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Supplementary Results

Integration of OPCs and OL from all ages and regions

The subclustered OPCs and OLs were also integrated across all ages and regions (Supplementary Fig
3c-f). These data show similar clusters exist in each age and region with NT cells found mainly in clusters 0, 2,
and 4 representing MOL & MFOL, OPCs, and NFOL, respectively; and R6/2 cells found in clusters 1 and 3
representing a unique MOL group and COPs, respectively (Supplementary Fig 3c & d). Expression of OPC
and OL maturation markers can be seen in Supplementary Fig. 3e, which suggests increased OPC commitment
in R6/2 cells (COP cells with no Pdgfra and low OL marker expression (cluster 3 and 1)) and decreased OL
maturation (MOL cells with downregulated OL marker expression (cluster 1)). Pseudotime analysis of the
integrated data set also showed similar results with all ages and regions showing cells along a single trajectory
with 1 branch point mainly consisting of R6/2 cells (Fig 2d and Supplementary Fig 3f). We next analyzed R6/2
versus NT differentially expressed genes in the OPC and OL clusters which revealed similar results to our non-
integrated data per age and region (Supplementary Data 2). Showing down regulation of OL maturation genes
such as Mobp, Mal, Neat1, Plp1, and Cldn11 and upregulation of genes like Smarca2. While OPCs showed
upregulation of Mbp, Plp1, and Smarca2. These data suggest commitment of development in R6/2 OPCs in all
ages and regions, and impaired maturation in OLs in all regions and ages. The pseudotime analysis reveals this
is most significant in the striatum as more R6/2 OLs reach similar pseudotime values in the R6/2 cortex, relative

to the NT (Fig. 2d and Supplementary Fig. 3f).

WGCNA and Bnets

To determine how mHTT disrupts the network structure of these modules elucidated in the NT state, we
conducted module preservation analysis with R6/2 data (Supplementary Fig. 4a & b). Changes to the overall
connectivity of the module members and in the structure of the subnetworks (node-to-node connectivity (kME),
(edge weight)) would represent disruption of co-expression through mHTT pathogenic mechanisms. While all
modules showed high levels of preservation in the R6/2 samples (Supplementary Fig. 4a-d).

Other bnets: Further exploration of other cell type-specific bnets revealed similar data and also a few
similar hub genes including Hs6st3, Erbb4, and Meg3 in the Ex neuron bnet (Supplementary Fig. 4c). Recurring

themes were present in each of the cell type-specific bnets including GAG/proteoglycan related genes such as
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Tspan7 and Gpcb in the astrocyte bnet (Supplementary Fig. 4b). When searching our Ex neuron bnet we found
that GPR1, RORXx, and snrp70 seemed to have an important causal role in that specific network. We next
looked at our yellow neuronal module which correlated with both MSN and Ex neurons but was anti correlated
with glial cells. This network seemed to show 2 large subnetworks that separate hub genes mainly identified in
the MSN versus Ex bnets, one containing Frmd4b and snrnp70 and the other containing Hs6st3, Dgkb, and
Cacna2d3. Generally, the prior subnetwork contained genes related to Grp1 signaling and splicing (Tra2a and
Ddx5) while the latter network contained genes related to protein glycosylation and glucose metabolism (Dgkx,
Hsxstx, Galntx, Gpcx). A common link between these two pathways which seem to be playing an important role
by their location in the hierarchical structure of the bnet are Neuregulin/Erbb signaling and Lingo2, both showing
novel causal relationships amongst themselves and child nodes in both subnetworks. Lingo2 has been shown
to regulate EGF signaling and has a role in Parkinson disease 2. These data show an important role for these
pathways specifically in the pathogenesis of neuronal populations in HD.

Interestingly, our MSN and OPC/OL bnets are enriched for genes associated with schizophrenia 34.
Hypergeometric tests were used to assess statistical significance for overrepresentation of the schizophrenia
genes in the causal networks. Including Reln and Pcdh15 other genes were Nrg1/3 and Erbb4, Smarca2, PLCB1
a gene involved in diacylglycerol formation, Hir4 a glycosylated transmembrane protein involved in G protein
coupled receptor serotonin signaling, as well as other genes involved in synaptic function and GPCR and calcium
signaling. These data connect both metabolism to these signaling pathways and suggest coordination of these
genes towards pathogenesis in HD and schizophrenia. There is an emerging role of OLs in schizophrenia
pathogenesis, and the genes identified in these 2 causal networks may be relevant to both diseases.

