
Open Access This file is licensed under a Creative Commons Attribution 4.0 
International License, which permits use, sharing, adaptation, distribution and 
reproduction in any medium or format, as long as you give appropriate credit to 

the original author(s) and the source, provide a link to the Creative Commons license, and indicate if 
changes were made. In the cases where the authors are anonymous, such as is the case for the reports of 
anonymous peer reviewers, author attribution should be to 'Anonymous Referee' followed by a clear 
attribution to the source work.  The images or other third party material in this file are included in the 
article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is 
not included in the article’s Creative Commons license and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. 

Peer Review File



Reviewers' comments: 

 

Reviewer #1 (Remarks to the Author): 

 

The statistical framework for high-content phenotypic profiling using cellular feature distributions 

 

In this manuscript, the authors describe their framework for high content phenotypic profiling. They 

describe each step and its rationale in detail and demonstrate the performance of their framework by 

successfully classifying a diverse set of compounds according to their mechanism of action. The field 

of phenotypic profiling lacks any consensus framework and the authors put forward their framework 

that could be adopted as the standard framework in the field. 

 

Though the results are encouraging, there are few concerns which need to be addressed before the 

manuscript can be recommended for publication 

 

Concerns: 

 

Can the authors comment on how the corrections made for removing the technical noise in the data 

affect the distribution of the features? Since the main focus of their approach is to find differences 

between the feature distributions, it would be good to know what is the effect of the corrections on the 

features and if they retain biologically relevant information. 

 

During feature selection, the authors remove one channel completely as the information it contains is 

captured by another channel. Can the authors comment on the purpose of gathering information from 

this additional channel? Also, the authors state that their method can be expanded further by 

measuring additional fluorescent dyes. Can the authors comment on whether it is possible to expand 

their assay without resulting in redundant channels? 

 

The authors started with 164 features and at the end of feature selection they ended up with 66 

features which seemed to be sufficient for distinguishing the diverse MOA in this dataset. Can the 

authors comment on whether, in general, 164 features will be sufficient for distinguishing compounds 

and MOA in all datasets? 

 

The authors show several examples of how a compound may affect the cell count or the cell cycle. It 

would be good to include other examples of phenotypes that can be explained using this approach. 

 

The manuscript will benefit from the authors showing the effect of not correcting for the plate and 

position effects using downstream analysis and comparing that with what they have in the manuscript. 

 

The authors correct for both plate and well position effects. Can the authors comment on how they 

would correct for batch effects, which is pertinent especially if their framework is used as a standard in 

the field and others would like to compare their data against. 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

The authors describe a collection of methods for analysis multi-spectral phenotypic profiling 

experiments, starting from design of staining panels for visualising cellular compartments, including 

feature extraction and selection strategies, statistical correction of spatial effects, and introducing an 

interesting distance metric for detecting differences between different feature ‘fingerprints’ in high-

dimensional space. 

The paper is generally well written with sufficiently detailed explanations of the methods developed 

and used, and is attempting to handle some of the long-standing problems and difficulties in the 



phenotypic profiling field, namely the ability to discriminate between technical variation and genuine 

differences in high dimensional feature data, and the ability to utilise more of the information present 

in single cell distributions. 

As the authors describe, the two-way ANOVA and B-score normalisation method for plate correction is 

not in itself novel, however the application to high-dimensional feature data and correction at the 

single cell level to enable aggregation of cellular distributions from multiple replicates across wells and 

plates is are interesting concepts. The introduction of the Earth Mover Distance (EMD) metric appears 

to be a powerful and sensitive method for detecting the magnitude, if perhaps not the direction, of 

changes to a phenotypic profile due to a perturbation. 

Taken together these are interesting contributions to the field, which could perhaps be strengthened 

by a more thorough treatment of the current literature and the advantages brought. For example, the 

Cell Painting method mentioned by authors has a reasonable amount of literature around feature 

extraction, feature selection and robustness and reproducibility metrics, the Pelkmans group has also 

published a pipeline to perform image-based single cell profiling, and Recursion have also reported a 

range of methods for high-dimensional data analysis. In the context of these works, could the authors 

explain the advantages of their proposed approach, for example in terms of improved reproducibility, 

sensitivity, etc? 

In addition, some points of discussion or clarification could add value to the paper: 

• One of the big challenges in profiling is batch correction, which would enable comparisons across 

datasets, cell lines, instruments, etc, and provide more confidence in the reproducibility of a dataset. 

This approach appears as though it could be useful for correcting this batch-to-batch variability - is 

this something that the authors have tested and can show reproducibility of features across 

experiments? 

• A potential source of variation in a phenotypic screening pipeline is the choice of parameters in 

classical cell segmentation and feature extraction, with different software packages and indeed 

different users producing different feature sets. Can the authors comment on the robustness of the 

final clusters and trajectories to the choices made at the image analysis stage? 

• Along the same lines, by using basic cytoplasm ring segmentation potentially a lot of morphological 

and cell shape information is being lost. What is the justification for this? 

• All phenotypic profiling methods convert image data into feature vectors. The EMD appears to be 

more sensitive at picking up differences in feature vectors, however, is there a clear improvement in 

the representation obtained using the EMD fingerprint vs eg straightforward median averaging of 

features – in other words, are meaningful differences in compound trajectories or clustering found, 

which would not be found by existing methods? 

• The UMAP (Figure 6B) shows the main clusters, but also several smaller clusters and isolated points. 

It would be useful to have some mechanistic annotation of these clusters, for instance, do the clusters 

contain compounds with similar annotations, or compounds with close Tanimoto similarities, or simply 

similar cellular phenotypes? From a statistical point of view, is it possible to understand when two 

compounds have a similar or a different mechanism of action, ie what is a meaningful value of the 

EMD metric between two compounds? 

• In a similar vein, the benefit of using classically measured cellular features, as opposed to end-to-

end deep learning approaches, is a degree of interpretability of the different clusters. Beyond the 

hand-picked high-level features of cell count and cell cycle shown in figure 7, what are the features 

which contribute to, for example, the different trajectories in figure 7A, and do these make intuitive 

sense from a mechanistic perspective (two trajectories for nocodazole and irinotecan are similar at low 

concentrations and then diverge at high concentrations - is this similarity and divergence apparent 

from the original images)? 

