

Supplementary Fig. 1. Dynamic m⁶A modification during mRNA maturation. a. Global m⁶A levels of caRNA and polyA+ RNA from HeLa cells detected by HPLC-MS/MS. Data are mean ± s.d. Statistics: unpaired, two-tailed t-test. n = 2 independent experiments. Source data are provided as a Source Data file. b, Consensus motif of m⁶A sites in caRNA and polyA+ RNA identified by HOMER motifs software. c, The distribution of m⁶A peaks (upper) and reads (lower) in caRNA and polyA+ RNA. d, m⁶A enrichment of overlap and specific peaks of caRNA and polyA+ RNA. Solid line represents median, with whiskers indicating minimum and maximum value. n = 9,942; 9,942; 16,758; 7,766. Statistical analyses, unpaired two-tailed Student's t-test. e, Possible models contributing to the distinct m⁶A distribution observed in mature RNA. Created with BioRender.com.

a, Silver staining showing the immunoprecipitation of Flag-ALKBH5 and Flag-FTO. Two independent experiments were repeated with similar results. **b**, Gene ontology analysis of Flag-ALKBH5 interactome. Additional details for proteins interacted with Flag-ALKBH5 or Flag-FTO are provided in Supplementary Data 1. **c**, Immunoprecipitation validation of Flag-ALKBH5 and endogenous EJC components. Two independent experiments were repeated with similar results. **d**, Immunoprecipitation of Flag-tagged

EJC component proteins and endogenous ALKBH5. Two independent experiments were repeated with similar results. **e**, West-blot showing the knockdown efficiency of EIF4A3 and ALKBH5. ACTIN is used as the loading control. Two independent experiments were repeated with similar results. **f**, Global m⁶A

levels of polyA+ RNA from siCtrl, siEIF4A3, and siALKBH5 HeLa cells detected by HPLC-MS/MS. Data are mean \pm s.d. Statistics: unpaired, two-tailed t-test. n = 2 independent experiments. Source data are provided as a Source Data file. **g**, Volcano plot showing the differential m⁶A regions upon ALKBH5 depletion. **h**, Venn diagram showing the overlap of m⁶A peaks identified in polyA+ RNA from siCtrl, siEIF4A3, and siALKBH5 HeLa cells.

Supplementary Fig. 3. EIF4A3 depletion increases m⁶A modification near splice junctions and promotes exon inclusion. a, Distribution of hypermethylated m⁶A and hypomethylated m⁶A upon EIF4A3 depletion. **b**, Aggregation plots showing m⁶A enrichment near splice junctions of long internal exons. **c**, The m⁶A peak enrichment of internal exons of multi-exon genes and single-exon genes. Solid line represents median, with whiskers indicating minimum and maximum value. n = 1,279; 279. Statistical analyses, unpaired two-tailed Student's t-test. **d**, The m⁶A peak enrichment of single-exon genes in siCtrl (grey) and siEIF4A3 (red). Solid line represents median, with whiskers indicating minimum and maximum value. n = 161; 148. Statistical analyses, unpaired two-tailed Student's t-test. **e**, Differential exon usage upon EIF4A3 depletion. Red dots represent upregulated exons; Blue dots represent downregulated exons. **f**, Positive correlation between m⁶A foldchange and exon usage foldchange upon EIF4A3 depletion. Solid line represents median, with whiskers indicating minimum to maximum value. n = 1; 9; 91; 34; 26; 169; 124; 64. Statistical analyses, unpaired two-tailed Student's t-test.

Supplementary Fig. 4. Depletion of EIF4A3 increases m⁶A modification of IncRNAs. **a**. Differential m⁶A modifications on IncRNAs upon EIF4A3 depletion. R Red dots represent increased m⁶A regions (hypermethylated m⁶A), Blue dots present decreased m⁶A regions (hypomethylated m⁶A). **b**. The length of all, hypermethylated or hypomethylated IncRNAs. Solid line represents median, with whiskers indicating minimum to maximum values. n = 17,740; 1,155; 669. **c**. The exon number of all, hypermethylated or hypomethylated IncRNAs. Solid line represents median, with whiskers indicating minimum to maximum values. n = 17,740; 1,155; 669. **d**. Boxplot showing the expression foldchange of IncRNAs with unchanged, hypermethylated, and hypomethylated m⁶A regions. Solid line represents median, solid line represents median, with whiskers indicating minimum to maximum to maximum to maximum to maximum to maximum to maximum to the expression foldchange of IncRNAs with unchanged, hypermethylated, and hypomethylated m⁶A regions. Solid line represents Solid line represents median, with whiskers indicating minimum to maximum to