Hub genes in the Ex bnet included Fam19A1 and 2 and Frmd4b which all play a role in GRP1 signaling
that regulates insulin signaling and neuronal receptor trafficking 56, Rora and Rorb which are nuclear receptors
that regulate many biological processes including development, circadian rhythm, and glucose metabolism, as
well as snrmp70 an essential component of the spliceosome. These data indicate an important role for these
pathways in cortical cells relative to striatal. Each of these hub genes showed a larger number of NT specific
outward edges indicating a loss of relationship in HD, but surprisingly most of these genes were upregulated in

R6/2 mice in their corresponding cell types.
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Human snRNAseq data

The HD-caudate predominant myelinating OL Cluster 7 showed relatively high expression of several
immune related genes such FYB1, SYK (Fig. 5i), APOE (identified in causal network), CD74, and C3
(Supplementary Fig. 7d, Supplementary Data 7), reminiscent of the immune oligodendroglia described in
multiple sclerosis’. To further characterize the major gene programs that drive OL and OPC clusters’, we
discovered correlated gene modules using the Louvain community analysis algorithm in monocle3. The gene
module expression scores are plotted in heatmap by lineage, cluster, and grade (Condition) in Supplementary
Fig. 7e, showing that gene modules were largely specific for either OPCs or OLs, and that there are cluster and
grade specific modules. Module 2 was most highly expressed in cluster 7, and the GO enrichment analysis of its
genes reveal they are related to immune system and cytokine signaling. Module 10 showed highest scores
across HD grades, and its genes were enriched in GO terms related to response to stress, splicing, lipid and
atherosclerosis, and antigen processing and presentation. Moreover, module 19 was most highly expressed in
HD grades including HDJ, and its genes were related to GTPase function. Finally, module 8 was highest in
cluster 2, 3, and 6 and HD grade 3, and its genes were related to ribosomal function and translation
(Supplementary Fig. 7e & f). The module genes and scores by cluster, condition, and lineage are provided in

Supplementary Data 9.

Validation of OL pathology in human HD and mouse data

To confirm OL gene expression abnormalities in HD, we performed WB analysis for myelin related genes
MBP and MAG, which were downregulated at the RNA level in both mouse and human data, hub gene SGK1,
and metabolism related genes DGKB and GPI, which are dysregulated in both the mouse and human OL and
OPC data. Protein levels of MBP and MOG were not significantly altered in the HD cingulate cortex
(Supplementary Fig. 8b and c). Conversely, protein levels of MBP (but not MAG) were increased in the caudate
nucleus (Supplementary Fig. 8b and c). Protein levels of SGK1 were significantly decreased in the cingulate
and caudate of HD brains (Supplementary Fig. 8b and c).

Given that MBP levels were reduced at RNA levels, we were surprised to see increased MBP protein
levels in the caudate. This could be explained by an increase in OL numbers. We therefore performed

immunofluorescence labeling for Carbonic Anhydrase Il (CA2), expressed in OL but not OPCs?, on caudate and
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cingulate of control and HD cases, and MBP in the caudate (Supplementary Fig. 8d). An unaltered or reduced
ratio of MBP to CA2 signal in HD compared to controls would indicate a relative decrease of MBP per OL. The
results show a reduced MBP:CA2 labeling ratio, suggesting that despite the overall increase in MBP protein
levels, there was a general decrease in MBP when normalized to oligodendrocyte numbers (Supplementary
Fig. 8e). We confirmed the increased CA2 result using chromogenic IHC on a larger cohort, which revealed a
significant increase in the proportion of CA2+ cells in the caudate and cingulate (Supplementary Fig. 9a-d).
Moreover, as previously reported, the overall cell density in the HD caudate was increased, consistent with gliosis
(Supplementary Fig. 9c).

For additional mouse validation, we examined the protein levels of the hub genes and glucose and lipid
metabolism related genes that are potentially relevant to OL pathology, including Sgk1, Gpi1 and Dgkb, using
quantitative western analysis (Licor) (Supplementary Fig. 9e&f) on striatal and cortical tissue collected from
additional R6/2 and NT mice (n=6/group). A significant difference was observed for the following proteins: Sgk1
levels were lower in the cortex, Dgkb levels were lower in the striatum (Supplementary Fig. 9a-d).