• One might expect that some of the textural and morphological features show greater discriminatory 

power between treatments, and therefore in figure 7 it might be more impactful to have a 

visualisation which makes use of the whole fingerprint, rather than hand-defined and standard 

endpoints (cell count and cell cycle) which do not actually require the profiling approach? What is the 

motivation for using cell count and cell cycle instead of looking at the fingerprint in an unbiased 

manner? 

 



 

• Minor comments/questions: 

- line 169 - B score makes assumption that small percentage are active, c.f. Loess. Is this likely to be 

the case for the selected panel of compounds, and for profiling experiments generally? 

- line 492 "dose-dependent phenotypic trajectories assist in discriminating the activity of different 

compounds" - apparent in umap, but what is a genuine difference vs technical variation? EMD useful 

for this? Can the many diverse MoAs described be identified using this method? 

- EMD is defined to be positive, but the median value fluctuates around 0 in figure 5D, has some 

correction already been applied here? 

- Perhaps I missed this, how cell count integrated with the EMD metric when looking at the 

dimensionality reduction and clustering? 

- clustering - how is the cut-off for finding the 4 clusters determined? 

- In the interests of establishing community standards and for wider adoption, it would be useful if the 

code could be made available via GitHub or similar. 

 

 

Adam Corrigan 

Discovery Sciences, AstraZeneca 



 

Manuscript submitted to Communications Biology 
 
 
Reviewers' comments: 
 
Reviewer #1 (Remarks to the Author): 

 
The statistical framework for high-content phenotypic profiling using cellular feature 
distributions 

 
In this manuscript, the authors describe their framework for high content phenotypic 
profiling. They describe each step and its rationale in detail and demonstrate the 
performance of their framework by successfully classifying a diverse set of compounds 
according to their mechanism of action. The field of phenotypic profiling lacks any 
consensus framework and the authors put forward their framework that could be adopted 
as the standard framework in the field. 

 
Though the results are encouraging, there are few concerns which need to be addressed 
before the manuscript can be recommended for publication. 
 
Reviewer 1 Comment 1: 
 
Can the authors comment on how the corrections made for removing the technical noise 
in the data affect the distribution of the features? Since the main focus of their approach is 
to find differences between the feature distributions, it would be good to know what is the 
effect of the corrections on the features and if they retain biologically relevant information. 
 
This is an important point, as we didn’t want to lose any biologically relevant information 
during the data adjustment and standardization steps. To summarize our approach 
(described in the Manuscript lines # 181 - 189, Positional effects adjustment and data 
standardization), we first inspect each plate (including all features) for the presence of row 
or column effects using only the median values of the control wells, which are 
interspersed across all wells and columns. The two-way ANOVA model allowed the 
detection of any positional effects and was able to distinguish plates/features with and 
without technical noise (Fig. 3 and Supplementary Figure 1 A-B). It is important to note, 
however, that a poor plate layout (without sufficient representation of controls in all rows 
and columns) could hinder the proper identification of technical noise and lead to 
misinterpretation of technical noise as true perturbations of biological signals.  
 
Plates showing significant technical noise were adjusted by applying median polish, which 
iteratively computes row and column effects by repeatedly subtracting row and column 
medians from each well median until the differences become negligible. This residual 
matrix is then subtracted from the original raw data matrix, which we call the adjustment 
amount (see Manuscript Fig. 3c). This adjustment is then applied to each well distribution 
on the plate (raw data for plates that did not show significant technical noise were not 
subjected to this intermediate step). All well distributions were then standardized to the 
per-plate control distribution by subtracting the control median and dividing by the MAD of 
the control wells. These corrections make the distributions across all wells more 
comparable by putting them all on the same relative scale, but do not affect the shapes of 
the distributions and thus should not obscure the relative differences between them. 
 



 

To illustrate this point, cell feature distribution plots showing pre- and post-data 
adjustment and standardization were included in the main figures of the submitted 
manuscript (see Fig. 3d) as well as additional supporting figures showing features from 
other channels (see Supplementary Figure 1 I - K). In this specific case (Fig. 3a & c, 
plate1 rep1) we observed strong row effects, where rows showed a high/low intensity 
pattern. This technical noise was manifested in DMSO control cell feature distributions, 
which separated the wells into two distinct distributions (Supplementary Figure 1 C left). 
Adjusting the single cell data for this row effect brings the two separated populations 
closer together (Supplementary Figure 1 C middle), while standardizing the data to the 
per-plate control cells further controls for plate-to-plate variability (Supplementary Figure 1 
C right) and brings the per-well distributions to a common unitless score relative to the 
control cells on that plate. While these distributions represent control cells (not treatment 
cells), we confirm that biological information is retained. Here the cell cycle distribution 
maintains its classical shape showing all phases (G1/S/G2) of the cell cycle after cells 
were adjusted for positional effects and plate to plate variation.  
 
To address the reviewer's comment, we further illustrate the effects of the median polish 
and standardization by including additional data panels in Supplementary Figure 1 (in 
support of Manuscript Fig. 3). Panels (Supplementary Figure1) D & E show cell feature 
distributions of chemically treated cells from two replicate plates: Plate 1 rep 3 did not 
have plate effects and was not adjusted for any technical variation, whereas plate 1 rep1 
showed strong row effects that were corrected. In panels (Supplementary Figure 1) F - H, 
we highlight treatments with Bendamustine (orange, F), LTX-315 (yellow, G), and 
Rolipram (red, H) to demonstrate how distributions are affected by data correction. In 
panels F-H, Row 1 shows raw data distributions from different treatment concentrations / 
wells (gray curves) and control DMSO curve (dashed black curves), and Rows 2 and 3 
show the post-adjusted and standardized feature distributions. Both Bendamustine (F) 
and LTX-315 (G) elicit strong dose-dependent cell cycle effects. Before adjustment, 
Rolipram (H) distributions look rather heterogeneous due to the row effect, which could 
manifest as a false positive treatment effect. Once the data are adjusted and 
standardized, the data show only a minor effect on cell cycle at the concentrations tested.  
 
