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Supplementary Methods 9 

Microbial diversity, taxonomic and statistical analysis 10 

The fungal ITS1 region and bacterial 16S rRNA gene sequences were separately processed 11 

using USEARCH11 software and VSEARCH software, respectively70,71. In brief, the acquired 12 

16S rRNA and ITS1 sequences were quality-filtered and merged into a single sequence using 13 

USEARCH11 pipelines70. Bacterial and fungal chimeric sequences were detected and removed 14 

using the UCHIME algorithm in USEARCH11 against the Ribosomal Database Project (RDP) 15 

Gold database UNITE CHIME reference dataset72, respectively. Then, all nonchimeric 16 

sequences were sorted by abundance, dereplicated, and clustered to zOTUs using ‘unoise3’ 17 

algorithm with default parameters in USEARCH1171. Bacterial and fungal zOTUs with reads 18 

fewer than 8 were removed, and their representative sequences were annotated to taxonomic 19 

categories using the ‘sintax’ and RDP Naive Bayesian Classifier algorithms within the SILVA 20 

138 database and UNITE database at a confidence threshold of 0.8, respectively69,70. All fungal 21 

and bacterial ZOTUs assigned only to a kingdom were removed to avoid an overestimation of 22 

microbial diversity. The rarefaction curves of bacterial and fungal samples were calculated 23 

with the ‘rarecurve’ function in vegan, respectively73. The rarefaction curves of fungal 24 

communities and bacterial communities by the observed zOTUs showed that most samples 25 

nearly approached an asymptote, indicating the sufficient of sequencing depth. Cumulative 26 

sum scaling (CSS) was used as a normalization algorithm for diversity analyses of bacterial 27 

and fungal communities, to allow the comparison on an equal basis. The alpha diversities were 28 

calculated based on the species richness index to estimate the bacterial and fungal species 29 

richness74. Bray-Curtis dissimilarity matrices between samples were calculated, visualized, and 30 

plotted using principal coordinate analysis (PCoA) or Principal Component Analysis to present 31 
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the dissimilarities among different samples. Permutational multivariate analysis of variance 32 

(PERMANOVA) statistical tests followed by Tukey Honest Significant Difference (HSD) 33 

method were implemented to determine the effects of different factors on the community 34 

dissimilarity using beta distance matrices (nested “adonis” in vegan R package)73. The 35 

differences in the community composition of different groups were also calculated using the 36 

analysis of similarities (ANOSIM) (nested “anosim” in vegan R package)73. The Kruskal–37 

Wallis test and Tukey post hoc test when appropriate (P < 0.05) were used for the comparison 38 

of field and greenhouse groups. Additionally, differential abundance analysis between NF and 39 

GH was calculated using the negative binomial generalized linear model in R package edgeR30. 40 

We used the trimmed mean of M-values (TMM) normalization method and a False Discovery 41 

Rate (FDR) corrected value of P < 0.05. Random Forest machine learning classification 42 

analysis was employed to acquire the best discriminant performance of biomarkers across NF 43 

and GH tomato plants using the randomForest package v.4.7–180. The bacterial and fungal 44 

communities of tomato plants at different taxonomic levels (phylum, class, order, family, and 45 

genus) were calculated separately to obtain the best discriminating biomarkers with the highest 46 

classification accuracy25. For the prediction of different taxonomic levels, the randomForest 47 

(ntree = 1000, importance = TRUE, proximity = TRUE) function was employed to generate 48 

the classification model for NF and GH tomato plants. Cross-validation was performed using 49 

rfcv function (ten repeats) for selecting appropriate biomarkers, and the varImpPlot function 50 

was used to show the importance of biomarkers in the classification80. 51 

Co-occurrence network analysis and definition of keystone taxa of NF tomato 52 

The co-occurrence network analysis was performed using the bacterial and fungal zOTUs 53 

with relative abundance greater than 0.1%. The non-parametric Spearman correlation analysis 54 

were used to reconstruct the co-occurrence patterns and calculate the topological network 55 

properties75. The co-occurrence networks were regarded as robust if the Spearman’s correlation 56 

