser Permanente 
Community Benefit Programs. 

GfG (Genes for Good) – The Genes for Good study is funded through discretionary funds, provided to 
Dr. Gonçalo Abecasis by the University of Michigan. GfG gratefully acknowledges our participants' help in 
developing GfG as a data resource for understanding the link between genes and common heritable traits. The 
authors sincerely thank all study participants for their time and dedication, as well as the hard-working Genes for 
Good administrative staff and colleagues at the UM DNA Sequencing Core. For more information about this 
study, see https://genesforgood.sph.umich.edu/ or contact the study directly at genesforgood@umich.edu.  

GOLDN (Genetics of Lipid Lowering Drugs and Diet Network) – GOLDN biospecimens, baseline 
phenotype data, and intervention phenotype data were collected with funding from National Heart, Lung and 
Blood Institute (NHLBI) grant U01 HL072524. Whole-genome sequencing in GOLDN was funded by NHLBI grant 
R01 HL104135-04S1. The datasets used for the analyses described in this manuscript were obtained from 
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dbGaP at http://www.ncbi.nlm.nih.gov/gap through dbGaP accession number phs001359. 
NHS, NHS2, and HPFS (Nurses' Health Study, Nurses’ Health Study II, and Health Professionals' 

Follow-up Study) — The contributions from the Nurses’ Health Study, Nurses’ Health Study II, and Health 
Professionals’ Follow-up Study were supported by the National Institute of Health grants P01CA87969, 
P01CA055075, P01DK070756, U01HG004728, UM1CA186107, UM1CA176726, UM1CA167552, 
R01CA49449, R01CA50385, R01CA131332, R01CA67262, R01HL034594, R01HL088521, R01HL116854, 
R01HL35464, R01EY015473, R01EY022305, P30EY014104, R03DC013373, and R03CA165131. We thank all 
participants of the NHS, NHS II and HPFS for their continued contributions to research. For information about 
these studies, contact Peter Kraft pkraft@hsph.harvard.edu) or Marilyn C. Cornelis 
(marilyn.cornelis@northwestern.edu).  

HCHS SOL (Hispanic Community Health Study - Study of Latinos) – The Hispanic Community Health 
Study/Study of Latinos is a collaborative study supported by contracts from the National Heart, Lung, and Blood 
Institute (NHLBI) to the University of North Carolina (HHSN268201300001I / N01-HC-65233), University of Miami 
(HHSN268201300004I / N01-HC-65234), Albert Einstein College of Medicine (HHSN268201300002I / N01-HC-
65235), University of Illinois at Chicago (HHSN268201300003I / N01-HC-65236 Northwestern Univ), and San 
Diego State University (HHSN268201300005I / N01-HC-65237). The following Institutes/Centers/Offices have 
contributed to the HCHS/SOL through a transfer of funds to the NHLBI: National Institute on Minority Health and 
Health Disparities,National Institute on Deafness and Other Communication Disorders, National Institute of 
Dental and Craniofacial Research, National Institute of Diabetes and Digestive and Kidney Diseases, National 
Institute of Neurological Disorders and Stroke, NIH Institution-Office of Dietary Supplements. The datasets used 
for the analyses described in this manuscript were obtained from dbGaP at http://www.ncbi.nlm.nih.gov/gap 
through dbGaP accession number phs001395. 

HRS (Health and Retirement Study) — HRS is supported by the National Institute on Aging (NIA 
U01AG009740). The genotyping was funded separately by the National Institute on Aging (RC2 AG036495, RC4 
AG039029). Our genotyping was conducted by the NIH Center for Inherited Disease Research (CIDR) at Johns 
Hopkins University. Genotyping quality control and final preparation of the data were performed by the University 
of Michigan School of Public Health. See the HRS website (http://hrsonline.isr.umich.edu/gwas) for details. 

HUNT (The Nord-Trøndelag Health Study) — The Trøndelag Health Study (HUNT) is a collaboration 
between HUNT Research Centre (Faculty of Medicine and Health Sciences, Norwegian University of Science 
and Technology NTNU), Trøndelag County Council, Central Norway Regional Health Authority, and the 
Norwegian Institute of Public Health. The genotyping was financed by the National Institute of health (NIH), 
University of Michigan, The Norwegian Research council, and Central Norway Regional Health Authority and 
the Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU). The 
genotype quality control and imputation has been conducted by the K.G. Jebsen center for genetic epidemiology, 
Department of public health and nursing, Faculty of medicine and health sciences, Norwegian University of 
Science and Technology (NTNU). 