Supplementary Fig. 5. EIF4A3 inhibits METTL3 binding. a, Scatterplot showing the high reproducibility of METTL3 eCLIP-seq in siCtrl and siEIF4A3 cells. b, METTL3 binding peak distribution in siCtrl and siEIF4A3 cells. c, Top consensus motifs of METTL3 binding peaks identified by HOMER motifs software. d, Distribution of distance between m⁶A sites and METTL3 binding peaks or random peaks. e, Differential METTL3 binding peaks upon EIF4A3 depletion. **f**, Average distribution of METTL3 eCLIP-seq signal is shown, aligned around the center of hypermethylated m⁶A. g. The number of increased and decreased METTL3 peaks with hypermethylation or hypomethylated m⁶A regions. **h**. Venn plots showing the correlation between differential binding and differential methylated METTL3-eCLIP peaks. *P* values are calculated with hypergeometric test.

Supplementary Fig. 6. Exon junction complex blocks METTL3-mediated m⁶A modification of spliced mRNAs. a,b, meRIP-qPCR (a) and METTL3 CLIP-qPCR (b) analysis of reporter constructs showing m⁶A and METTL3 enrichment upon EIF4A3 KD. Data are mean ± S.E.M. of three independent experiments. Statistical analyses, two-tailed Student's t-test. **c**, analysis of GU/AG splicing defective pre-Mut reporters. Blue triangle indicates the unspliced precursor reporter. Red triangle indicates the spliced reporter. Two independent experiments were repeated with similar results. **d**, Western blotting showing the Flag-tagged and endogenous EIF4A3. Two independent experiments were repeated with similar results. **e**, Western blot showing the expression of Flag-MS2-EV, Flag-MS2-EIF4A3, and Flag-MS2-GFP. Two independent experiments were repeated with similar results. **f**, WTAP CLIP-qPCR analysis of tethering reporter constructs showing WTAP enrichment upon MS2 tagged EV, EIF4A3 or

GFP overexpression. Data are mean ± S.E.M. of three independent experiments. Statistical analyses, two-tailed Student's t-test. Source data are provided as a Source Data file.

Complex	Class / family	Gene Symbol	Peptide of ALKBH5 IP	Peptide of FTO
	PRP19 related	XAB2	20	0
	PRP19 related	SNW1	11	0
	Second step factors	DHX8	14	0
	U1 snRNP	SNRNP70	7	0
	U2 snRNP	SF3A3	6	0
	U4/U6	SART3	20	0
	U4/U6 snRNP	PRPF4B	14	0
	U4/U6 snRNP	PRPF4	14	0
	U4/U6 snRNP	PRPF3	13	0
	U5 snRNP	SNRNP40	6	0
	U5 snRNP	DDX23	10	0
splicoosomo		AQR	28	0
spliceosome		PLRG1	6	0
		CRNKL1	8	0
		PPIE	7	0
		CWC22	10	0
		DHX16	13	0
		CDC40	6	0
		DDX41	6	0
		CACTIN	6	0
		SLU7	7	0
	U2AF65 associated	DDX39B	2	0
	alternative splicing factor	PTBP1	7	0
	EJC/mRNP	RBM8A	26	2
	EJC/mRNP	EIF4A3	120	0
	EJC/mRNP	CASC3	89	0
EJC/mRNP	EJC/mRNP	PNN	129	0
	EJC/mRNP	ALYREF	262	3
	EJC/mRNP	MAGOHB	48	0
	EJC/mRNP	RNPS1	22	0
hnRNP	hnRNP	RALY	10	0
	hnRNP	HNRNPA1	43	0
	hnRNP	HNRNPA0	8	0
	hnRNP	HNRNPA3	8	0
	hnRNP	HNRNPM	79	0
	hnRNP	HNRNPA2B1	27	2
	hnRNP	HNRNPC	36	0
	hnRNP	RBMX (HNRNPG)	18	1