In summary, we show that data adjustment and standardization can reduce the presence 
of technical noise, and that all biological effects are preserved in the post-corrected data. 
While only those plates showing strong technical noise are adjusted using median polish, 
per-well feature distributions are standardized on all plates to minimize plate-to-plate 
variation. Furthermore, we were able to preserve the maximum amount of biological 
information within each treatment group (compound and concentration) across all features 
by combining standardized replicate cell data from multiple plates, as combining data 
from multiple wells increases the sample size of each treatment.  
 
 
Reviewer 1 Comment 2: 
 
During feature selection, the authors remove one channel completely as the information it 
contains is captured by another channel. Can the authors comment on the purpose of 
gathering information from this additional channel?  
  
When we designed the HCS assay presented in this manuscript, our priority was to cover 
a broad spectrum of cellular markers, hence the different panels were designed to 
maximize the number of cellular compartments we could measure. Only after analyzing 



 

the data did we observe that the signal of the lysosomal channel overlapped to some 
extent with the peroxisomal channel. We believe this is because the peroxisomal marker 
is genetically encoded and exhibits a robust signal, whereas the lysosomal marker is a 
chemical dye whose signal intensity is relatively weak after cell staining and subsequent 
washing/fixation steps. Although the emission spectra of the two signals overlap only 
partially, the stronger peroxisomal signal bleeds into the weaker lysosomal signal as a 
result of the relatively long exposure time needed for the lysosomal marker. 

  
Due to the important roles of lysosomes in the degradation and recycling of cellular waste, 
cellular signaling and energy metabolism, we remain interested to learn more about the 
activity of chemical compounds on lysosomes and to integrate this information with 
activities on other cellular markers. In future studies a genetically encoded lysosomal 
marker (e.g. mKO2-LAMP1) or a different chemical-fluorophore combination with a 
stronger signal could replace the lysosomal marker used in this study. 
 
 
Reviewer 1 Comment 3: 
 
Also, the authors state that their method can be expanded further by measuring additional 
fluorescent dyes. Can the authors comment on whether it is possible to expand their 
assay without resulting in redundant channels? 

 
This is an interesting and important question. In designing our assay system, we 
considered the tradeoff between information content and resource investment (in terms of 
both time and cost). Our choice of three marker panels with four channels each was 
designed to survey a majority of cellular organelles and compartments with an array of 
relatively inexpensive chemical dyes or genetically encoded markers, seeking to balance 
reagent costs for larger screening applications with the number of panels required (since 
each additional panel increases the total time and number of plates per experiment).  
 
The number of distinct channels that can be measured using a single marker panel is 
dictated by the excitation/emission spectra of the fluorophores used, the signal-to-noise 
ratio, and the capabilities of the microscope setup (type of illumination, bandpass filtering 
options, and mode of acquisition). As described above, in this study we found that one 
pair of markers showed overlapping signals due to an unanticipated imbalance in signal 
intensity in different channels. However, given the wide variety of fluorophores and 
different chemistries now available, coupled with advancements in instrumentation, it is 
now feasible to simultaneously image up to 7 or 8 spectrally distinct fluorophores (e.g. see 
https://www.frontiersin.org/articles/10.3389/fmicb.2019.01383/full; 
https://www.zeiss.com/microscopy/us/products/confocal-microscopes/lsm-980.html). 
 
While the current study focuses on cellular morphology by surveying major cellular 
compartments, many more specialized markers exist that could also be included in 
multiplexed assay panels. Examples include markers for more in-depth characterization of 
the cell cycle (e.g. BrdU/EdU, pH3, FUCCI), apoptosis (Annexin V, Caspase 9), DNA 
damage (H2AX), or components of important signaling pathways (p53, NFkB etc.). Many 
of these are based on immunofluorescence, which is more cost- and labor-intensive, but 
offers more spectral flexibility through the choice of fluorophore-tagged secondary 
antibodies. 
 



 

Thus, expanding the assay system to include additional markers will simply be an issue of 
identifying the right combination of instrument design and spectrally distinct fluorophores 
coupled to chemical or genetic reporters or to secondary antibodies. The number of 
panels may be tuned depending on the particular application, the number of reporters 
desired, the level of multiplexing that can be achieved per panel in a particular setup, and 
the budget of the lab.   
 
 
Reviewer 1 Comment 4: 
 
The authors started with 164 features and at the end of feature selection they ended up 
with 66 features which seemed to be sufficient for distinguishing the diverse MOA in this 
dataset.  

 
Can the authors comment on whether, in general, 164 features will be sufficient for 
distinguishing compounds and MOA in all datasets? 
 
This is a very good question. We started with 174 features which were reduced to a final 
set of 69 features. The manuscript previously stated 66 but this was an error which has 
been amended (refer to manuscript lines 340 and Fig. 6a).  
 
In general, feature selection/reduction leads to improved classification performance for 
many machine learning tasks since removing unimportant or uninformative features 
simplifies models and reduces both noise and the risk of overfitting. The exact number of 
features needed to distinguish between different classes will depend on the nature of the 
classification problem, the underlying data, and how the data were processed, so there is 
no easily generalizable rule of thumb for the optimal number of features required for 
classification. For example, in HCS applications the feature extraction software used 
(often dictated by proprietary microscope software) will produce different final feature 
sets, and experimental variables such as chemical library, treatment concentration, and 
signal detection methods (e.g. reporter assays) will also affect dataset characteristics.   
 
The intent of this study was to focus on data processing and analysis from the early 
quality control stage to the downstream interpretation of compound activity. We 
introduced new automated methods for identifying faulty/noisy features, as well as 
methods for identifying features which do not contribute to the diversity of information we 
aim to retain (see manuscript line # 279 Feature reduction section). We then 
grouped/classified compounds based on dose-dependent phenotypic trajectories, and 
further used dose responses of cell cycle and cell count to support the grouping of 
compounds into activity classes. Since we did not rely on MOA class annotations for 
classifying treatments but specifically chose 65 compounds of diverse structure in order to 
target different cellular components, this dataset would not be an ideal candidate for a 
machine learning classification task based on shared MOA or target classes. However, 
we anticipate that the workflow we have developed will be useful for future studies aimed 
at classification, which is one of the main goals of this field. 
 
