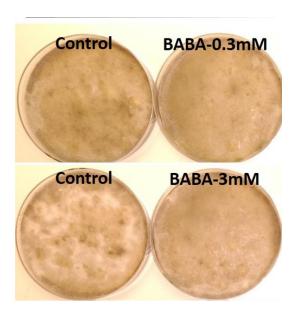
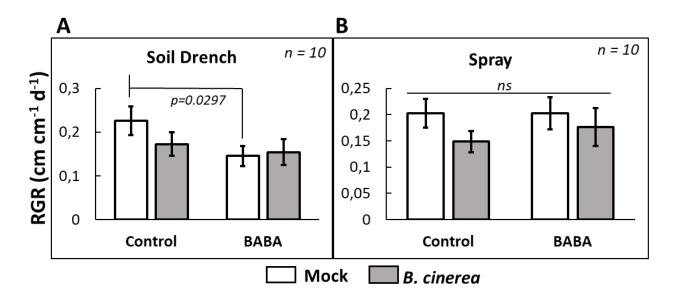


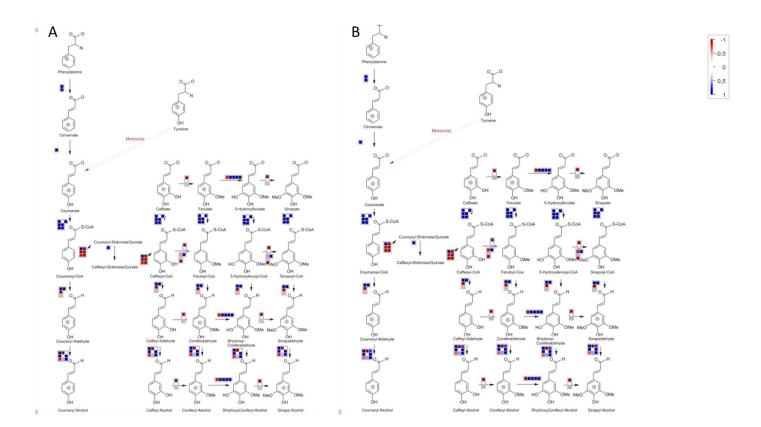

## Supplementary Material


## **Supplementary Figures and Tables**

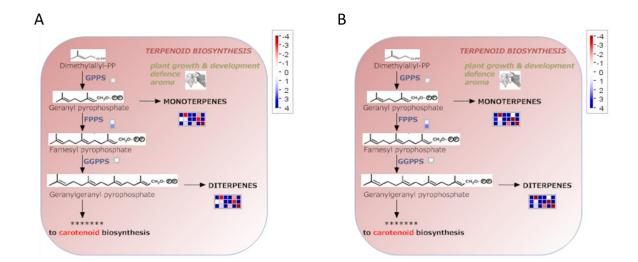



Supplementary figure S1: Quantification method for *Botrytis cinerea* infection and verification of pathogenicity in *Fragaria vesca* leaves. (a) Representative *F. vesca* 'Hawaii-4' leaves showing infection by *B. cinerea* 5 days after drop inoculation of fungal spores (right) or mock suspension (left). (b) Genomic DNA-based qPCR quantification of *B. cinerea* DNA relative to *F. vesca* DNA using genome-specific primers for *B. cinerea* (Bc3F and Bc3R) and *F. vesca* (EF1 $\alpha$ F and EF1 $\alpha$ R) in non-infected (Mock) and infected (*B. cinerea*) leaf samples. Y-axis values represents relative amount of *B. cinerea* DNA to *F. vesca* DNA. 'n' = number of replicates (i.e. individual plants). Error bars show standard error (±1 SE). P-values report comparisons between infected and uninfected plants using Student's t-test.