Finally, we carried out in situ hybridization to examine dysregulation of HD OLs in human brain. The
snRNAseq results showed that OLs from the three anatomic regions upregulated transcription of SPP1,
increased in oligodendrocytes in the cuprizone model of demyelination*?, and NEAT1, increased in HD and
implicated in promoting neuronal survival 4'. We performed in situ hybridization for SPP1, NEAT1, and MBP in
the cingulate, caudate, nucleus accumbens (Supplementary Fig. 9g). Of these regions, caudate and
accumbens parenchymal OLs showed increased SPP1 expression (Supplementary Fig. 9h&i), and caudate
parenchymal OLs showed increased NEAT1 expression (Supplementary Fig. 9h). OLs in the white matter of
the nucleus accumbens and caudate did not show significant changes in NEAT1 and SPP1 expression
(Supplementary Fig. 9h&i). These results are consistent with a compensatory signature of OL in HD, whereby
HD OL upregulate signals to promote survival and myelination. Furthermore, the data localizes the signature to

parenchymal rather than white matter OLs.
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Supplementary Figure Legends

Supplementary Figure 1. Annotation of human and mouse snRNAseq data and integrated data from both
age and regions in R6/2. a) Mouse umaps colored by expression of Pdgfrb and Tek showing the clustering of
vascular cells with astrocytes. b) tSNE plots of the human snRNAseq results showing color-coded by anatomic
region (Left), and grade (Right). ¢) Dotplot of human snRNAseq showing expression of cell type markers per
cluster. d) Dotplot showing the expression of select cell type markers across all clustered identified in the mouse
data. Venn diagrams showing overlap of all DEGs between 8 and 12w, for both striatum (str) and cortex (ctx). e)

UMAPs of integrated mouse data colored by region (top left), Cell type (top right), and age (bottom).

Supplementary Figure 2. Top 5 GO terms and KEGG pathways for DEGs per a cell type and age/region.
a) Top 5 GO terms per cluster in 8 and 12w striatum and cortex. b) Top 5 KEGG pathways in 8 and 12w striatum
and cortex. Functional impairment such as focal adhesion, cytoskeleton, ErbB and axon guidance in OLs that
suggest a loss of cell-to-cell communication between OLs and neurons. KEGG pathway analysis also highlighted
metabolic pathways including TCA cycle, O-glycan biosynthesis, amino and nucleotide sugar, sucrose, and

pentose phosphate pathways.

Supplementary Figure 3. Cell type agnostic DEGs and KEGG metabolic gene networks, and integrated
OPC and OL data. a) Heatmaps and hierarchical clustering of normalized mean expression values in all glial or
neuronal cells of the top cell type agnostic DEGs. Cell color represents row min (seafoam green) and max
(orange). b) Network showing all KEGG metabolic genes significantly dysregulated across the 8w Str DEGs and
both cortical dataset from every cell type. Node size is equal to the number of cell types in which the gene is
found to be significantly dysregulated and node are colored by up and down regulation (orange = up and blue =
down) ¢) UMAPs of integrated OPC and OL data from both ages and regions, colored by (top) genotype and
(bottom) age/region. d) Cell number proportions by genotype in clusters 0, 1, 2, 3, and 4; corresponding to MOL,
MOL, OPC, COP, NFOLs, respectively. e) Violin plot showing expression of OPC and OL marker and maturation
genes in OPC and OL cells from all ages and regions, by cluster. f) Pseudotime plot of integrated OPC and OL

data from both ages and regions, colored by genotype, age, and region.
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Supplementary Figure 4. Module preservation statistics between R6/2 and NT. Z summary preservation
values > 20 for all modules and correlation > 0.78 with p values < 1.2e-53. a) Z-summary/density/connectivity

values for module preservation. b) scatter plots showing KME between NT and R6/2 per module.

Supplementary Figure 5. Merged causal networks for microglia, astrocyte and excitatory neurons. a)
Barplot of -log10(pvalues) from hypergeometric test of overlap between cell type DEGs and WGCNA cell type
modules. b) Causal network for microglia. ¢) Causal network for astrocytes. d) Causal network for excitatory
neurons. b-d) See Fig. 4 legend for description of network. e) Causal network for oligodendrocytes merged with

gene regulatory networks from IRIS3 regulon prediction.

Supplementary Figure 6. ATACSeq supplementary data. a) Visualization of read density across Camk2a and
Olig2 in neun+/- ATACseq data, and predicted SMARCA4 from BIRD analysis on human snRNAseq data. b)
Volcano plots showing differential binding scores, and -log(pvalue) differences of TF binding in open chromatin
in 8 and 12w, striatum and cortex NeuN +/- cells. blue = top20 by differential binding score, orange = pvalue
<0.05. ¢) Venn diagrams of overlapping TFs from ATACseq footprinting analysis per region and age. NeuN+
cells have some similarities with the NeuN- showing differential binding of Zbtb714 and Hes1, although in opposite
direction, in several ages and regions, but also showed an enrichment for immediate early genes Jun, Fos, and

Mef2c/b/d.