To illustrate the effects of reducing the feature space from 174 to 69 using the methods 
outlined in the manuscript, we have included (Supplementary Figure 5), which compares 
UMAP trajectories for the full and reduced feature sets. This exercise shows that while the 
UMAP constructed with the full feature set strongly separates the brefeldin-a cluster 
(labeled in gray) from the rest of the data, the control and low-stress treatment groups are 



 

largely indistinguishable. Thus selection of a reduced set of informative features allows us 
to better discern distinct phenotypic classes. 
 
It is important to note however that feature selection will also depend on the method used 
for quantifying differences in feature distributions between controls and treatments. Different 
measures (Median, KS, EMD) could result in different final feature sets and thus different 
profiles. 
 
 
 
Reviewer 1 Comment 5: 
 
The authors show several examples of how a compound may affect the cell count or the 
cell cycle. It would be good to include other examples of phenotypes that can be 
explained using this approach. 
 
This is a good point. While we do illustrate examples of phenotypic signatures for different 
compounds in Manuscript Figures 5 & 7, we have now also added a new supplementary 
figure (Supplementary Figure 6) that further explores phenotypic signatures for two 
additional compounds with similar but non-identical MOAs (please see response to 
Reviewer 2, comment 6 and 7). We have also included a supplementary figure showing 
phenotypic signatures for each compound at all concentrations tested as radial plots  
(Supplementary Figure 8). Since the current manuscript focuses primarily on the data 
analysis workflow, further analysis of discriminating features among treatment groups will 
be the focus of a planned future manuscript. 
 
 
Reviewer 1 Comment # 6: 
 
The manuscript will benefit from the authors showing the effect of not correcting for the 
plate and position effects using downstream analysis and comparing that with what they 
have in the manuscript.   
 
We thank the reviewer for this suggestion. To address this comment, we ran the data 
workflow again, but this time without adjusting for positional effects and plate to plate 
variation. Below we provide a side-by-side comparison of the differences in the results, 
and we now include the clustergram and UMAP results for the raw data as a new 
supplementary figure (Supplementary Figure 4) which is discussed in the updated 
manuscript at line 369. Panel A of figure R1C6 illustrates the differences between the full 
workflow and the abbreviated workflow for the raw data. The replicate cell feature 
distributions were still merged to form larger populations, and scored relative to the global 
control using the EMD scoring method. In panels B and C/D, we reproduce on the left the 
figures from the manuscript (hierarchical clustering and UMAPs for EMD profile data after 
data adjustments and standardization, using the reduced 69 feature set); on the right, we 
show the corresponding figures for the raw data (without adjusting for positional effects 
and plate to plate variation, including all 174 features). These comparisons reveal that the 
processed data more clearly separate the treatment groups from controls (particularly the 
low stress cluster), and the transitioning patterns of compounds from low to high 
concentration are more clearly revealed in the UMAPs. While the UMAPs for the raw data 
show a wide range on DIM2 due to the strong separation of the brefeldin-a cluster from all 
other treatments, other distinctions are obscured. This suggests that small changes 



 

between these treatments and the controls are masked by the technical noise present in 
the raw data. Therefore, we believe the data correction step is critical for distinguishing 
phenotypic changes, which might otherwise be difficult to distinguish from noise. 
 
 
The authors correct for both plate and well position effects. Can the authors comment on 
how they would correct for batch effects, which is pertinent especially if their framework is 
used as a standard in the field and others would like to compare their data against. 
 
Although the chemical treatments for this particular experiment were carried out at the 
same time, the plates were processed and scanned at different times, leading to some 
differences in detection efficiency. In principle, the correction for batch effects is the same 
for plate effects, since each plate contains its own control set and the control set will be 
subject to the same experimental noise as the treatment samples in the same plate. Thus, 
adjusting and standardizing each plate to its own control set should account for all the 
above effects: positional, plate, and batch.  
 
Similar to batch effects, we needed to account for panel to panel variation. To do this we 
chose to use a common marker (Hoechst33342 for DNA staining and identification of the 
cell nucleus as the primary object for cell segmentation) within each panel (see figure for 
Reviewer 2 Comment #2 A). Benchmarking the different panels with a common marker 
allows us to verify feature reproducibility and integrate fully standardized data from 
multiple panels and batches (see figure for Reviewer 2 Comment #2 A).  
 
 
 
Reviewer #2 (Remarks to the Author): 
The authors describe a collection of methods for analysis multi-spectral phenotypic 
profiling experiments, starting from design of staining panels for visualizing cellular 
compartments, including feature extraction and selection strategies, statistical correction 
of spatial effects, and introducing an interesting distance metric for detecting differences 
between different feature ‘fingerprints’ in high-dimensional space. 
The paper is generally well written with sufficiently detailed explanations of the methods 
developed and used, and is attempting to handle some of the long-standing problems and 
difficulties in the phenotypic profiling field, namely the ability to discriminate between 
technical variation and genuine differences in high dimensional feature data, and the 
ability to utilize more of the information present in single cell distributions. 

 
As the authors describe, the two-way ANOVA and B-score normalization method for plate 
correction is not in itself novel, however the application to high-dimensional feature data 
and correction at the single cell level to enable aggregation of cellular distributions from 
multiple replicates across wells and plates are interesting concepts. The introduction of 
the Earth Mover Distance (EMD) metric appears to be a powerful and sensitive method 
for detecting the magnitude, if perhaps not the direction, of changes to a phenotypic 
profile due to a perturbation. 

 
Taken together these are interesting contributions to the field, which could perhaps be 
strengthened by a more thorough treatment of the current literature and the advantages 
brought. For example, the Cell Painting method mentioned by authors has a reasonable 
amount of literature around feature extraction, feature selection and robustness and 
reproducibility metrics, the Pelkmans group has also published a pipeline to perform 



 

image-based single cell profiling, and Recursion have also reported a range of methods 
for high-dimensional data analysis.  
 
 
Reviewer 2 Comment #1: 
 
In the context of these works (cell painting, pelkman, recursion) could the authors explain 
the advantages of their proposed approach, for example in terms of improved 
reproducibility, sensitivity, etc? 
 