coefficient (ρ) > 0.70 and the significant P value < 0.05. The P values were adjusted with the 57 

minimize false positive signals using Benjamini–Hochberg procedure76. The important 58 

network topological parameters including the number of edges, average path length, average 59 

degrees, number of vertices were calculated and visualized to compare the microbial networks 60 

differences of GH and NF tomato plants. The ecologically important keystone microbes 61 

frequently co-occur with other microbes in microbial networks and potentially play important 62 

roles in the microbial community77. We reveal the keystone microbes of NF tomato plants 63 

based on the differences in co-occurrence network interactions between GH- and NF-tomato 64 

microbiomes by employing the online platform NetShift (https://web.rniapps.net/netshift)33. 65 
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The NetShift analysis could find the significant overall change in microbial communities and 66 

associations of each node (taxon) in healthy and diseased groups. The keystone taxa could be 67 

determined based on the node size and NESH score. NESH score is a Neighbor Shift score that 68 

could quantify directional changes in the individual interactions, and each node represents a 69 

taxon. The size of each node represents their NESH score, and the red color node indicates its 70 

betweenness increases from healthy group to disease group. Thus, the big and red nodes 71 

indicate the potential keystone taxa33. 72 

Phylogenetic tree of most abundant fungal and bacterial zOTUs  73 

The most abundant fungal and bacterial zOTUs (relative abundance ＞ 0.1%) were chosen, 74 

with 167 fungal and 266 bacterial zOTUs and associated representative sequences were used 75 

for the construction of maximum likelihood (ML) trees. The IQ-Tree software was used for the 76 

ML tree construction with the Best-fit model TIM3e+I+G4, following parameters 5000 77 

Ultrafast bootstrap and 1000 SH-like approximate likelihood ratio test78. The tree files were 78 

uploaded to the iTOL (http://itol.embl.de)79 online and the phylogenetic trees were edited, and 79 

annotated with the heatmaps of the relative abundance of zOTUs in four different locations in 80 

the phylogenetic tree. The isolated bacterial and fungal strains which were classified into the 81 

same genera presented in the phylogenetic trees were added to the outer rings as pink dots, 82 

respectively. 83 

Metagenome quality filtering and annotation pipelines 84 

Twenty-four different tomato samples of different SynComs were chosen for metagenomic 85 

sequencing using the Illumina NovaSeq 6000 instrument (Majorbio Bio-pharm Technology, 86 

Shanghai, China). The entire data processing pipeline and scripts were made available at 87 

GitHub (https://github.com/XinJason/Cross-kingdom-synthetic-microbiota). The low-quality 88 

raw data were stripped, trimmed (length<50 bp or with a quality value <20 or having N bases) 89 

and removed by Trimmomatic81. To remove host (Solanum lycopersicum) sequences, Bowtie2 90 

v2.4.182 was used to build a host genome database. All reads aligned to the host genome and 91 

their mated reads were comprehensively removed using Bowtie282. In total, 0.29% to 4.44% 92 

of the clean reads were removed. After removal of nonmicrobial sequences, the remaining 93 

sequences were taxonomically assigned using MetaPhlAn2 with the “very sensitive” global 94 

alignment option. The relative abundance of gene ortholog groups and functional pathways 95 

were generated using HUMAnN2 v2.8.1 against the utility_mapping, chocophlan, and uniref90 96 

databases, respectively83. The HUMAnN2 output tables were merged across all sample using 97 

humann2_join_tables scripts, and were normalized to counts per million (CPM) before 98 
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downstream application using humann2_renorm_table script. The comparison of each of the 99 

resulting pathways was conducted using the normalized abundance tables using one-way 100 

ANOVA test and Tukey HSD. The filtered reads were assembled to different contigs using 101 

MEGAHIT v1.2.984; the gene catalogs were predicted and clustered over contigs by using 102 

Prokka and CD-HIT (v4.8.1) to generate a non-redundant gene catalog, respectively85. The 103 

functional annotations were performed by eggnog-mapper v0.13.186 using DIAMOND 104 

software87 and eggNOG databases88. The functional annotation results were reorganized into 105 