Supplementary Figure 7. Human samples snRNAseq supplementary data. a-b) tSNE plot showing the
human snRNAseq data color-coded by donor (a) and sequencing batch (b). ¢) The relative contribution of HD
grade to OL and OPC clusters is shown in bar plots. d) Gene expression violin plots showing the expression of
select genes in OL and OPC clusters. OPC genes VCAN, BCAN, SOX6, PDGFRA, CSPG4 are most highly
expressed in clusters 5 more than 4, while TCF7L2 is more expressed in cluster 4 — suggesting it is more
committed. Immune OL”s genes CD74 and APOE are expressed in cluster 7. Myelin-related genes are
expressed in the remaining clusters — see text for details. e) Gene correlation network analysis as performed in

monocle3, showing the module scores against lineage, condition, and cluster. f) KEGG and Reactome pathway
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enrichment analysis in select module genes. The negative log 10 of the adjusted p value is indicated on the x-

axis, and the term name on the y-axis. Hypergeometric test used for analysis.

Supplementary Figure 8. KEGG metabolic genes in human data and validation OL maturation deficits
and increased OL lineage cells in the cingulate and caudate. a) Network showing all KEGG metabolic
genes significantly dysregulated across the human OPC and OL DEGs overlapping with the mouse 12w striatal
DEGs. The color of the node indicates direction of DEG: orange = up and blue = down in HD. b) Western blot
of OL maturation genes and key drivers in HD and control patient cingulate cortex and caudate. Source data
are provided as a Source Data file. ¢) Quantification of western blow results. Two-tailed Mann Whitney test
used for each statistical analysis. Exact p-values: Cingulate: MAG-0.2251, MBP-0.5743, SGK-0.0897;
Caudate: MAG-0.2912, MBP-0.0055, SGK-0.0055. n= 3 control and 11-12 HD caudate samples, and 5 control
and 11-12 HD cingulate samples. Data shown as mean +/- SEM as error bars. d) Representative images of
MBP and CA2+ OLs in HD and control postmortem brain showing an increase in CA2+ OLs in the HD brain.
e) Ratio of MBP intensity relative to CA2 positive OLs, showing a decrease in MBP per an OL. Exact p-value:
0.032. n = 3 HD and 4 control caudate stained sections, biologically independent samples. Two-way Mann
Whitney test used for statistical analysis. Data shown as median (center line), inner quartile range (box), and

min and max values as whiskers.

Supplementary Figure 9. Validation of increased OL and OL stress in the caudate and accumbens, and
protein validation of mouse data. a) Immunohistochemical stains for Carbonic Anhydrase 1l (CA2), a general
marker for OLs that is also expressed in early lineage OLs but not OPCs. Control and HD panels are shown in
the left and right, respectively. Images of the representative regions in the cingulate cortex (Upper row) and
caudate nucleus (lower row) are shown. Scale bar = 50 microns. Quantification of percentage of cells that are
positive for CA2 in the caudate (b), and cingulate (d), and density of cells per unit area (c). The results are shown
as boxplots with median (center line), inner quartile range (box), and the bars representing the minimum and
maximum values as whiskers. One-tailed t-test was used to determine statistical significance. The p-values are
noted on the graphs. n= 6 control and 8 for HD — for b-c, and n = 6 control and 4 HD for d. (e and f). Protein

quantification and Licor images of select DEGs and mHTT (5492) in R6/2 and NT striatum and cortex. e) Licor
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images of mHTT (5492), Prkce in the insoluble fraction, Sgk1, Dgkb, Gpi1 and respective revert in R6/2 and NT
striatum and cortex. Source data are provided as a Source Data file. f) Quantification of licor results. One-way
ANOVA used for statistical analysis. Data shown as mean +/- SEM as error bars. n =6 NT and 6 R6/2 biologically
independent samples. g-i) Representative images showing in situ hybridization for SPP1 (red), MBP (green),
NEAT1 (white), and nuclei (DAPI - blue) in the control and HD caudate nucleus (g). The areas marked P
represent pencil fibers of Wilson. The dashed boxes are enlarged in the lower panels. Scale bars are indicated
on the graphs. Quantification of percentage of MBP- positive cells that are positive for SPP1 (right panels) and
NEAT1 (left panels) in the parenchyma (upper panels) and white matter (lower panels) in the caudate (h), and
accumbens (i). One-way ANOVA used for statistical analysis. The results are shown as boxplots with median
(center line), inner quartile range (box), and min and max values as whiskers. One tailed t-test was used to
determine statistical significance. The p-values are noted on the graphs. n= 4 control and 5 HD forb, and n =3

control and 4 HD for c, biologically independent samples.
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Supplementary Figure 4
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Supplementary Figure 6
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Supplementary Figure 7
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Supplementary Figure 8
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Supplementary Figure 9
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