Thank you for this question, which touches upon an important issue and highlights a need 
for publicly available reference datasets that could be used by multiple groups to perform 
systematic comparisons of analysis methods. Future community-wide efforts in this 
direction would greatly benefit the field as a whole. 
 
Due to differences in experimental setup such as plate layout, image analysis software, 
and staining panels, it is currently difficult to directly compare this work to other published 
(HCS) data. However, we clarify here how our methods compare to other published works 
including advantages over others and include additional comparisons of features 
extracted from other software.  
 
We thank the reviewer for bringing the Pelkman literature to our attention, which we now 
cite (see manuscript line # 173 citation #36; https://www.nature.com/articles/s41597-021-
00944-5). While their workflow uses in-house image processing software, as well as 
different cell lines and probes (total protein, Nascent RNA, PCNA, DAPI), it supports our 
single cell (feature distribution) standardization method and emphasizes the importance of 
the cell cycle feature distribution due to its indirect effects on subcellular processes 
(global RNA production).  
 
As mentioned (see manuscript line 52), the Cell Painting protocol uses a single panel of 
six markers imaged in five channels, which constrains the number and diversity of cellular 
features that can be measured. Our priority for this study, however, was to maximize the 
diversity of features which we achieved by integrating multiple panels of morphological 
data, thus casting a wider net (10 cellular compartments) of phenotypes in comparison to 
other published assays such as Cell Painting (refer to manuscript introduction lines 45 - 
59). 
 
Regarding feature extraction, free and open software CellProfiler (maintained by the 
Carpenter lab and also used by Recursion) has several advantages, as it is able to 
measure a large quantity of features, including complex measurements like Zernike shape 
features, texture features as well as cell boundaries.  
 
The Cellomics software installed in our lab functions in a similar way (but measures less 
features per channel when compared to CellProfiler). We assessed the consistency 
between a subset of data generated from both software packages, and we are able to 
confirm that Cellomics and CellProfiler yield nearly identical feature distributions (see 
subset of features figure R2C1, (A) Cellomics features and (B) CellProfiler features.  
 
The central goal and challenge of this study was to establish an analytical protocol for 
harmonizing the cell feature distributions from multiple panels, and a number of the 
methods we developed for this work were designed to specifically address reproducibility 



 

and sensitivity. First, we designed a plate layout in order to cope with per-plate positional 
effects and plate-to-plate variation (which should also address batch effects) (see 
manuscript 183 - 191). This plate layout allowed us to develop new methods for detecting 
which plates/features do and do not show significant technical biases (see two-way 
ANOVA description). This is beneficial because we avoid applying normalization 
algorithms to plates which don’t need it (this could over-correct and disturb the biological 
signal).  
 
We also compared the performance of the EMD distance metric with metrics used in other 
studies because we could not directly compare to other published profiles, due to 
differences in assay parameters. In doing this, we were also able to utilize different 
statistical scores to assess the reproducibility and reliability of features (see feature 
selection section in manuscript). As the theme of our study was leveraging cell feature 
distributions, for all stages of the data workflow, we expected that feature reproducibility 
could be better assessed by measuring the differences among samples treated with the 
same perturbation (see reproducibility section in manuscript).  
 
As a general strategy, we proposed merging replicate feature distributions to form larger 
populations rather than relying on ensemble averages of each replicate. In doing so, we 
were able to preserve both strong (near toxic) and weak phenotypic changes with more 
confidence and increased statistical power (see manuscript Fig. 5a and section 
Phenotypic profiling using the EMD score lines 245 - 251). 
 
Finally, we provide comparisons of our phenotypic profiles with raw data profiles (see 
response to reviewer 1 comment #4 and #6 and Supplementary Figure 4) as well as the 
full feature profiles (Supplementary Figure 5) to illustrate the improvements of our data 
correction and feature reduction approach. 
 
 
Reviewer 2 Comment #2: 
 
In addition, some points of discussion or clarification could add value to the paper: 

 
One of the big challenges in profiling is batch correction, which would enable comparisons 
across datasets, cell lines, instruments, etc, and provide more confidence in the 
reproducibility of a dataset. This approach appears as though it could be useful for 
correcting this batch-to-batch variability - is this something that the authors have tested 
and can show reproducibility of features across experiments? 
 
Although this experiment was conducted as a single batch in terms of compound 
application, the plates for each panel were seeded at different times (since our U2OS line 
with the genetically encoded marker grows more slowly) and scanned at different times 
with different markers, resulting in batch-like effects. In principle, the correction for batch 
effects is the same for plate effects since each plate will contain its own control set and 
the control set will be subject to the same experimental noise (positional and plate effects) 
as the treatment samples in the same plate. Adjusting and standardizing the data to the 
control set on the same plate will account for all of the above effects.  
 
As each panel (A, B, C1/C2) is stained and scanned as an independent batch of plates, 
we wanted to be able to integrate features from different panels to form a comprehensive 
phenotypic profile. To do this we chose to use a common marker (Hoechst33342 for DNA 



 

staining and identification of the cell nucleus as the primary object for cell segmentation) 
within each panel (figure for R2C2 A). Benchmarking the different panels with a common 
marker also allows us to verify feature reproducibility and integrate fully standardized data 
from multiple panels and batches (figure for R2C2 B). 
 
We do see that the discrepancies among different experiments and panels are much 
more harmonized after applying our data workflow. There are still noticeable differences 
in the overall distribution among the three panels, which we speculate may result from 
inherent differences between the cell lines used. Overall, we believe that having a 
common stain/maker over all plates that gives a generally reliable signal (with a preferred 
feature like Hoechst dye with cell cycle feature) can be key for benchmarking the 
normalization over different batches or within batches containing multiple panels. 
 
 
Reviewer 2 Comment #3: 
 
A potential source of variation in a phenotypic screening pipeline is the choice of 
parameters in classical cell segmentation and feature extraction, with different software 
packages and indeed different users producing different feature sets.  
Can the authors comment on the robustness of the final clusters and trajectories to the 
choices made at the image analysis stage? 
 
