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Section S1. Methods 

S1.1 Sampling Site Map 

 

Figure S1. Sample site locations and types during two seasons in September 2019 and February 
2020 in Greater Los Angeles. See also Oroumiyeh et al. 1 for a detailed description of the 
site classifications. 

 

S1.2 Black carbon (BC) and 52 Elements Quantification 

We estimated BC on filters from measurements of optical absorption at 370 and 880 nm using an 

Optical Transmissometer (Magee Scientific). Teflon filters were placed on quartz filters to obtain 

an even light distribution on the detector. The instrument reports incident and transmitted light, I0 
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and I, respectively. For a filter with sampled volume of air, V and filter collection area S, we can 

calculate the absorption coefficient based on Beer’s law using the following equation: 

𝑏!"# = 𝑙𝑛 $!
$
%
&
 .                                                                                                      (S1)  

There are two dominant artifacts associated with filter-based absorption measurements. One is the 

scattering by the filter fibers, leading to increased light attenuation from multiple opportunities for 

absorptions, and the other is the shadowing by the particles deposited upon one another, as particles 

are not perfectly loaded in a single layer. This causes an underestimation of the true attenuation. 

We corrected the multi-scattering issue and loading effect for the absorption coefficient using the 

following expression:2 
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where Cref corrects the overestimated attenuation from multiple-scattering and the term in brackets 

compensates for the loading effect. Cref is a constant for all wavelengths and a value of 2.14 is 

commonly used for quartz filters.2-4 The Cref value for PTFE has been reported to be 59% of quartz-

fiber filters.5 Therefore, we used 2.14 × 0.59 as Cref for PTFE filters. The coefficient 𝑓7  is 

wavelength-dependent, with values of 1.155 and 1.064 for 370 and 880 nm, respectively.4 Our 

filters were not heavily loaded; thus the average calculated loading correction factor was only 

about 1.05 ± 0.02. 

Finally, BC concentration is calculated at 𝜆 = 880 nm from: 

𝐵𝐶	 = 	 8123,56""#57#8,&
9&

,                                                                                            (S3) 
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where 16.6 m2 g-1 @ 880 nm was assumed for 𝜎7. This value is recommended by the manufacturer 

for urban traffic-related BC. 

The absorption measurements at 880 nm (in the infrared, or IR) only measures black carbon, thus 

measurements at 880 mm are usually associated with BC from fossil fuel burning.6 370 nm (in the 

ultraviolet, or UV) measures both black and brown carbon; biomass burning aerosol typically 

contains substantial brown carbon. To have a better idea of the relative abundance of BC from 

fossil fuel burning vs biomass burning, we also calculated the AAE (Ångström exponent): 

𝐴𝐴𝐸 = :;	(8123,56""#57#8,9:! 8123,56""#57#8,;;!⁄ )
:;	(@@A/CDA)

.                                                         (S4) 

A high value of AAE indicates the UV absorption is high compared to the IR absorption. AAE = 1 

is widely assumed for black carbon but AAE < 1 has been routinely observed in ambient 

measurements.7 An AAE value larger than 1 may indicate the presence of significant brown carbon. 

Total concentrations of fifty-two elements including Li, Na, Mg,  Al, P, S, K, Ca, Sc, Ti, V, Cr, 

Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Y, Zr, Nb, Mo, Rh, Pd, Ag, Cd, Sn, Sb, Cs, Ba, La, Ce, Pr, 

Nd, Sm, Eu, Dy, Ho, Yb, Lu, Hf, W, Pt, Hg, Tl, Pb, Th, and U were measured for total 

concentration using Sector Field Inductively Coupled Plasma Mass Spectrometry (SF-ICP-MS, 

Thermo-Finnigan Element 2XR). 

 

S1.3 Chemicals 

Disodium terephthalate and 2-hydroxyterephthalic acid were purchased from TCI America. 

Chelex 100 Chelating Resin sodium form (200–400 mesh) was purchased from Bio-Rad. Tris base 

was purchased from Promega. 10% trichloroacetic acid was purchased from Fisher Scientific. All 
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other chemicals including ascorbate, reduced glutathione, uric acid sodium salt, DL-dithiothreitol, 

5,5-dithiobis (2-nitrobenzoic acid), ethylenediaminetetraacetic acid, sodium phosphate dibasic and 

potassium phosphate monobasic, copper(II) sulfate pentahydrate and 2,2,2-trifluoroethanol were 

purchased from Sigma-Aldrich. The highest available purity was selected for all purchases. 