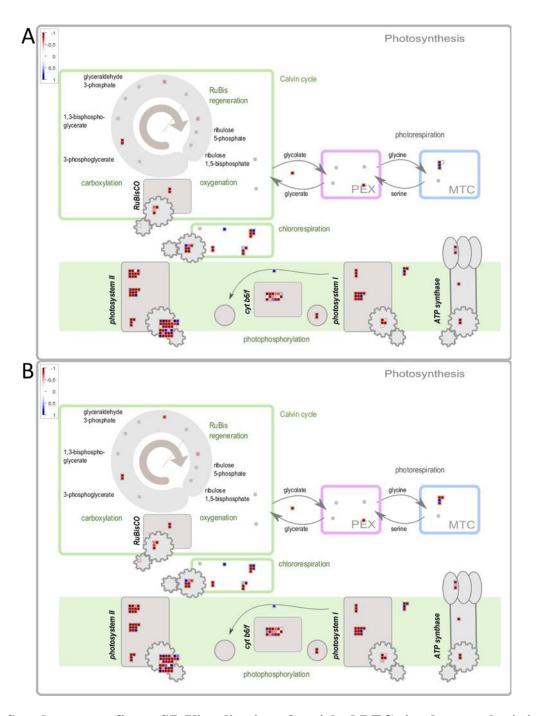



Supplementary figure S2: Effects of BABA soil drench on resistance of *Fragaria* ananassa to infection with *Botrytis cinerea*. Plants were soil drenched with water or 0.2 mM BABA 8 days prior to drop-inoculation of leaves with *B. cinerea* (No BABA and Infected (NBI) and BABA and Infected (BI), respectively). Measurement of lesion area (in cm<sup>2</sup>) was done using ImageJ of images taken 5, 8, and 10 days after inoculation. Values show average lesion area on infected detached leaves from 16 individual plants (n = 16). Error bars show standard error ( $\pm 1$  SE). P-values report significant comparisons between control plants (NBI) and plants treated with BABA (BI) using Student's t-test.

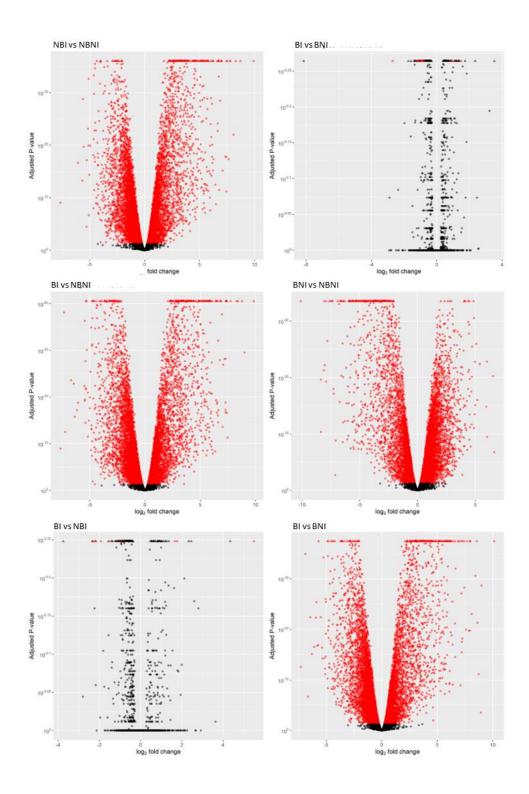



Supplementary figure S3: Direct effects of BABA on *Botrytis cinerea* growth. Growth of *B. cinerea* (brown mycelium) on potato dextrose agar amended with 0 mM, 0.3 mM, and 3 mM  $\beta$ -aminobutyric acid (BABA). A spore suspension of *B. cinerea* was spread on the agar and the plates were incubated in darkness for 4 weeks at room temperature.

