Benchmarking tools for detecting longitudinal differential
expression in proteomics data allows establishing a robust
reproducibility optimization regression approach

Tommi Valikangas, Tomi Suomi, Courtney E. Chandler, Alison J Scott, Bao Q. Tran,
Robert K. Ernst, David R. Goodlett, Laura L. Elo

Supplementary Information



Supplementary Note
Robustness of the new method RolDE

While the default usage of RolDE is very easy, the user is allowed full control of all the parameters,
including the polynomial degree in the RegROTS and PolyReg modules, the use of random effects
for the individual baseline or slope in the PolyReg module, and the number of bootstraps in the
RegROTS and DiffROTS modules. To evaluate the sensitivity of RoIDE to these parameters, we
explored how the different degrees for the RegROTS and PolyReg modules and the use of a random
effect for the individual baseline in the PolyReg module affected the performance of RoIDE in the
semi-simulated spike-in datasets (Supplementary Figure 5). Regardless of the used degrees for
RegROTS and PolyReg or the model type for the PolyReg module, only slight variations were
observed and the performance of RoIDE remained excellent despite the specific parameters used.
Importantly, using the default settings, RoIDE automatically selected the best performing parameter
combination, supporting the utility of the automatic parameter selection approach (Supplementary
Figure 5). Similarly, increasing the number of bootstraps beyond the default value of 100 for the
RegROTS and DiffROTS modules did not have a major effect on the performance of the method.

To provide a more refined evaluation of the RoIDE methodology, we assessed in more detail the
effect of the reproducibility-optimization with ROTS as well as the combination of multiple rankings
on the performance. First, to demonstrate the benefits of ROTS, we composed a variant of the
RegROTS module utilizing a standard one-way Analysis of Variance (ANOVA) instead of ROTS and
extensively compared this RegANOVA method to the RegROTS module in the 1920 semi-simulated
datasets. The comparisons clearly demonstrated the benefits of applying ROTS over ANOVA with
considerable performance gains (p < 10 in all scenarios, Supplementary Figure 8).

Although already the RegROTS module alone performed very well, the use of all the complementary
modules (RegROTS, DiffROTS and PolyReg) increased the performance further (Supplementary
Figure 8). Ultimately, the combination of the diverse approaches through rank products stabilizes
the composite method and allows for consistent excellent performance in diverse datasets. To further
investigate the effect of combining multiple approaches, we also combined three established diverse
methods Timecourse, Limma and MaSigPro using a similar ranking and rank product approach as
in RoIDE in two different types of datasets, the semi-simulated SGSDS full and the UPS1 Mix full
datasets (Supplementary Figure 9). Indeed, the composite approach of Timecourse, Limma and
MaSigPro performed relatively well in both types of dataset. However, in the UPS1 Mix datasets, the
performance was significantly reduced, when compared to Timecourse alone (p < 107,
Supplementary Figure 9). This demonstrates how the combination of multiple approaches does not
always improve the results but can also reduce the performance, highlighting the importance of
careful consideration regarding such combination.

Finally, to comprehensively evaluate the simulation-based estimation of the significance values and
the false discovery rate control of RoIDE, we explored the numbers of false discoveries in 600 varying
datasets under the null hypothesis. For this purpose, 200 completely random (noise) datasets were
generated similarly as the UPS1-based semi-simulated datasets but with random draws of all values
from a same normal distribution. In addition to such completely random datasets, 200 protein-wise
random datasets were generated using protein-wise normal distributions. Thus, each protein had a
distinct protein specific mean and standard deviation, following those from the corresponding semi-
simulated spike-in dataset based on real experimental data. As both the completely random datasets
and the protein-wise datasets were generated randomly, they did not contain any clear patterns.
Therefore, we also generated datasets where there were clear patterns for some proteins in the
data, but this pattern did not differ between the two conditions. For this, 200 UPS1-based semi-