KEGG orthologs (KOs) profiles89, clusters of orthologous group of proteins categories (COG) 106 

90, and CAZymes91. The antibiotic resistance genes were reorganized and annotated using 107 

ResFams92. The KO abundance within each sample were normalized by the median universal 108 

single-copy gene abundance. The STAMP93 and Linear discriminant analysis (LDA) effect size 109 

(LEfSe) software94 were implemented to analyze statistically significant differential abundance 110 

of functional genes or pathways corresponding to different SynCom groups. 111 

RNA seq of tomato plants 112 

For the transcriptional analysis, the tomato leaves treated with different SynComs and FOL, 113 

were harvested separately in three biological replicates at 7 dpt. The total RNA extraction and 114 

reverse transcription methods followed the procedure described above. The sequencing 115 

libraries were constructed using the TruSeq Stranded Total RNA kit (Illumina, RS–122–2402) 116 

and sequenced using the Illumina NovaSeq 6000 instrument (Paired-end 2 × 150 bp) (Majorbio 117 

Bio-pharm Technology, Shanghai, China). Clean reads were obtained by filtering low-quality 118 

reads as well as reads containing poly-N sequences or adaptor sequences from raw data. The 119 

percentages of Q20 and Q30 reads was calculated from clean sequences using MultiQC v0.495, 120 

and the remaining high-quality sequences were used for downstream analyses. The clean reads 121 

were mapped to the reference genome of tomato (Solanum lycopersicum, genome ID: 122 

GCF_000188115.3_SL2.50) using HISAT2 v2.2.096, and the mapped sequences were aligned 123 

and sorted using SAMtools v1.3.197. The gene expression levels of each sample were estimated 124 

as FPKM (fragments per kilobase of transcript per million fragments) mapped by the Salmon 125 

v0.8.298. Differential expressions of transcripts in different tomato samples were calculated as 126 

log2 fold-change (LFC) using the “DESeq2” package99. Differential expressions between 127 

different treatments were tested against the null hypothesis LFC < 2 with Benjamini and 128 

Hochberg adjusted P < 0.05, respectively. To compare the gene ontology processes of tomato 129 

plants involved in different SynComs treatments, GO terms from using DESeq2 results of each 130 

of the groups were extracted with P >0.05 and −1 ≤ log2 fold-change ≤ 1. Based on genes 131 

significantly (FDR > 0.05) up-regulated in different synthetic microbiota treatments, we 132 
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estimated GO term enrichment for Biological Processes and Molecular Functions using 133 

GENEONTOLOGY online software (http://geneontology.org/). The enriched GO terms were 134 

visualized using the ImageGP platform100.  135 

 136 

Reference 137 

70. Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile 138 

open source tool for metagenomics. PeerJ 4, e2584 (2016). 139 

71. Edgar, R. Taxonomy annotation and guide tree errors in 16S rRNA databases. PeerJ 140 

6, e5030 (2018). 141 

72. Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: 142 

handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, 143 

D259–D264 (2019). 144 

73. Oksanen, J. et al. vegan: Community Ecology Package.  (2016). 145 

74. Jost, L. Entropy and Diversity. Oikos 113, 363–375 (2006). 146 

75. Gao, M. et al. Disease-induced changes in plant microbiome assembly and functional 147 

adaptation. Microbiome 9, 187 (2021). 148 

76. Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A Practical and 149 

Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society: 150 

Series B (Methodological) 57, 289–300 (1995). 151 

77. van der Heijden, M. G. A. & Hartmann, M. Networking in the Plant Microbiome. 152 

Plos Biol. 2016 (10.1371/journal.pbio.1002378). 153 

78. Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and 154 

effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. 155 

Biol. Evol. 32, 268–274 (2015). 156 

79. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new 157 

developments. Nucleic Acids Res. 47, W256–W259 (2019). 158 

80. Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–159 

22 (2002). 160 

81. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina 161 

sequence data. Bioinformatics 30, 2114–2120 (2014). 162 



6 
 

82. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. 163 

Methods 9, 357–359 (2012). 164 

83. Segata, N. et al. Metagenomic microbial community profiling using unique clade-165 

specific marker genes. Nat. Methods 9, 811–814 (2012). 166 

84. Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast 167 

single-node solution for large and complex metagenomics assembly via succinct de 168 