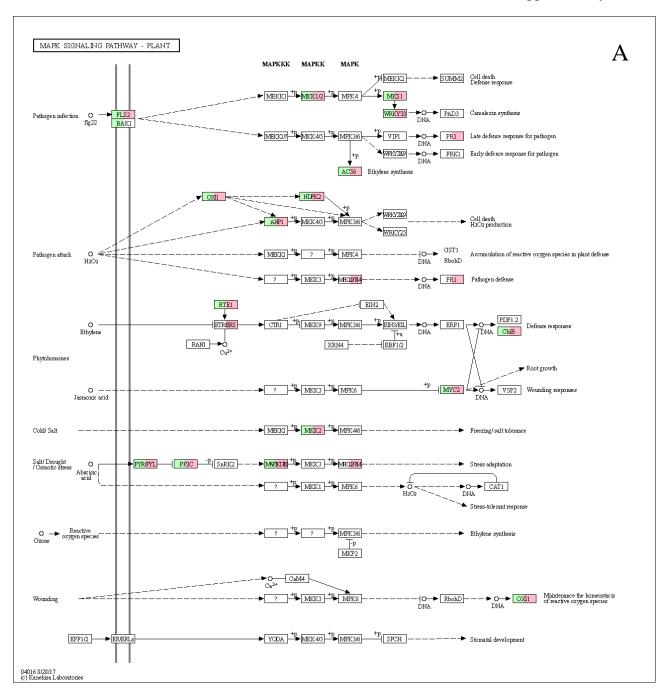


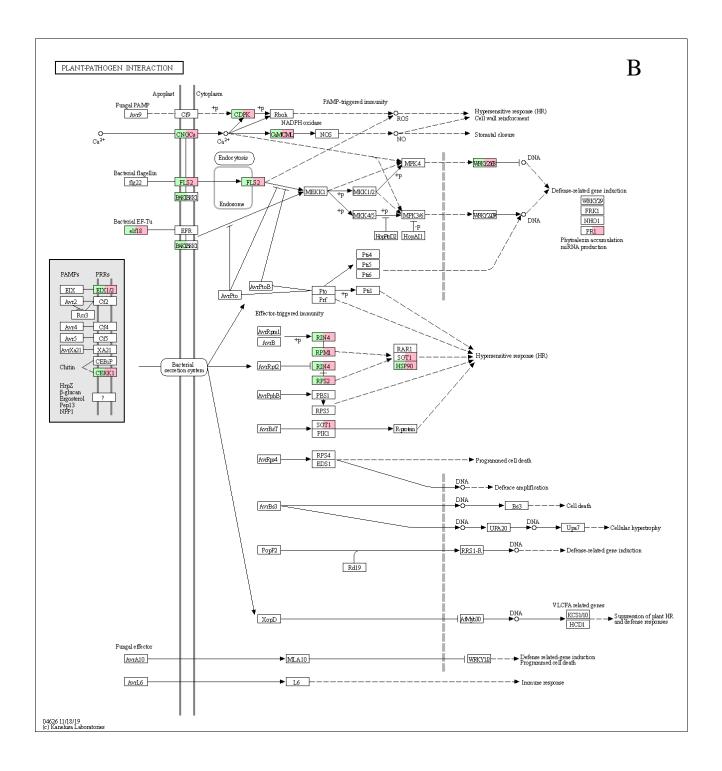

Supplementary figure S4: Effect of BABA on relative growth rate (RGR) of Fragaria vesca 'Hawaii-4' plants. RGR of plants that were (A) soil-drenched with 0.2 mM or (b) spray-treated with 0.3 mM  $\beta$ -aminobutyric acid (BABA). Control plants were treated with a suspension without BABA. All plants were subsequently infected with Botrytis cinerea spores or mock-infected. 'n' = number of replicates (i.e. individual plants). Error bars show standard error ( $\pm 1$  SE). P-values report comparisons between treatment combinations using Student's t-test. 'ns' = not statistically significant.




Supplementary figure S5. Visualization of DEGs in the phenylpropanoid pathway in *Fragaria vesca* leaves after β-aminobutyric acid (BABA) treatment and *Botrytis cinerea* infection. Differentially expressed genes (DEGs) were displayed onto metabolic pathways using the MAPMAN software. (A) *B. cinerea*-infected vs. mock-infected plants (No BABA and infected (NBI) vs. No BABA and non-infected (NBNI)). (B) BABA-treated and *B. cinerea*-infected plants vs. mock-infected plants (BABA and infected (BI) vs. NBNI). Blue cells: upregulation compared to NBNI; red cells: downregulation compared to NBNI.




Supplementary figure S6. Visualization of DEGs in the terpenoid biosynthesis pathway in *Fragaria vesca* leaves after β-aminobutyric acid (BABA) treatment and *Botrytis cinerea* infection. Differentially expressed genes (DEGs) were displayed onto metabolic pathways using the MAPMAN software. (A) *B. cinerea*-infected vs. mock-infected plants (No BABA and infected (NBI) vs. No BABA and non-infected (NBNI)). (B) BABA-treated and *B. cinerea*-infected plants vs. mock-infected plants (BABA and infected (BI) vs. NBNI). Blue cells: upregulation compared to NBNI; red cells: downregulation compared to NBNI.