HVH (Heart and Vascular Health Study) – The Heart and Vascular Health Study was supported by 
grants HL068986, HL085251, HL095080, and HL073410 from the National Heart, Lung, and Blood Institute. The 
datasets used for the analyses described in this manuscript were obtained from dbGaP at 
http://www.ncbi.nlm.nih.gov/gap through dbGaP accession number phs000993. 

HyperGEN (Hypertension Genetic Epidemiology Network) – The Hypertension Genetic Epidemiology 
Network (HyperGEN) Study is part of the National Heart, Lung, and Blood Institute (NHLBI) Family Blood 
Pressure Program; collection of the data represented here was supported by grants U01 HL054472, U01 
HL054473, U01 HL054495, and U01 HL054509. The HyperGEN: Genetics of Left Ventricular Hypertrophy Study 
was supported by NHLBI grant R01 HL055673 with whole-genome sequencing made possible by supplement -
18S1. The datasets used for the analyses described in this manuscript were obtained from dbGaP at 
http://www.ncbi.nlm.nih.gov/gap through dbGaP accession number phs001293. 

IPF (Familial and Sporadic Idiopathic Pulmonary Fibrosis) – IPF is supported by the following grants: 
W81XWH-17-1-0597, UG3/UH3-HL151865, P01-HL0928701, R01-HL097163, X01-HL134585. The datasets 
used for the analyses described in this manuscript were obtained from dbGaP at http://www.ncbi.nlm.nih.gov/gap 
through dbGaP accession number phs001607. 

JHS (Jackson Heart Study) – The Jackson Heart Study (JHS) is supported and conducted in 
collaboration with Jackson State University (HHSN268201800013I), Tougaloo College (HHSN268201800014I), 
the Mississippi State Department of Health (HHSN268201800015I) and the University of Mississippi Medical 
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Center (HHSN268201800010I, HHSN268201800011I and HHSN268201800012I) contracts from the National 
Heart, Lung, and Blood Institute (NHLBI) and the National Institute on Minority Health and Health Disparities 
(NIMHD). The authors also wish to thank the staffs and participants of the JHS. The datasets used for the 
analyses described in this manuscript were obtained from dbGaP at http://www.ncbi.nlm.nih.gov/gap through 
dbGaP accession number phs000964. 

MCTFR (Minnesota Center for Twin and Family Research) – MCTFR was supported in part by USPHS 
Grants from the National Institute on Alcohol Abuse and Alcoholism (R01 AA09367 and R01 AA11886)  and  
from  the  National  Institute  on  Drug  Abuse  (R01  DA05147,  R01  DA13240, R01DA042755, U01DA046413, 
R21DA046188, R01DA037904, R01HG008983, and U01DA024417). GWAS and phenotypic data for MCTFR 
subjects who provided consent to place their data in a public repository are deposited into the database of 
Genotypes and Phenotypes (dbGaP, www.ncbi.nlm.nih.gov/gap) under phs000620. For further information, 
please contact Scott Vrieze (vrieze@umn.edu). Scott Vrieze is funded by NIH grants R56 HG011035, R01 
DA044283, R01 DA037904, and through the Minnesota Supercomputing Institute. 