Supplementary Table 1. Splicing related proteins interacted with ALKBH5

Complex	Class / family	Gene Symbol	Peptide of	Peptide of FTO
3' end processing	CPSF	CPSF2	6	0
	pre-mRNA/mRNA binding proteins	PABPN1	30	1
	pre-mRNA 3'-end- processing factor	FIP1L1	8	0
		PABPC1	107	5
	SR protein	SRSF4	16	0
	SR protein	SRSF9	8	0
	SR protein	SRSF1	25	0
SR protein	SR protein	TRA2B	12	0
	SR protein	TRA2A	7	0
	SR protein	SRSF10	11	0
	SR related	SRRM1	60	0
		NCBP1	21	0
others		SRRT	10	0
		ZCCHC8	14	0
		DDX5	9	0
		UPF3B	16	0

Supplementary Table 1. Splicing related proteins interacted with ALKBH5 (continued)

Supplementary Table 2. Primers for plasmid construction.

Primer name	Primer sequence 5' - 3'
Notl-ALKBH5-f	aacaaGCGGCCGCCAGCGGCTAC
EcoRI-ALKBH5-r	aacaagatatcTCAGTGCCGCCGCATCTTCACCTTTCGGGCAGGG CTGCCTGCTGCCTCAGAGC
Clal-EIF4A3-f	aacaaATCGATaGCGACCACGGCCACGATG
Xbal-EIF4A3-r	aacaaTCTAGAaTCAGATAAGATCAGCAACGTTCATCGGCATCT C
Clal-MAGOH-f	aacaaATCGATaGAGAGTGACTTTTATCTGCGTTACTAC
Xbal-MAGOH-r	aacaaTCTAGACTAGATTGGTTTAATCTTGAAGTGTAATCCA
Clal-Y14-f	aacaaATCGATaGCGGACGTGCTAGATCTTCACGAGGCTG
Xbal-Y14-r	aacaaTCTAGAaTCAGCGACGTCTCCGGTCTGGACTTC
Clal-CASC3-f	aacaaATCGATaGCGGACCGGCGGCGGCAG
Xbal-CASC3-r	aacaaTCTAGATTAACTGGAACCCCTGCTTACAACCTCAGGTG GAGGGGGCTTGATG
Clal-ALYREF-f	aacaaATCGATaCCCGATTCCGCGCCCGCCATGG
Xbal-ALYREF-r	aacaaTCTAGATTAACTGGTGTCCATTCTCGCATTATAGGCGTC CAGCTGGGCATCC
Globin_Sall_insert_f	gtcgacGCTTCCCCACCAAGA
pre_Globin_Sall_insert_r	GCTAGCAAACATCCTGGGAGA
Globin_Sall_insert_r	GCTAGCAAACATCCTTTCCAG
pre_Globin_HindIII_insert_f	aagcttGTCAACTTCAAGGTATGCGCTGG
Globin_HindIII_insert_r	GGGATCCACACGCAGCTT
Globin_HindIII_insert_f	aagcttGTCAACTTCAAGCTCCTGAGC
RFC5-exon9-f	GCGTCGACAGCACCAATATGGCCTTTG
RFC5-exon9-r	CCCAAGCTTTTCTGTAGGCTGTGGTGAA
TRIB3-exon2-f	GCGTCGACATGCGAGCCACCCCTC
TRIB3-exon2-r	CCCAAGCTTCTTGCAGGTATACTCAGTGCC
MCM7-exon11-f	GCGTCGACGCCAGTACACAACAGGCC
MCM7-exon11-r	CCCAAGCTTCGTAGGTCATTGTCTCGG
SNRPA-exon3-f	GCGTCGACCGTATCCAGTATGCCAAGACC
SNRPA-exon3-r	CCCAAGCTTCGGGACAGGCCCCTG
RBM33-exon9-f	GCGTCGACACTCATTCTCCAAGGTTAATTCCT
RBM33-exon9-r	CCCAAGCTTCTTGAACAGGCGTGACCA
SF3B2-exon10-f	GCGTCGACAAAAACCGGAAGCGTAGG
SF3B2-exon10-r	CCCAAGCTTCTTAAAAGCCTCAAAGATCCTCT
reporter_MS2_insert_f	actctagaaaacatgaggatcacccatgtTGGAAAGGATGTTTGCTAG
reporter_MS2_insert_r	cgacctgcagacatgggtgatcctcatgtGGGCTTCAGCTCCATATTC
Notl-MS2-tag-f	GCGGCCGCAGCTTCTAACTTTACTCAGTTCG
Clal-MS2-tag-r	GCTATCGATTTGCCGGAGTTTGCTGCG
intron1_GU2AC-f	CCCTGGAAAGacGAGAACAGGAC
intron1_GU2AC-r	gtcctgttctcgtctttccaggg