We thank the reviewer for this question. Indeed, a variety of different software packages 
for cell segmentation and feature extraction are available, depending on the HCS platform 
used. The data for this manuscript were generated by using the Thermo Scientific 
Cellomics Cell Cycle and Compartmental Analysis BioApplications packages, which are 
part of the Thermo Scientific Cellomics Arrayscan HCS platform used in our lab.  
  
We agree that the choice of cell segmentation/feature extraction parameters influences 
the outcome of features and therefore need to be adapted carefully to the experimental 
conditions and the cellular markers in use. In our image analysis, we have control images 
and treatment images, and we always set up the parameters for segmentation and 
feature extraction by simultaneously looking at both the control and treatment to make 
sure the parameters for feature extraction (the quantification data) will capture the image 
difference. After the parameters were optimized, the whole image set was analyzed using 
the same parameters and did not need to be changed between experiments or batches. 
 
As discussed in response to Reviewer #3 Comment #1, we did assess the consistency 
between a subset of feature data generated from CellProfiler and Cellomics, and found 
that they yield nearly identical feature distributions.  
 
 
 
 
 
 
 
Reviewer 2 Comment #4: 
 
Along the same lines, by using basic cytoplasm ring segmentation potentially a lot of 
morphological and cell shape information is being lost. What is the justification for this? 



 

 
We agree that cell shape can provide important information on cellular responses, and 
ideally should be included in HCS studies. Due to technical limitations of the current 
study, however, this is something we will need to explore in a future study. As mentioned 
in our response to Reviewer #2 Comment #3, we used the Thermo Scientific 
Compartmental Analysis BioApplications package for cell segmentation and feature 
extraction. This software package typically uses the nuclear marker as an easily 
identifiable “primary object”, which allows for proper identification of single cells. In a 
second step the cytoplasm is defined by a ring mask around the nucleus. The software 
can also use other markers (e.g. a whole cell stain) as the “primary object”. In some 
cases, the Plasma Membrane marker (WGA Alexa Fluor 555) or the RNA stain (SYTO14) 
can be used as a whole cell stain. However, with our particular cell line and experimental 
protocols (i.e. seeding density/confluency) we couldn’t reliably distinguish single cells 
using these markers, and thus we didn’t include cell shape-related features into our 
analysis. In future studies this problem could be solved by either using fewer cells per 
well, so that cells are more separated from each other, or by including an additional 
specific whole cell stain (e.g. Thermo Cell Mask stain). In addition, alternative software 
packages such as CellProfiler with more advanced cell segmentation algorithms might 
produce better segmentation results using the dyes used in this study.  
 
 
Reviewer 2 Comment #5: 
 
All phenotypic profiling methods convert image data into feature vectors. The EMD 
appears to be more sensitive at picking up differences in feature vectors, however, is 
there a clear improvement in the representation obtained using the EMD fingerprint vs eg 
straightforward median averaging of features – in other words, are meaningful differences 
in compound trajectories or clustering found, which would not be found by existing 
methods? 
  
Comparing the downstream trajectories of the UMAP under different profiling metrics is a 
great suggestion. In developing our workflow, we reasoned that since the median 
measures only the central tendency of a distribution, it is likely to miss other more subtle 
phenotypic differences between the perturbed and DMSO-control distributions. Indeed, 
our primary motivation for applying new analytical and profiling methods was due to the 
challenges we faced in identifying structure and meaningful phenotypic trajectories when 
using the more common aggregate well average approach. We addressed this issue in 
the manuscript (Fig. 4 and manuscript line 193, Statistical metric performance comparison 
using replicates) by comparing the performance of different statistical metrics. We showed 
that overall the EMD score was most sensitive to differences when compared to the KS 
distance and the robust Z score.  
  
To address the reviewer’s concern, in the Reviewer response figures (see figure for 
R2C5) we show results of a workflow (panel A) using the median average of features, a 
clustered heatmap (for comparison to Fig. 6a), and the supporting UMAP with the same 
compound trajectories shown in Fig. 7a. The heatmap (panel B) shows very poor 
separation of control and treatment samples based on extracted features, and the UMAP 
(panel C) reflects this poor discrimination. Phenotypic trajectories (panel D) also appear 
very close together, limiting the ability to distinguish between them.  
 
 



 

 
Reviewer 2 Comment #6:  
 
The UMAP (manuscript figure 6B) shows the main clusters, but also several smaller clusters 
and isolated points. It would be useful to have some mechanistic annotation of these clusters, 
for instance, do the clusters contain compounds with similar annotations, or compounds with 
close Tanimoto similarities, or simply similar cellular phenotypes?  
 
Thank you for this comment. We are currently writing a follow-up manuscript that will 
address this next phase of the analysis. We note, however, that there are several 
limitations to this data set. First, we chose a diverse group of compounds with different 
annotated MOAs that show little structural similarity (see Tanimoto similarity heatmap in 
figure 2C); therefore, this particular dataset is not ideal for addressing these questions. 
We also observed that compounds with different MOA may cluster together at some 
concentrations but not others, thus there is no straightforward way to do mechanistic 
annotation based on phenotypic profiles at single concentrations. However we think the 
concentration-dependent phenotypic trajectories revealed in the UMAPs hold promise for 
mechanistic discrimination, and we will work toward a fuller characterization of this in 
future studies. 
 
From a statistical point of view, is it possible to understand when two compounds have a 
similar or a different mechanism of action, i.e. what is a meaningful value of the EMD 
metric between two compounds? 
 
Thank you for this important question. Ideally, one would need at least several different 
groups of compounds that share the same target or MOA to investigate whether an EMD 
score threshold (to discern two compounds with similar/different MOA (for any feature)) 
can be established. This would enable determination of statistical thresholds for 
discriminating different MOA clusters. Unfortunately, the set of diverse chemicals used 
here would not be suitable for this task due to the small set size and lack of known 
common MOAs among the selected compounds. 
 
In a similar vein, the benefit of using classically measured cellular features, as opposed to 
end-to-end deep learning approaches, is a degree of interpretability of the different 
clusters. Beyond the hand-picked high-level features of cell count and cell cycle shown in 
figure 7, what are the features which contribute to, for example, the different trajectories in 
figure 7A, and do these make intuitive sense from a mechanistic perspective (two 
trajectories for nocodazole and irinotecan are similar at low concentrations and then 
diverge at high concentrations - is this similarity and divergence apparent from the original 
images)? 
 