Bruijn graph. Bioinformatics 31, 1674–1676 (2015). 169 

85. Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–170 

2069 (2014). 171 

86. Huerta-Cepas, J. et al. Fast Genome-Wide Functional Annotation through Orthology 172 

Assignment by eggNOG-Mapper. Mol. Biol. Evol. 34, 2115–2122 (2017). 173 

87. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using 174 

DIAMOND. Nat. Methods 12, 59–60 (2015). 175 

88. Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically 176 

annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic 177 

Acids Res. 47, D309–D314 (2019). 178 

89. Ogata, H. et al. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids 179 

Res. 27, 29–34 (1999). 180 

90. Tatusov, R. L. The COG database: a tool for genome-scale analysis of protein 181 

functions and evolution. Nucleic Acids Res. 28, 33–36 (2000). 182 

91. Yin, Y. et al. dbCAN: a web resource for automated carbohydrate-active enzyme 183 

annotation. Nucleic Acids Res. 40, W445–W451 (2012). 184 

92. Gibson, M. K., Forsberg, K. J. & Dantas, G. Improved annotation of antibiotic 185 

resistance determinants reveals microbial resistomes cluster by ecology. ISME J. 9, 186 

207–216 (2015). 187 

93. Parks, D. H., Tyson, G. W., Hugenholtz, P. & Beiko, R. G. STAMP: statistical 188 

analysis of taxonomic and functional profiles. Bioinformatics 30, 3123–3124 (2014). 189 

94. Paulson, J. N., Stine, O. C., Bravo, H. C., & Pop, M. Differential abundance analysis 190 

for microbial marker-gene surveys. Nat. Methods 10, 1200–1202 (2013). 191 



7 
 

95. Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis 192 

results for multiple tools and samples in a single report. Bioinformatics 32, 3047–193 

3048 (2016). 194 

96. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low 195 

memory requirements. Nat. Methods 12, 357–360 (2015). 196 

97. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 197 

2078–2079 (2009). 198 

98. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides 199 

fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 200 

(2017). 201 

99. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and 202 

dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014). 203 

100. Chen, T., Liu, Y. X., & Huang, L. ImageGP: An easy-to-use data visualization web 204 

server for scientific researchers. iMeta 1, e5 (2022). 205 

 206 



8 
 

 207 

Supplementary Fig. 1 Beta dispersion (distance to group centroid) of bacterial (a) and fungal 208 

(b) communities among different field (HLJNF and SDNF) and greenhouse tomato groups 209 

(HLJGH and SDGH) (P < 0.05, two-way ANOVA and Tukey HSD). In a-b, the central bars 210 

represent median values, tops and bottoms of boxes represent the 75th and 25th percentiles; and 211 

upper and lower whiskers extend to data no more than 1.5 times of the interquartile range from 212 

the upper edge and lower edge of the box, respectively. Point value beyond this range is plotted 213 

as individual points. (c-d), Principal coordinate analysis (PCoA) plots of bacterial (c) and 214 

fungal (d) Bray–Curtis dissimilarity distance among different field and greenhouse tomato 215 

groups in two provinces (Heilongjiang and Shandong provinces). (e-f), The RDA ordination 216 

plot of significant soil physicochemical properties associated with bacterial communities (e) 217 

and fungal communities (f) in field and greenhouse tomato groups. The number of samples per 218 
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group is as follows: HLJNF (n = 16 biologically independent plants), HLJGH (n = 10 219 

biologically independent plants), SDNF, (n = 15 biologically independent plants), and SDGH 220 