MESA (Multi-Ethnic Study of Atherosclerosis) — Molecular data for the Trans-Omics in Precision 
Medicine (TOPMed) program was supported by the National Heart, Lung and Blood Institute (NHLBI). Multi-
Ethnic Study of Atherosclerosis (MESA) (phs001416.v1.p1) was performed at the Broad Institute of MIT and 
Harvard (3U54HG003067-13S1). Centralized read mapping and genotype calling, along with variant quality 
metrics and filtering were provided by the TOPMed Informatics Research Center (3R01HL-117626-02S1, 
contract HHSN268201800002I) (Broad RNA Seq, Proteomics HHSN268201600034I, UW RNA Seq 
HHSN268201600032I, USC DNA Methylation HHSN268201600034I, Broad Metabolomics 
HHSN268201600038I). Phenotype harmonization, data management, sample-identity QC, and general study 
coordination, were provided by the TOPMed Data Coordinating Center (3R01HL-120393; U01HL-120393; 
contract HHSN268180001I). The MESA projects are conducted and supported by the National Heart, Lung, and 
Blood Institute (NHLBI) in collaboration with MESA investigators. Support for the Multi-Ethnic Study of 
Atherosclerosis (MESA) projects are conducted and supported by the National Heart, Lung, and Blood Institute 
(NHLBI) in collaboration with MESA investigators. Support for MESA is provided by contracts 75N92020D00001, 
HHSN268201500003I, N01-HC-95159, 75N92020D00005, N01-HC-95160, 75N92020D00002, N01-HC-95161, 
75N92020D00003, N01-HC-95162, 75N92020D00006, N01-HC-95163, 75N92020D00004, N01-HC-95164, 
75N92020D00007, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, N01-HC-95169, UL1-TR-
000040, UL1-TR-001079, UL1-TR-001420, UL1TR001881, DK063491, and R01HL105756. The authors thank 
the other investigators, the staff, and the participants of the MESA study for their valuable contributions.  A fill 
list of participating MESA investigators and institutes can be found at http://www.mesa-nhlbi.org. The datasets 
used for the analyses described in this manuscript were obtained from dbGaP at http://www.ncbi.nlm.nih.gov/gap 
through dbGaP accession number phs001416.  

METSIM (Metabolic Syndrome in Men) — The METSIM study was funded by the Academy of Finland 
(grant no.77299 and 124243). Additional support for genetic data was provided by the US NIH (U01 DK062370, 
R01 DK093757, R01 DK072193, and ZIA HG000024). For information about the METSIM study, contact Markku 
Laakso at markku.laakso@kuh.fi.  
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NINDS SiGN (The National Institute of Neurological Disorders and Stroke Genetics Network) — 
The NINDS International Stroke Genetics Consortium Study dataset was funded by the National Institute of 
Neurological Disorders and Stroke Cooperative Agreement Award 1U01NS069208. John W. Cole is funded by 
NIH/NINDS grant number R01 NS114045. The dataset used for the analyses described in this manuscript was 
obtained from dbGaP at http://www.ncbi.nlm.nih.gov/gap through dbGaP accession number phs000615.  

The KORA study, a sub-study within NINDS SiGN, was initiated and financed by the Helmholtz Zentrum 
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Supplementary Figure 1. Diagram of project workflow. An overview of the primary data and analyses. 

 
Generation of Summary Statistics 
• Including results from prior publication (Liu et 
al., 2019) 
• Some prior results were updated 
• New contributing studies 
• TOPMed with 30x whole genome sequencing 

Quality Control  
• Controls applied to results provided by each study 
• Some controls applied at the meta-analysis level 
• Iteration between levels as issues were found 

Multi-Ancestry Meta-Analysis 
• Across all individuals and all studies 
regardless of ancestry 
• MEMO method to account for ancestry 
clines and other heterogeneities 