simulated datasets were randomly selected and only the samples from one condition were used,
while the other condition was generated by replicating the samples from the first condition with
random noise from normal distribution. In each dataset type, datasets with no missing values, and
with 5%, 10% and 15% of missing values were generated. Our results demonstrate the ability of the
simulation approach to effectively estimate the significance values and control the number of false
discoveries (Supplementary Table 3). In the absence of true longitudinal differential expression
signal in the data, false detections were very rare, confirming the effectiveness of RoIDE in
controlling false discoveries.
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Supplementary Figure 1. Performance of the different methods (columns) across the trend
difference categories (rows) in the semi-simulated spike-in datasets. (a) UPS1 filtered (n=300
datasets), (b) SGSDS filtered (n=210 datasets), (¢) UPS1 full (n=300 datasets), (d) SGSDS full
(n=210 datasets), (e) UPS1 Mix filtered (n=300 datasets), (f) UPS1 Mix full (=300 datasets). The
methods were examined in their ability to detect true known longitudinal differential expression using
receiver operating characteristic (ROC) analysis across datasets with varying longitudinal trend
differences in the spike-in proteins (3 replicate samples per condition). The partial areas under the
ROC curves (pAUC) between the specificity of 1 and 0.9 were used to measure the performance of
the methods. The interquartile range (IQR) mean pAUCs are presented with the colour scale. Source