S1.4 The Hydroxyl Radical (OH) Assay 

The OH assay measures OH radical formation during a 2-hour incubation of samples in surrogate 

lung fluid (SLF). The SLF consisted of 200 μM Ascorbate, 100 μM each reduced glutathione and 

uric acid sodium salt dissolved in 10 mM phosphate buffer (114 mM NaCl, 7.8 mM sodium 

phosphate dibasic and 2.2 mM potassium phosphate monobasic). Solutions were freshly made 

before each experiment. We incubated the filters in SLF with 10 mM disodium terephthalate (TA) 

as OH probe at 37 °C in 15 mL Falcon tubes (Corning, Falcon®) and adjusted the volume of SLF 

for each sample to maintain the PM2.5 concentration in the incubation solution at 25 μg/mL to avoid 

any concentration-dependent effects on the measurements. The product of OH radical and TA (2-

hydroxyterephthalic acid, TAOH) was quantified at 𝜆+E /𝜆+F  of 320/420 nm using a Lumina 

Fluorescence Spectrometer (Thermo Scientific). The yield of TAOH is pH dependent and is 33% 

at pH 7.3.8 A calibration curve for TAOH ranging from 0 - 800 nM was constructed daily. The 

measured OH formation rate for blank filters was about 3 ± 0.5 nM/min. The average blank 

corrected OH formation rate for samples was about 14 nM/min, an order of magnitude larger than 

three times of the standard deviation of blanks. 

S1.5 The Dithiothreitol (DTT) Assay 

For the DTT assay, we based our procedure on Cho et al. 9. The DTT solution used in the assay 

consisted of 100 μM DTT in 100 mM phosphate buffer (78 mM sodium phosphate dibasic and 22 
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mM potassium phosphate monobasic). Half filters were incubated in the 100 μM DTT solution at 

37 °C in 50 mL polypropylene centrifuge tubes (Thermo Scientific). PM2.5 incubation 

concentration was also fixed at 10 μg/mL.  At 8, 16, 24 and 32 minutes, we took 0.25 mL aliquots 

of the reaction mixture and added to 0.25 mL of 10% trichloroacetic acid to quench the reactions. 

When all time points were quenched, we added 25 μL of 10 mM dithiobisnitrobenzoic acid 

(DTNB) to the reaction mixture and waited for 5 min to allow the reactions to proceed fully. We 

then added 1 mL of 0.40 M Tris-Base (pH 8.9) with 20 mM of EDTA. Absorbance of the product 

2-nitro-5-thiobenzoic acid (TNB) was immediately measured in a 96 well microplate (Corning, 

Costar) in a Tecan M1000 Plate Reader at 25 °C. In contrast to an earlier report that TNB was 

stable in the final solution for at least 2 h at room temperature,10 we found a small increase in the 

absorption signal in the final solutions under these conditions, possibly due to alkaline hydrolysis 

of DTNB at a rate of 0.2% per hour at room temperature and pH 8, forming TNB.11 Therefore, we 

measured the absorbance of the final solutions immediately. We used a molar absorption 

coefficient of 14150 M−1 cm−1 at 412 nm for TNB.12 Finally, a DTT consumption rate was 

calculated based on the measured DTT concentration at different time intervals. DTT loss rate for 

blank filters was about 0.14 ± 0.06 µM/min. The positive control consisted of 0.5 µM Cu(II)SO4 

produced a blank corrected DTT loss rate of 0.75 ± 0.05 µM/min. The average blank corrected 

DTT signal for samples was about 0.61 µM/min, larger than three times of the standard deviation 

of blanks by a factor of 3.5. 

S1.6 PMF Source Apportionment Analysis 

PMF is based on the chemical mass balance equation:  



S8 
 

𝑥GH = .𝑔GI𝑓IH + 𝑒GH

J

IK.

																																																																																																										(𝑆5) 

Where 𝑥GH refers to a speciated data set with i samples and j number of species; p refers to the 

number of factors; 𝑔GI is the contribution of the kth factor to ith sample; 𝑓IH is the loading of jth 

species in the kth factor; and 𝑒GH represents the residual error for the ith sample and jth species.  

PMF solves equation (S5) by minimizing the objective function (Q) (equation (S6)) to derive non-

negative factor profiles and contributions: 

𝑄 =..(
𝑒GH
𝑢GH
)L

F

HK.

;

GK.

																																																																																																																	(𝑆6) 

Where n and m refer to the number of samples and species; and 𝑢GH is the measurement uncertainty 

associated with the ith sample and jth species, respectively.13, 14   

In this study, the OPOH, OPDTT and BC experimental uncertainties were assumed to be three times 

the standard deviation of the blank measurements, corresponding to a confidence interval of 99.7%. 