intron1_AG2TC-f	TCCTTCTCCCtcGATGTTTGCTAG
intron1_AG2TC-r	CTAGCAAACATCgaGGGAGAAGGA
intron2_GU2AC-f	CAACTTCAAGacATGCGCTGGG
intron2_GU2AC-r	CCCAGCGCATgtCTTGAAGTTG
intron2_AG2TC-f	TTGTCTCCGCtcCTCCTGAGCCAC
intron2_AG2TC-r	GTGGCTCAGGAGgaGCGGAGACAA

Supplementary	Table 3.	Primers	for q	PCR	assays.
---------------	----------	---------	-------	-----	---------

Primer name	Primer sequence 5' - 3'
RFC5-endo-f	CAGTGGAGACATGCGTAGGG
RFC5-endo-r	AATGTCTGACTTGAGCGGGT
TRIB3-endo-f	CAGATCGTGCAACTGCTGTG
TRIB3-endo-r	GTACCAGCCAGGACCTCAGT
MCM7-endo-f	ATCCGGGGCAACATCAACAT
MCM7-endo-r	GGTCAGTTCTCCACTCACGG
RBM33-endo-f	ACGACCAATCTGGAGAACAGG
RBM33-endo-r	CTGGGGAGGCATGTGCATT
SF3B2-endo-f	TCAGCGTCAGAGACTGAGGA
SF3B2-endo-r	CCGGGTTGAGTCTTTCTCCC
SNRPA-endo-f	CTCCATGCAGGGTTTCCCTT
SNRPA-endo-r	CTCCACGAAGGTGCCTTTCA
PHGDH-endo-f	TGCGGAAAGTGCTCATCAGT
PHGDH-endo-r	CCCACCACCTGGAGTTTCTC
HCFC1-endo-f	CACCACCCTCATGGTAACGG
HCFC1-endo-r	TCCTGCTGTGTCAGCACAAT
Globin_f	cgtcagatccgctaggatggtgctctctggggaag
RFC5-exon9-r	CCCAAGCTTTTCTGTAGGCTGTGGTGAA
TRIB3-exon2-r	CCCAAGCTTCTTGCAGGTATACTCAGTGCC
MCM7-exon11-r	CCCAAGCTTCGTAGGTCATTGTCTCGG
SNRPA-exon3-r	CCCAAGCTTCGGGACAGGCCCCTG
RBM33-exon9-r	CCCAAGCTTCTTGAACAGGCGTGACCA
SF3B2-exon10-r	CCCAAGCTTCTTAAAAGCCTCAAAGATCCTCT

Supplementary Table 4. siRNA sequence.

Targeted gene name	Strand	Sequence 5' - 3'
siEIF4A3	sense	CGAGCAAUCAAGCAGAUCA
	antisense	UGAUCUGCUUGAUUGCUCG
siALKBH5#1	sense	CUGAGAACUACUGGCGCAA
	antisense	UUGCGCCAGUAGUUCUCAG
siALKBH5#2	sense	ACAAGUACUUCUUCGGCGA
	antisense	UCGCCGAAAGAAGUACUUGU
siCTRL#1	sense	UGGUUUACAUGUCGACUAA
	antisense	UUAGUCGACAUGUAAACCA
siCTRL#2	sense	UGGUUUACAUGUUGUGUGA
	antisense	UCACACAACAUGUAAACCA
siCTRL#3	sense	UGGUUUACAUGUUUUCUGA
	antisense	UCAGAAAACAUGUAAACCA
siCTRL#4	sense	UGGUUUACAUGUUUUCCUA
	antisense	UAGGAAAACAUGUAAACCA

Unprocessed Scans

Supplementary Fig. 6e

Supplementary Fig. 6d

Supplementary Fig. 6c