Thank you for this interesting comment. We have explored the diverging phenotypes for 
these two compounds in further detail and discussed the observed phenotypic responses 
in the manuscript (see section Phenotypic characterization of selected compounds lines 
383), and include a new supplementary figure in support of manuscript Fig. 7 
(Supplementary Figure 6).   
 
Irinotecan and Nocodazole both target the cell cycle, although they have different 
(underlying) biochemical mechanisms (directly targeting DNA processing via inhibition of 
topoisomerase I vs. interfering with microtubules). Their phenotypic similarity at lower 
concentrations could be due to their mild response to treatment, which we observe in their 



 

phenotypic fingerprints (Supplementary Figure 6A). Each fingerprint at their highest 
concentration, however, induces increased activity (with larger discrepancies between the 
two compounds) in several feature channels including Actin/Tubulin, PMG, Mitochondria 
and Nucleus Texture (Supplementary Figure 6B).  
 
The overall trajectories reflect the different degree of dose-dependent effects of these two 
compounds, which may be due to differing MOAs. Irinotecan mainly arrested the cell 
cycle in S phase without strong cytotoxicity as the concentration increased, as evidenced 
by the DNA content distribution and cell count (cell count did not go below 50% of the 
controls even at the highest concentration) (Supplementary Figure 6 C and D left panel). 
In contrast, nocodazole showed a gradual reduction in the G1 peak and increased the 
relative abundance of the G2/M peak, with observable cytotoxicity at the highest 
concentration (Supplementary Figure 6 C and D right panel). 
 
Cells treated with irinotecan display a gradual right shift of cellular feature distributions 
(the staining of different features becomes stronger) with increasing concentrations 
(Supplementary Figure 6G). This is consistent with the fact that the cells would undergo 
replication of different organelles and structures in G1-S phase, and the observation that 
more cells are arrested at S phase at higher concentrations (see also Xu, 2002, 
https://www.sciencedirect.com/science/article/pii/S092375341947213X). 
 
In contrast, we only observed a clear signal increase in the majority of features at the 
highest concentration of Nocodazole (Supplementary Figure 6F) when there was very 
strong cell loss. Thus, several features including cell count and cell cycle, clearly induce 
different responses with increasing concentrations where the UMAP trajectories diverge. 
 
 
Reviewer 2 Comment #7: 
 
One might expect that some of the textural and morphological features show greater 
discriminatory power between treatments, and therefore in figure 7 it might be more 
impactful to have a visualization which makes use of the whole fingerprint, rather than 
hand-defined and standard endpoints (cell count and cell cycle) which do not actually 
require the profiling approach? What is the motivation for using cell count and cell cycle 
instead of looking at the fingerprint in an unbiased manner? 
 
We have found that using a combination of full fingerprints (or full profiles) and cell 
count/cell cycle data allows for the most detailed description of cellular perturbations. 
 
Indeed whole fingerprints (both control and treatment samples) are our first mode for 
understanding the comprehensive phenotypic responses to perturbation, as outlined in 
the manuscript lines 267 - 279 (see manuscript section Phenotypic profiling using the 
EMD score) and shown in Fig. 5 d - f. Full fingerprints are also included in Fig. 7d, and we 
include a new supplementary figure showing radial plots for all 65 compounds (see 
Supplementary Figure 8). 
 
Cell count and cell cycle are two readily and biologically interpretable metrics that integrate 
multiple cellular responses and processes. Both are based on the nuclear stain (Hoechst33324) 
which is also used to integrate data across panels and to extract nuclear morphology features.  
 



 

For example, changes in the percentage of cells in each phase of the cell cycle are an important 
indicator of effects on specific processes within the cell, e.g. apoptosis, DNA damage, cell cycle 
checkpoints or polymerization status of microtubules. On the other hand, the distribution of cell 
cycle phases also indirectly affects other processes in the cell. For example, if a certain 
perturbation leads to a greater number of cells in G2 phase (suggesting a G2 cell cycle block) 
this could also lead indirectly to phenotypic responses across multiple cellular features, since 
cells will not only replicate DNA but also produce more organelles such as mitochondria during 
the progression of cell cycle before dividing into two cells.  
 
While cell count is not directly integrated into the EMD profile, we found that projecting cell 
count (as percent of control) onto the UMAP (see manuscript Fig. 6b) reveals a close 
relationship with the 3rd UMAP dimension. Thus, cell cycle and cell count are important 
parameters because they both respond to general cell stress and offer a straightforward way of 
interpreting the profile as a whole. 
 
 
 
Minor comments/questions: 
 
Comment 1: 
 
line 169 - B score makes assumption that small percentage are active, c.f. Loess. Is this 
likely to be the case for the selected panel of compounds, and for profiling experiments 
generally? 
 
This varies from lab to lab and would depend on the objective of the screen. For this 
study, we did not depend on a small proportion of compounds being active as the B score 
is measured relative to the control cells only and should preserve any outlier biological 
signals using our standardization approach. 
 
 
Comment 2: 
 
line 492 "dose-dependent phenotypic trajectories assist in discriminating the activity of 
different compounds" - apparent in umap, but what is a genuine difference vs technical 
variation?  
 
Technical variation was identified and removed at the initial stages of the data quality 
control (see manuscript lines 134-191 and manuscript Fig. 3 and Supplementary Figure 1; 
please also see our response to Reviewer 1, Comment #1 above, which further discusses 
identification and removal of technical variation). To better illustrate the effect of removing 
technical variation, we have added additional panels to Supplementary Figure 1 (please 
refer to our response to Reviewer 1 Comment 6) for a full explanation including side-by-
side comparisons of processed and raw data). 
 
 
Is EMD useful for this? Can the many diverse MoAs described be identified using this 
method?  
 