Subsequently, the estimated experimental uncertainty was converted into uncertainty for the 

volume-normalized OPOH, OPDTT and BC concentrations using the general laws of uncertainty.15 

Uncertainties for the elements were derived by propagating the three major sources of analytical 

uncertainty: (i) SF-ICPMS measurement; (ii) method blank; and (iii) digestion uncertainty.  

Lastly, base model error estimation methods were applied to evaluate the rotational ambiguity and 

random errors of selected PMF runs. The base model displacement (DISP) analysis requires the 

decrease in PMF-resolved Q to be < 1% along with no factor swaps for the smallest dQmax = 4. 
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Additionally, to be considered valid, PMF runs were required to have at least 80% of the factors 

mapped in the Bootstrap (BS) analysis.13, 16 

Section S2. Relationships between PM2.5 Mass Concentration and Mass-normalized OPOH and 

OPDTT 

 

Figure S2. Relationships between OPm
OH and OPm

DTT with PM2.5 mass and each other. p < 0.05. 
 
 

Section S3. Correlations between OP and BC, Elements 

To understand how OP depends on different chemical components, we calculated Spearman’s 

correlations (rs) for both volume-normalized and mass-normalized OPOH and OPDTT with BC and 

52 elements. For the volume- normalized data, significant correlations were observed between OP 

and most of the elements, many of which likely resulted from strong correlations between the 

element and PM2.5 mass concentration, making the data difficult to interpret. Mass-normalized 

OPOH and OPDTT correlations with measured elements were not as strong. Figure S3 shows 

Spearman’s correlations between OPm
OH, OPm

DTT and the elements that were most strongly 

correlated (rs > 0.6) as well as some selected tracers for dust, biomass burning and sea salt. OPm
OH 
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was mostly strongly correlated with Zr, Ba and Cu (rs = 0.79 – 0.81), metals associated with brake 

wear.17 Ba and Zr were also among the top three elements showing the largest correlations with 

OPm
DTT (rs = 0.72 – 0.74). The high correlations between OP and brake wear tracers indicate the 

underlying toxicity of non-exhaust emissions. OPm
OH and OPm

DTT also exhibited moderate to high 

correlations (rs = 0.51 – 0.79) with tailpipe emission tracers such as BC, Rh, Pd and Pt,18, 19 in line 

with many previous studies.20-22 OP was also correlated with metals associated with dust 

resuspension, such as Pb and Hg,23 and metals originating from industrial sources, such as Cd, Ag, 

and Hf.24-26 Elements associated with marine emissions including Na, Mg and V27, 28 overall 

exhibited negative correlations with OP, which attests to a smaller toxicity of marine aerosols and 

a dilution effect on OPm
OH and OPm

DTT. Both OP metrics had negative correlations with S, which 

was largely associated with marine emissions as well as secondary aerosols. 

 

Figure S3. Correlation heatmap showing Spearman’s r values (p < 0.05) for mass-normalized OP 
and selected elements. 

 
Section S4. Source Apportionment Results  

Uncertainty associated with our OPv
OH and OPv

DTT was evaluated using the Displacement (DISP) 

and Bootstrap (BS) error estimation tools in PMF. The DISP explores the rotational ambiguity in 

a PMF solution by assessing the largest range of source profile values without an appreciable 

increase in the Q-value.13 For both OPv
OH and OPv

DTT PMF models, the decrease in Q was small 



S11 
 

(dQ < 0.01% and < 1% for OPv
OH and OPv

DTT, respectively) and there was no factor swap present 

for the smallest dQmax (dQmax = 4), suggesting there was negligible rotational ambiguity on OPv
OH 

PMF solution and small rotational ambiguity on OPv
DTT solution. In the BS error estimate, we 

performed 100 BS runs.  

There was no unmapped factor for either the OPv
OH or OPv

DTT PMF solutions. In the OPv
OH PMF 

solution, 100% of the BS profile was mapped to the base profile for brake and tire wear, mixed 

secondary and marine and soil and road dust and 81% was mapped for vehicular exhaust source. 

In the OPv
DTT PMF model, the mapping of BS factors to base profiles ranged from 87% of vehicular 

exhaust and road dust to 100% of mixed secondary and marine aerosols. Mapping over 80% of all 

factors indicates random errors were relatively small in our PMF models. In addition, we obtained 

relatively high R2 values between the predicted and measured target variables (0.92 and 0.78 for 

OPv
OH and OPv

DTT, respectively) as shown in Figure S4 and S7. Altogether, this indicates our PMF 

models are relatively stable and have acceptable statistical characteristics. 