(n = 10 biologically independent plants). Vectors show fitted values of soil physicochemical 221 

properties significantly correlated within ordination space. The correlations between the soil 222 

physicochemical properties and RDA axes are represented by the length and angle of the 223 

arrows. HLJNF, the NF rhizosphere of Heilongjiang province (red color); HLJGH, the GH 224 

rhizosphere of Heilongjiang province (cyan color); SDNF, the NF rhizosphere of Shandong 225 

province (green color); SDGH, the GH rhizosphere of Shandong province (blue color). 226 

  227 
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 228 

Supplementary Fig. 2 Visualization of the co-occurrence networks of bacteria from tomato 229 

groups of field-grown (NF) and greenhouse-grown (GH) tomato plants. Degree (a) and 230 

closeness centrality (b) of bacterial co-occurrence networks were significantly higher than 231 

those of GH tomato plants for both bacteria (P < 0.001, Wilcoxon–Wilcox test). NF (n = 31 232 
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biologically independent plants), GH (n = 20 biologically independent plants). (c) Co-233 

occurrence networks of bacterial communities of HLJGH tomato. (d) Co-occurrence networks 234 

of bacterial communities of HLJNF tomato. (e) Co-occurrence networks of bacterial 235 

communities of SDGH tomato. (f) Co-occurrence networks of bacterial communities of SDGH 236 

tomato. Nodes represent individual zOTUs, with the bacterial phyla indicated by different 237 

colors. Links between nodes indicate significant correlations between zOTUs. 238 

  239 



12 
 

 240 

Supplementary Fig. 3 Visualization of the co-occurrence networks of fungi from tomato 241 

groups of field-grown (NF) and greenhouse-grown (GH) tomato plants. Degree (a) and 242 

closeness centrality (b) of fungal co-occurrence networks in NF and GH tomato plants were 243 

significantly higher than those of GH tomato plants for both bacteria (P < 0.001, Wilcoxon–244 
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Wilcox test) (n = 31 biologically independent plants), GH (n = 20 biologically independent 245 

plants). (c) Co-occurrence networks of fungal communities of HLJGH tomato. (d) Co-246 

occurrence networks of fungal communities of HLJNF tomato. (e) Co-occurrence networks of 247 

fungal communities of SDGH tomato. (f) Co-occurrence networks of fungal communities of 248 

SDGH tomato. Nodes represent individual zOTUs, with the fungal phyla indicated by different 249 

colors. Links between nodes indicate significant correlations between zOTUs.  250 

  251 
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 252 

Supplementary Fig. 4 The relative abundance of bacteria and fungi at phylum and genus levels. 253 

The relative abundance of dominant bacterial taxa (a) and fungal taxa (b) in different field and 254 

greenhouse groups at phylum level. Relative abundance of dominant bacterial genus (c) and 255 

fungal genus (d) in different field and greenhouse tomato groups. HLJNF, the NF rhizosphere 256 

of Heilongjiang province; HLJGH, the GH rhizosphere of Heilongjiang province; SDNF, the 257 

NF rhizosphere of Shandong province; SDGH, the GH rhizosphere of Shandong province.  258 

  259 
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 260 

Supplementary Fig. 5 The significantly enriched bacterial and fungal taxa of field and 261 

greenhouse environments, revealed by edgeR. Manhattan plots presenting significantly 262 

enriched and depleted bacterial taxa (a) and fungal taxa (b) in NF tomato compared with those 263 

in GH tomato groups in both provinces (FDR adjusted P < 0.05, two-sided Wilcoxon rank sum 264 

test).  265 

  266 
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 267 

Supplementary Fig. 6 Manhattan plots presenting significantly enriched and depleted 268 

bacterial taxa in HLJNF tomato (a) and tomato SDNF (b) compared with those in HLJGH 269 

tomato and SDGH tomato respectively. Manhattan plots present significantly enriched and 270 

depleted fungal taxa in HLJNF tomato (c) and tomato SDNF (d) compared with those in 271 

HLJGH tomato and SDGH tomato respectively (FDR adjusted P < 0.05, two-sided Wilcoxon 272 

rank sum test). 273 
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 275 

Supplementary Fig. 7 The Veen network plot presents shared and unique bacterial species 276 

isolated from five different culture media. BEP, Beef extract peptone; LB, Luria–Bertani; 277 