The EMD method displayed higher sensitivity in comparison to more standard statistical 
metrics (KS and Z score), as described in the manuscript (see lines 192 - 238) and shown 



 

in manuscript Fig. 4. We used the EMD distance metric to successfully profile compounds 
at multiple concentrations, enabling the tracking of perturbation/phenotypes across a wide 
range of concentrations. Since in this study we specifically chose 65 compounds of 
diverse structure in order to target different cellular components, our goal was not to 
classify treatments based on MOA similarity. However, having demonstrated that the 
EMD is useful for discriminating phenotypic profiles, we believe its application should be 
useful also for studies whose aim is to classify treatments by MOA similarity, for example 
phenotypic profiling of a target-selective library of compounds. This will be very interesting 
to explore in future studies. 
 
 
Comment 3: 
 
EMD is defined to be positive, but the median value fluctuates around 0 in figure 5D, has 
some correction already been applied here? 
 
Thank you for bringing this to our attention.  
 
Here we are showing the radial plot of EMD after taking the log and min/max scaling the 
full profile to [0,1].  In figure 5d the median is fluctuating, but not around zero, it falls 
between 0.16 and 0.46, which is now reflected properly on the radial plot axis. 
 
The residuals in Figure 5e do naturally fluctuate around median zero with values between 
(-0.29, 0.45), but for better visualization we added 0.5 (for all radial plot figures) in order to 
expand the radial plot, resulting in (DMSO) values ranging between 0.21 and 0.95. This 
has been corrected in the figure legend (see Manuscript figure 5 legend). 
 
 
Comment 4: 
 
Perhaps I missed this, how cell count integrated with the EMD metric when looking at the 
dimensionality reduction and clustering? 
 
Cell count is not directly integrated with the EMD metric, but we found that cell count was 
correlated with the phenotypic trend along one of the UMAP dimensions, as described in 
the manuscript (see manuscript lines 354 - 364 and figure 6B). The UMAP in figure 6B is 
color coded by cell count (via percent of control) and highlights the relationship between 
cell count and concentration-dependent phenotypic movement across the UMAP induced 
by treatment with different compounds. Specifically, UMAP dimension 3 discriminates 
phenotypically active and toxic treatments from the low activity ("low stress") and control 
groups, as indicated by the decrease in cell counts from top to bottom. 
 
 
Comment 5: 
 
clustering - how is the cut-off for finding the 4 clusters determined? 
 
The four broad clusters defined in manuscript Fig. 6 a (hierarchical clustering) were 
identified based on the outermost branches of the dendrogram connecting “similar” 
treatments (rows). For example, Cluster 1 (yellow) is the DMSO-control group, which 
separates from the rest of the treatments (blue) and also shows the least amount of 



 

structure within the group. In contrast, Cluster 4 is the most distant from the control and 
has the highest phenotypic activity (seen as bright green in the heatmap). The samples 
within Cluster 4 correspond to the toxic or near toxic region of the UMAP as well, whereas 
Cluster 2 corresponds to the low activity/low stress group of treatments (also visible in the 
UMAP). 
 
 
Comment 6: 
 
In the interests of establishing community standards and for wider adoption, it would be 
useful if the code could be made available via GitHub or similar. 
 
Yes, we agree! R scripts and data files in support of this work can be found at the 
following Github link, which is now also referenced in the manuscript. 
 
https://github.com/GunsalusPiano/EMD 
 

 
 
Adam Corrigan 
Discovery Sciences, AstraZeneca 

 
 



Summary of data processing

Raw data

1. Adjust data

2. Standardize data

3. Replicate analysis and reproducibility (KS, Z, EMD)

4. Merge reps + profiling (EMD)

5. Feature reduction

6. Clustering and dimension reduction

Pr
of

ili
ng

 th
e 

ra
w

 d
at

a

A.

Figure R1C6: Raw data profiles
(A) Summary of the abbreviated workflow for computing raw data profiles (see steps 4 and 6). Comparison of similarity by hierarchical clustering analysis 
(B) and dimension reduction by UMAP (C – D) between fully processed data (see left panels) and the raw data (see right panels).
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Figure R1C6: Raw data profiles
(A) Summary of the abbreviated workflow for computing raw data profiles (see steps 4 and 6). Comparison of similarity by hierarchical clustering analysis 
(B) and dimension reduction by UMAP (C – D) between fully processed data (see left panels) and the raw data (see right panels).
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Figure R1C6: Raw data profiles
(A) Summary of the abbreviated workflow for computing raw data profiles (see steps 4 and 6). Comparison of similarity by hierarchical clustering analysis 
(B) and dimension reduction by UMAP (C – D) between fully processed data (see left panels) and the raw data (see right panels).
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Figure R1C6: Raw data profiles
(A) Summary of the abbreviated workflow for computing raw data profiles (see steps 4 and 6). Comparison of similarity by hierarchical clustering analysis 
(B) and dimension reduction by UMAP (C – D) between fully processed data (see left panels) and the raw data (see right panels).
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Figure R2C1: Image analysis software
Comparison of feature distributions derived from (A) Cellomics and (B) Cell Profiler 
image analysis software 
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Comparison of feature distributions derived from (A) Cellomics and (B) Cell Profiler 
image analysis software 
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Figure R2C2: Data integration
(A) Each panel of fluorescent dyes uses a common Hoechst33342 marker. (B) Illustration of pre and post data data standardization of the cell cycle feature 
from each panel. Cell are treated with control-DMSO. 
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Figure R2C5: Phenotypic profile comparisons 
(A) Workflow for median averaging of merged replicates (B) Similarity by hierarchical clustering of the phenotypic profile, treatments (yellow), control (blue). 
(C) UMAP of phenotypic profile based on median averages per treatment condition and (D) Phenotypic trajectories for comparisons with manuscript figure 7. 



UMAP median profileC. D. UMAP median profile trajectories

Figure R2C5: Phenotypic profile comparisons 
(A) Workflow for median averaging of merged replicates (B) Similarity by hierarchical clustering of the phenotypic profile, treatments (yellow), control (blue). 
(C) UMAP of phenotypic profile based on median averages per treatment condition and (D) Phenotypic trajectories for comparisons with manuscript figure 7. 



REVIEWERS' COMMENTS: 

 

Reviewer #1 (Remarks to the Author): 

 

The authors have satisfactorily addressed my concerns. I recommend the manuscript for publication. 
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