Fixed-Effects Meta-Analysis 
• Contributing studies also provided 
ancestry-stratified results. Separate meta-
analyses for AFR, AMR, EAS, & EUR 
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Fine-Mapping 
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Supplementary Figure 2.  Multi-ancestry meta-analysis QQ plots. Low frequency variants (.001 < MAF ≤ 
.01) are shown in red. Common variants (MAF > .01) are shown in black. GC = genomic control. GC correction 
was applied for low frequency variants only. See Supplementary Note for details on replicability of signals and 
population stratification. 
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Supplementary Figure 3. TOPMed reference panel comparisons. Panel A shows TOPMed principal 
components (based on individual-level genotypes) projected onto the per-study MDS space (based on allele 
frequencies from the summary statistics) for components 1-3. TOPMed individuals are shown in color (by 
assigned ancestry group) with studies (both from TOPMed cohorts [shown as dots] and non-TOPMed cohorts 
[shown as triangles]) shown in black. The purpose of this is to illustrate the comparability between TOPMed 
and non-TOPMed ancestry groups. Because of the mapping from the PC to MDS space, the components are 
not identical to Extended Data Figure 1. The remaining panels show TOPMed reference panel options for an 
example TOPMed cohort of HCHS_SOL, which is primarily made up of AMR ancestry individuals. Panel B 
shows where the HCHS_SOL study (black symbol “☒”) exists in the TOPMed PC space for components 1 and 
2. All colored points (TOPMed individuals) are identical across panels C-E, with only the black points, 
representing possible choices for selecting TOPMed individuals to contribute to a reference panel for the 
HCHS_SOL study, changing. Panel C shows all TOPMed individuals from the HCHS_SOL cohort in black. 
Panel D shows all TOPMed individuals classified as AMR ancestry in black (this ancestry matched method 
was used for all TOPMed reference panels). Panel E shows iteratively selected TOPMed reference panel 
individuals in black. Panel F shows all 1000 Genomes AMR individuals in black. 
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Supplementary Figure 4. Replicability Assessment in Trans-Ethnic Studies (RATES) results for 17 
independent variants with low posterior probabilities. Each row denotes an independent variant where 
RATES identified a low posterior probability of a replicable effect in a sufficiently powered study (posterior 
probability < 0.99). Each variant is listed with its respective posterior probability, two-sided P-value from the 
multi-ancestry meta-analysis, and number of contributing studies. The number of studies in some cases is 
larger than the total number of cohorts we report due to how summary statistic files were shared (e.g. 
23andMe provided summary statistics stratified by sex which will be displayed here as two points/studies but 
only counted as one cohort) Plots show the variant meta-analytic Z-scores from each contributing study on the 
x-axis with points jittered on the y-axis for visual clarity. The color denotes the primary ancestry of the cohort; 
size denotes the cohort sample size. Boxplots are overlayed to highlight outlier cohorts driving the low 
replicability. Each box denotes the 25th, 50th, and 75th percentiles with whiskers extending to the largest and 
smallest values with 1.5 times the interquartile range above and below, respectively. 
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Number of studies = 7 

 

SmkCes 

chr2:10619084_G/A 
Posterior probability = 8.02e-260 

P-value = 2.24⨯10-172 

Number of studies = 38 

 

chr2:160587711_T/A 
Posterior probability = 4.75e-57 

P-value = 6.49⨯10-25 

Number of studies = 35 

 

chr3: 173570664_G/A 
Posterior probability = 2.39e-92 

P-value = 1⨯10-51 

Number of studies = 36 
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chr11: 79227043_T/C 
Posterior probability = 2.73e-245 

P-value = 1.68⨯10-171 

Number of studies = 38 

 

chr11: 118395808_C/T 
Posterior probability = 0.989 

P-value = 2.09⨯10-9 

Number of studies = 51 

 

chr13: 57909623_G/A 
Posterior probability = 0.985 

P-value = 1.85⨯10-11 

Number of studies = 71 

 

chr13: 100261629_C/T 
Posterior probability = 0.0124 

P-value = 2.54⨯10-9 

Number of studies = 73 

 

chr15: 26719238_A/G 
Posterior probability = 8.02e-85 

P-value = 6.9⨯10-47 

Number of studies = 28 
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chr15: 42576159_T/C 
Posterior probability = 3.86e-207 

P-value = 7.84⨯10-142 

Number of studies = 38 

 

chr16: 15127835_C/T 
Posterior probability = 0.0543 

P-value = 1.21⨯10-9 

Number of studies = 18 

 

SmkInit 

chr3: 38609794_C/T 
Posterior probability = 0.00545 

P-value = 2.48⨯10-12 

Number of studies = 5 

 

chr6: 79798179_C/T 
Posterior probability = 0.0289 

P-value = 3.59⨯10-13 

Number of studies = 35 
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Supplementary Figure 5. Affinity propagation clustering of correlations between EUR-stratified GWAS 
meta-analysis results and 1,141 UK Biobank phenotypes. The figure visualizes genetic correlations 
between UK Biobank phenotypes (rows) and the five smoking/alcohol use phenotypes from the present meta-
analyses (columns). Smoking Initiation and Age of Initiation of Smoking show similar patterns of association, 
as do cigarettes per day and smoking cessation. All the smoking phenotypes show more similar patterns with 
each other than with drinks per week. The color indicates the absolute magnitude of the correlation.  
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