Supplementary figure S7. Visualization of enriched DEGs in photosynthesis in *Fragaria vesca* leaves after β-aminobutyric acid (BABA) treatment and *Botrytis cinerea* infection. Differentially expressed genes (DEGs) were displayed onto metabolic pathways using the MAPMAN software. (A) *B. cinerea*-infected vs. mock-infected plants (No BABA and infected (NBI) vs. No BABA and non-infected (NBNI)). (B) BABA-treated and *B. cinerea*-infected plants vs. mock-infected plants (BABA and infected (BI) vs. NBNI). Blue cells: upregulation compared to NBNI; red cells: downregulation compared to NBNI.



Supplementary figure S8. Volcano plot (adjusted p-values versus log2 fold-change based on edgeR data) of transcripts in leaves of *Fragaria vesca* Hawaii-4 plants following BABA treatment and infection with *Botrytis cinerea*. Plants were treated with different combinations of 0.2 mM β-aminobutyric acid (BABA) as a soil drench and spray-inoculation of leaves with *B. cinerea* two days later. Transcripts with p-values < 0.05 are shown in red. (A) *Botrytis cinerea*-infected plants (No BABA and infected; NBI) vs. mock-infected plants (No BABA and non-infected; NBNI). (B) BABA-treated and mock-infected plants (BABA and non-infected; BNI) vs. NBNI. (C) BABA-treated and infected plants (BABA and infected; BI) vs. NBNI. (D) BNI vs. NBI. (E) BI vs. NBI. (F) BI vs. BNI.





**Supplementary figure S9.** KEGG pathway analysis. Sequence data from the different treatments were assigned KO-numbers and mapped onto the MAPK signaling pathway - plant - Reference pathway (A) and the Plant-pathogen interaction - Reference pathway (B) to highlight similarities and differences between upregulated genes for the NBI vs NBNI (green) and the BI vs NBNI treatments.

## Supplementary Table S6: List of Fragaria vesca and Botrytis cinerea primers used in this study.

| Sl<br>N<br>o | Primer<br>Name  | Primer Sequence (5'-3')        | Gene IDs         | Purpose |
|--------------|-----------------|--------------------------------|------------------|---------|
| 1            | FvEF1aRTw<br>F  | GCCCATGGTTGTTGAAACTTT          | FvH4_7g2005      |         |
| 2            | FvEF1aRTR       | GGCGCATGTCCCTCACA              | 0                |         |
| 3            | FvPR1.1-<br>RTF | CGGCGACTTATCAGGCACA            | FvH4_2g0292      |         |
| 4            | FvPR1.1-<br>RTR | CCACAAACCCTGCCAGAAGC           | 0                |         |
| 5            | FvPR5.3F        | ACCTCCTAATGACACTCCCGAAACA      | F 114 6 1605     |         |
| 6            | FvPR5.3R        | CGTAGTTAGGTCCACCGAAGCATGT<br>A | FvH4_6g1695<br>0 |         |
| 7            | FvPR4-RTF       | GCAGGACAACAACTGGGATTTG         | FvH4_3g2601      |         |
| 8            | FvPR4-RTR       | GTCACTAGCAGACATTTTCCACAGG      | 0                |         |
| 9            | FvBG2-1RTF      | CCATATTGCTGCTCCTTGTTCTG        | F 114 2 2027     | qPCR    |
| 10           | FvBG2-<br>1RTR  | CCTTCCAATTCCATTGCTTTTGTAC      | FvH4_3g2837<br>0 |         |
| 11           | FvBG2-3RTF      | CCCTAATAAACAGCCAAAGTATCAG<br>C | FvH4_4g1950      |         |
| 12           | FvBG2-<br>3RTR  | CGTATCACTCTTGAGAGAAGTGG        | 0                |         |
| 13           | FvPGIP1-<br>RTF | CCTAGTTCATACGGGAAATTCGTTG      | FvH4_6g2279      |         |
| 14           | FvPGIP1-<br>RTR | TTCATGTTAGCAAATGAGGTTGGG       | 0                |         |
| 15           | FvLr10-JRTF     | AACTCCTGCAGAGTATGCCAACTG       | FvH4_4g2692      |         |
| 16           | FvLr10-RTR      | GCGTTGCATGTGACCTCAAAC          | 0                |         |