data are provided as a Source Data file.
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Supplementary Figure 2. Performance of the selected best-performing methods RoIDE,
Timecourse, Limma, and the baseline ROTS in semi-simulated spike-in datasets with only three or
four time points. (a) UPS1 filtered with four time points (n=300 datasets), (b) UPS1 full with four time
points (n=300 datasets), (¢) UPS1 filtered with three time points (n=300 datasets), (d) UPS1 full with
three time points (n=300 datasets). The methods were examined in their ability to detect true known
longitudinal differential expression using receiver operating characteristic (ROC) analysis across
datasets with varying longitudinal trend differences in the spike-in proteins (3 replicate samples per
condition). The partial areas under the ROC curves (pAUC) between the specificity of 1 and 0.9 were
used to measure the performance of the methods. The violin plots display the distribution of pAUCs
for each method, including median (white circle), interquartile range (IQR) from the first to third
quartile (black box), and 1.5* IQR (whiskers). The IQR mean pAUC for each method is shown above
the violin. Each method is shown with a unique colour. Source data are provided as a Source Data
file.
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Supplementary Figure 3. Missing value proportions in the samples of the Francisella tularensis
subspecies novicida proteomics dataset. Missing value proportions in (a) all the samples, and (b)
after averaging over the technical replicates for a biological replicate. Source data are provided as a
Source Data file.
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Supplementary Figure 4. A significant finding (FDR = 0.04) by the original study by Liu et al. in their
differential expression analysis of the longitudinal blood plasma proteome of 11 children developing
type 1 diabetes (red lines) and 10 matched controls (blue lines), carbonyl reductase 1 (CBR1). With
RoIDE, CBR1 had FDR of 0.07 for longitudinal differential expression. Source data are provided as
a Source Data file.
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Supplementary Figure 5. Performance of the proposed new method RoIDE using different
parameters for its modules. The polynomial degrees in the RegROTS and PolyReg modules were
varied from 1 to 4. In addition, the model type for the PolyReg module was varied, including only
fixed models (PolFix), mixed models with a random effect for the individual baseline (PolMix0), and
mixed models with random effects for the individual baseline and slope (PolMix1). The performance
of RoIDE with the different parameters was examined over 1920 semi-simulated spike-in datasets
(300 UPS1 filtered, 300 UPS1 full, 300 UPS1 Mix filtered, 300 UPS1 Mix full, 210 SGSDS filtered,
210 SGSDS full, and 300 CPTAC full datasets) using receiver operating characteristic (ROC)
analysis with varying longitudinal trend differences between the conditions in the spike-in proteins (3
replicate samples per condition). The partial areas under the ROC curves (pAUC) between the
specificity of 1 and 0.9 were used to measure the performance of the parameter settings. The violin
plots display the distribution of pAUCs for each setting, including median (white circle), interquartile
range (IQR) from the first to third quartile (black box), and 1.5* IQR (whiskers). The IQR mean pAUCs
are shown above the violins. The horizontal black line represents the IQR mean pAUC of the default
approach of RoIDE that determines the degrees automatically. Source data are provided as a Source
Data file.
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Supplementary Figure 6. Empirical distributions of specific RoIDE modules under the null
hypothesis and example of significance value estimation in RoIDE. (a) The empirical distribution of
the RegROTS scores Sregrors under the null hypothesis. (b) The empirical distribution of the
DiffROTS scores Spiirors under the null hypothesis. To determine the empirical distributions,
completely random (noise) datasets were generated on the basis of the UPS1 semi-simulated
datasets with random draws of the values from a normal distribution. (c) Distribution of the
experimental and simulated internal rank products for the RegROTS module in a simulated random
longitudinal data and (d) the corresponding estimated significance values for RolDE in the same
data. Similar to the UPS1-based datasets, the random dataset contained two conditions, five time
points, and three replicates in each condition.
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Supplementary Figure 8. Performance of the RegROTS module, the RegANOVA approach, and
the proposed new method RoIDE in the semi-simulated spike-in datasets. (a) UPS1 filtered (n=300
datasets), (b) SGSDS filtered (n=210 datasets), (¢) UPS1 full (=300 datasets), (d) SGSDS full
(n=210 datasets), (e) UPS1 Mix filtered (n=300 datasets), (f) UPS1 Mix full (n=300 datasets), (g)
CPTAC full (n=300 datasets). The methods were examined in their ability to detect true known
longitudinal differential expression using receiver operating characteristic (ROC) analysis across
datasets with varying longitudinal trend differences in the spike-in proteins (3 replicate samples per
condition). The partial areas under the ROC curves (pAUC) between the specificity of 1 and 0.9 were
used to measure the performance of the methods. The violin plots display the distribution of pAUCs
for each method, including median (white circle), interquartile range (IQR) from the first to third
quartile (black box), and 1.5* IQR (whiskers). The IQR mean pAUC for each method is shown above
the violin. Each method is shown with a unique colour. In the RegANOVA approach, the
Reproducibility Optimized Test Statistic (ROTS) was replaced with the standard One-Way Analysis
of Variance (ANOVA) approach to evaluate the benefits of the ROTS approach. Source data are
provided as a Source Data file. Source data are provided as a Source Data file.
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Supplementary Figure 9. Performance of Timecourse, Limma and MaSigPro and their composite
approach in the semi-simulated spike-in datasets. (a) UPS1 Mix full (=300 datasets), (b) SGSDS
full (=210 datasets). The methods were examined in their ability to detect true known longitudinal
differential expression using receiver operating characteristic (ROC) analysis across datasets with
varying longitudinal trend differences in the spike-in proteins (3 replicate samples per condition). The
partial areas under the ROC curves (pAUC) between the specificity of 1 and 0.9 were used to
measure the performance of the methods. The violin plots display the distribution of pAUCs for each
method, including median (white circle), interquartile range (IQR) from the first to third quartile (black
box), and 1.5* IQR (whiskers). The IQR mean pAUC for each method is shown above the violin.
Each method is shown with a unique colour. The three methods were combined using rank product
similarly as in the RolDE approach. Source data are provided as a Source Data file.
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Supplementary Table 1. All unique proteins in the KEGG Lipopolysaccharide synthesis pathway
(ftn00540) complemented with unique proteins from the associated Lipopolysaccharide biosynthesis
knockout pathway (ko00540). Proteins belonging to the KEGG Lipopolysaccharide synthesis
pathway (ftn00540) are highlighted. The included pathway proteins used for the gene set enrichment
analysis (GSEA) in different comparisons are shown in columns.