 

 
 
Figure S4. PMF predicted vs. measured OPv

OH for 54 samples. 
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Figure S5. Factor profiles of the OPv

DTT PMF model. The bars (left axis) represent the 
concentration of species for each factor on a log scale and the dots (right axis) denote the 
percentage contribution of each factor to the total concentration of each species. 

 
 
 



S13 
 

 
 
Figure S6. (a) The average contribution of PMF-resolved sources to the OPv

DTT for all sites (both 
seasons included) with standard error of the mean and (b) for each site category. 

 
 

 
 
Figure S7. PMF predicted vs. measured OPv

DTT for 54 samples. 
 
 
 

Section S5. Oxidative Potential, Pollution Burden and Socioeconomic Position 

Table S1. Spearman’s correlations for PM2.5 mass, OP and socioeconomic factors.  
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 This study CalEnviroScreen socioeconomic indicators 

  
PM2.5 OPvOH OPvDTT OPmOH OPmDTT 

Educational 
attainment 

Linguistic 
isolation Poverty Unemployment 

Housing 
burden 

Ca
lE

nv
iro

Sc
re

en
 

so
ci

oe
co

no
m

ic
 

in
di

ca
to

rs
 

Educational 
attainment 

0.30* 0.41* 0.37* 0.47* 0.34* --     

Linguistic 
isolation 0.35* 0.47* 0.41* 0.51* 0.32* 0.75* --    

Poverty 0.40* 0.53* 0.44* 0.55* 0.33* 0.87* 0.73* --   

Unemployment 0.52* 0.47* 0.36* 0.33* 0.08 0.42* 0.30* 0.56* --  

Housing burden 0.41* 0.54* 0.44* 0.53* 0.35* 0.64* 0.59* 0.76* 0.38* -- 

* Indicates p < 0.05. Numbers without asterisks are not statistically significant at p < 0.05. 
Spearman’s r (rs) > 0.6 are highlighted in green, rs 0.4 – 0.6 are highlighted in blue, and rs 0.2 – 
0.4 are highlighted in purple.  

 
Figure S8. Contribution of four emission sources to the OPv

OH for different socioeconomic position groups.  
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Figure S9. BC, Cu, Fe and Mn relative to their average concentration for each quartile of 
socioeconomic classification. BCv, Cuv, Fev and Mnv denote the volume-normalized element 
concentration and BCm, Cum, Fem and Mnm refer to the mass-normalized concentration. 

  
Table S2 shows the bivariate Spearman’s correlations between PM2.5 mass/OP and pollution 

burden indicators from CalEnviroScreen 4.0. PM2.5 mass, OPv
OH, OPv

DTT, OPm
OH and OPm

DTT all 

exhibited weak to moderate positive correlations with CalEnviroScreen PM2.5 concentrations, 

diesel particulate matter emissions and children’s lead risk from housing. Even our PM2.5 had a 

correlation coefficient of only 0.46 with PM2.5 in CalEnviroScreen.  
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Table S2. Spearman’s correlations between PM2.5 mass or OP and exposure indicators from 

CalEnviroScreen for the 51 census tracts sampled. 
 

 This study CalEnviroScreen exposure indicators 
 

PM2.5 OPvOH OPvDTT OPmOH OPmDTT Ozone PM2.5 
Diesel 

PM 
Toxic 

releases 
Traffic 

impacts 

Children’s 
lead risk 

from 
housing 

Ca
lE

nv
iro

Sc
re

en
 e

xp
os

ur
e 

in
di

ca
to

rs
 

Ozone -0.27* -0.10 -0.12 0.14 0.14 --      

PM2.5 0.46* 0.52* 0.49* 0.48* 0.34* -0.14 --     

Diesel PM 0.48* 0.56* 0.51* 0.50* 0.37* -0.25 0.61* --    

Toxic releases 0.41* 0.32* 0.30* 0.18 0.00 -0.60* 0.50* 0.39* --   

Traffic impacts 0.25 0.34* 0.36* 0.30* 0.36* -0.24 0.28* 0.64* 0.06 --  

Children’s lead 
risk from housing 

0.44* 0.50* 0.44* 0.46* 0.28* -0.30* 0.47* 0.52* 0.50* 0.21 -- 

* Indicates p < 0.05. Numbers without asterisks are not statistically significant at p < 0.05. rs > 0.6 
are highlighted in green, rs 0.4 – 0.6 are highlighted in blue, and rs 0.2 – 0.4 are highlighted in 
purple.  
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