| 17 | FvWRKY75-<br>JRTF | CCCAGAAGCTACTATCGATGCAC       | FvH4_6g5377      |
|----|-------------------|-------------------------------|------------------|
| 18 | FvWRKY75-<br>RTR  | AGGCTTGTCGATTGGATGAGAGTG      | 0                |
| 19 | FvCPK1-<br>JRTF   | TATGTCACCCTTGGGTTCAGGTTG      | FvH4_6g2084      |
| 20 | FvCPK1-<br>JRTR   | GTGTTCAGCAATGACTCTAAGAGCC     | 0                |
| 21 | FvPecLy1-<br>JRTF | GACATGAGTATCCGCAACAGCAC       | FvH4_4g0576      |
| 22 | FvPecLy1-<br>RTR  | CACAACGCCAGCAATCATCAATG       | 0                |
| 23 | FvSLP3-<br>JRTF   | CTAGTGAATCAGTCACGTCCTATGC     | FvH4_4g0737      |
| 24 | FvSLP3-<br>JRTR   | TTTCTGCCTGCTCGTGAGAAATG       | 0                |
| 25 | FvARR3-<br>JRTF   | GAATCTCCTCTTGCAAAGTGACCG      | FvH4_4g3523      |
| 26 | FvARR3-<br>JRTR   | CCATCAAAACCAACTGAGGTGCTC      | 0                |
| 27 | FvPHOT2-<br>JRTF  | GAAACTGTCGGTTTCTTCAGGGAC      | FvH4_2g1722      |
| 28 | FvPHOT2-<br>JRTR  | GTGAGAAGATTCCAGAAAGGAGTG<br>C | 0                |
| 29 | FvDSLPR-<br>JRTF  | GGCGGAGGATTTTAGTGACACATTG     | FvH4_2g2029      |
| 30 | FvDSLPR-<br>JRTR  | CTATGCTTGCCTTGTGCTTGAGA       | 0                |
| 31 | FvPAL2-RTF        | GAGGCAGAGCTAGTAGAACATG        |                  |
| 32 | FvPAL2-<br>RTR    | TTAGGCAAGACACTCTTCAGTTCC      | FvH4_7g1913<br>0 |
| 33 | Fv4CL7-RTF        | CAAAGACGACGTCGTCCTTATCC       | FvH4_6g1646      |
| 34 | Fv4CL7-RTR        | GATGACGAGCTTAGGGTTACAGTC      | 0                |
| 35 | FvGDS-RTF         | AATGGTTGTAGTTAACGAGCCTGC      |                  |
|    |                   |                               | L                |

| 36 | FvGDS-RTR        | GCAGTAGTGTAAAGGTCACCATCC    | FvH4_4g2794<br>0              |  |
|----|------------------|-----------------------------|-------------------------------|--|
| 37 | FvBAS-RTF        | AGCACAAACAACTTCGTCGGAAG     | FvH4_2g0804                   |  |
| 38 | FvBAS-RTR        | GAACTGAAGACGAGCCTCTTCAAC    | 0                             |  |
| 39 | FvSCMT-<br>RTF   | GAGAACCAGAGAGCTGTGATTTCG    | FvH4_3g0313                   |  |
| 40 | FvSCMT-<br>RTR   | TTCAGACACTCTGGGAAGAGAGTG    | 0                             |  |
| 41 | Fv12OR2-<br>RTF  | GCATGGAAACCCATTGTCAATGC     | FvH4_5g3263                   |  |
| 42 | Fv12OR2-<br>RTR  | TCGGTACAAGAAATTGGAGCCTG     | 0                             |  |
| 43 | FvACCOX1-<br>RTF | GAGGTTCCAACCAACTATGACAGG    | FvH4_5g1929                   |  |
| 44 | FvACCOX1-<br>RTR | CAGTTACTCCAGCATCAACAAGACC   | 0                             |  |
| 45 | FvECDS-<br>RTF   | TTCTTCCCTCAATCTGCAATGCG     | FvH4_2g2344                   |  |
| 46 | FvECDS-<br>RTR   | TCCTTGGTAGGAAGAGCCTCTTC     | 0                             |  |
| 47 | FvRe1 RTF        | TGAATATGAAGAGGCTTGCAAAGACTC |                               |  |
| 48 | FvRe1 RTR        | TCTTCTCCATCCTAATCCCATTCTCTG |                               |  |
| 49 | Bc3F             | GCTGTAATTTCAATGTGCAGAATCC   | (Diguta et al., 2010)         |  |
| 50 | Bc3R             | GGAGCAACAATTAATCGCATTTC     | For B. cinerea quantification |  |