Supplementary Materials for

Surface-modified measles vaccines bypass measles-immunity, boosting neutralizing antibody responses to Omicron and ancestral strains

Miguel Á. Muñoz-Alía et al.

*Corresponding author. Email: <u>mamunoz@vyriad.com</u>

This PDF file includes:

Figs. S1 to S5

Related to Figure 2. (A) SDS–PAGE of the purified proteins. Protein $(1 \mu g)$ was separated by SDS–PAGE (4-12% Bis-Tris gel) electrophoresis, followed by Coomassie staining. (B) BN-Native gel analysis of the purified proteins. Protein $(1 \mu g)$ was separated by BN-Native electrophoresis (4-16% Bis-Tris), followed by Coomassie staining.

Related to Figure 2. Representative electron micrographs of negatively stained SARS-CoV-2S6p3 (A) and SARS-CoV-2S6p312 (B). Images were collected by Talos L120C 120 kV TEM with a magnification of 57kx and 92kx. Scales bars, 100nm.

Fig. S3.

Sequence divergence of rescued viruses from cloned cDNA. Shown are rescued viruses in which nucleotide mutations were found. The genome coverage and allelic frequency of from Next-Generation Sequencing is also shown. Blue areas represent viral coding sequences, while white areas indicate intergenic regions and untranscribed terminal regions of the genome.

Related to Figure 3. Expression of SARS-CoV-2 spike-based constructs from the rMeV-MR vector. Vero cell lysates and supernatants were analyzed by western blotting two days after infection with the various spike-based measles vector constructs at an MOI of 0.03. The antibodies used for immunodetection as well as the molecular weight of a standard are indicated.

FIG :	S5.
-------	-----

Related to Figure 6. Pseudovirus neutralization assay of commercial mAbs against SARS-CoV-2

variants. Half-maximal inhibitory concentration (IC50) values calculated from neutralization curves are plotted. 2D1 antibody was used as negative control.