TSA, Tryptic Soy Agar; TWYE, Tap Water Yeast Extract; TYG, Tryptone Yeast extract 278 

Glucose Medium.  279 

  280 



19 
 

 281 

 282 

 283 

Supplementary Fig. 8 The Veen network plot presents shared and unique fungal species 284 

isolated from five different culture media. CMA, corn meal agar; PDA, Potato Dextrose 285 

Agar; RBM, Rose Bengal Medium; MEA, Malt Extract Agar. 286 

  287 
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 288 

Supplementary Fig. 9 The recovery of bacteria (a) and fungi (b) at species and genus levels 289 

from different culture media were summarized.  290 

  291 
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 292 

Supplementary Fig. 10 Beta dispersion (distance to group centroid) of bacterial communities 293 

(n =3 biologically independent plants) (a) and fungal communities (n =3 biologically 294 

independent plants) (b) among different time points of CrossKFOL SynComs. The central bars 295 

represent median values, tops and bottoms of boxes represent the 75th and 25th percentiles, 296 

and upper and lower whiskers extend to data no more than 1.5 times the interquartile range 297 

from the upper edge and lower edge of the box, respectively. Point value beyond this range is 298 

plotted as individual point. The pairwise correlations between different time points in BacCK 299 
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(c), BacFOL (d) SynComs of bacterial communities, and FunCK (e), FunFOL (f) SynComs of 300 

fungal communities were reflected by Pearson’s correlation coefficients. In c-f, the yellow 301 

color indicates the value of Pearson’s correlation coefficients lower than 0.5, and the red color 302 

indicates the value of Pearson’s correlation coefficients greater than 0.5.  303 

  304 
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 305 

Supplementary Fig. 11 Fresh weight (a) and height (b)of tomato plants inoculated with CK 306 

SynComs, BacCK SynComs, FunCK SynComs, CrossKCK SynComs, CKFOL SynComs, 307 

BacFOL SynComs, FunFOL SynComs, CrossKFOL SynComs, and grem-free plants (CK) 308 

treatment at the day of 42 (P < 0.05, one-way ANOVA and Tukey HSD, n =3 biologically 309 

independent plants). Representative images of grem-free tomato seedlings inoculated only with 310 

FOL (c) FOL together with Bac SynComs (d), FOL together with Fun SynComs (e) and FOL 311 

together with CrossK (bacteria and fungi) SynComs (f). In g-h, the central bars represent 312 

median values, tops and bottoms of boxes represent the 75th and 25th percentiles, and upper and 313 

lower whiskers extend to data no more than 1.5 times of the interquartile range from the upper 314 

edge and lower edge of the box, respectively.  315 

  316 
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 317 

Supplementary Fig. 12 Bacterial abundance in Bac (a) and CrossK (b) SynComs, at the genus 318 

level, with the changes recorded at different growth time points. Fungal abundance in the Fun 319 

(c) and CrossK (d) SynComs, at the genus level, with the changes recorded at different growth 320 

time points. 321 

  322 
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 323 

Supplementary Fig. 13 (a) PCA distance analysis of KO pathways in CrossK, Fun, and Bac 324 

SynComs inoculated with FOL, the PC1, PC2, and PC3, showed that the KO pathways of day 325 

1 cluster separately from those on day 14. Yellow dots indicate tomato metagenomic samples 326 

of day 1 and blue dots indicate tomato metagenomic samples of day 14. (b) Volcano plots 327 

presenting significantly enriched and depleted KEGG pathways of Day 15 compared with those 328 

of Day 1 (FDR adjusted P < 0.05, two-sided Wilcoxon rank sum test). Red dots indicate 329 

enriched KEGG pathways of day 15, green dots indicate enriched KEGG pathways of day 1, 330 

and gray dots indicate non-significant KEGG pathways. (c) Indicator pathways with LDA 331 
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scores of 2 or greater in ResFam pathways associated with SynComs groups (red, Bac 332 

SynComs; green, CrossK SynComs; blue, Fun SynComs).  333 

 334 