Included in GSEA. Included in GSEA, Included in GSEA,
Entry Entry_name Status Gene_names Gene_names_primary o WT vs. D2 WT vs. D1
WT vs. L comparison . .
comparison comparison
A0Q7Y0|A0Q7Y0_FRATN| unreviewed IpxA FTN_1478 IpxA X
A0Q4B0 |A0Q4B0_FRATN| unreviewed IpxC FTN_0165 IpxC
A0Q7Y2|A0Q7Y2_FRATN| unreviewed IpxD FTN_1480 IpxD X
AOQ4E5 |AOQ4E5_FRATN| unreviewed IpxD FTN_0200 IpxD X X
AOQ5A8 |AOQ5A8 FRATN| unreviewed IpxH FTN_0528 IpxH X X X
A0Q7X9| LPXB_FRATN reviewed IpxB FTN_1477 IpxB
AO0Q8A0| LPXK_FRATN reviewed IpxK FTN_1605 IpxK X
A0Q788 | A0OQ788_FRATN | unreviewed kpsF FTN_1222 kpsF X X X
A0Q5J1 | KDSA_FRATN reviewed kdsA FTN_0611 kdsA X X X
A0Q6C8|A0Q6C8_FRATN| unreviewed yrbl FTN_0905 yrbl X
AOQ5R0| KDSB_FRATN reviewed kdsB FTN_0683 kdsB X X X
A0Q7X2 |A0Q7X2_FRATN| unreviewed kdtA FTN_1469 kdtA
A0Q418 |A0Q418 _FRATN | unreviewed FTN_0072 #N/A
A0Q417 |[A0Q417_FRATN | unreviewed FTN_0071 #N/A X
A0Q450 | A0Q450_FRATN | unreviewed FTN_0104 #N/A
A0Q504 | A0Q504_FRATN | unreviewed IpxE FTN_0416 IpxE X X X
A0Q576 | AOQ576_FRATN | unreviewed kdoH1 FTN_0495 kdoH1 X
AOQ4N6| LPXF_FRATN reviewed | IpxF FTN_0295 AW25_1746 IpxF X X X

Supplementary Table 2. The detected longitudinally differentially expressed proteins at false
discovery rate (FDR) of 0.05 using the Robust longitudinal Differential Expression method RoIDE in
the longitudinal type 1 diabetes blood plasma proteomics data of Liu et al.

RoIDE Rank| Estimated false
Feature ID .

Product discovery rate
TRFE (P02787) 15.4 <107®
SCLT1 (Q96NL6) 18.6 <107®
CGRE1 (Q99674) 30.0 <1076
K1H1 (Q15323) 38.0 <107
SAA1 (PODJI8) 42.5 <106
AOA0G2JH38 53.4 0.0006
TSK (Q8WUABS) 55.5 0.0006
AMYP (P04746) 59.8 0.0008
LYB6F (Q5SQ64) 60.8 0.0008
KRT86 (043790) 63.9 0.0008
RAB2A (P61019) 64.6 0.0008
PA1B3 (Q15102) 72.7 0.0017
ASAP1 (QOULH1) 75.8 0.0035
FAT4 (Q6VO0I17) 80.8 0.0057
CISY (075390) 86.5 0.0279

13



Supplementary Table 3. False discovery rate (FDR) with RoIDE in various types of datasets under
the null hypothesis, including 200 completely random (noise) datasets, 200 protein-wise random
datasets, and 200 datasets with clear patterns for some proteins but without differences between
the two conditions. For each dataset type, datasets with no missing values, and datasets with 5%,
10% and 15% of missing values were generated. Median and range are shown.

Dataset Type (under HO) FDR range FDR median

Completely random - no missing values 0-0.001 0
Completely random - 5% missing values 0-0.001 0
Completely random - 10% missing values 0-0.001 0
Completely random - 15% missing values 0-0 0

Proteinwise random - no missing values 0-0.0029 0.0009
Proteinwise random - 5% missing values 0-0.0019 0
Proteinwise random - 10% missing values 0-0.001 0
Proteinwise random - 15% missing values 0-0.001 0
One condition random - no missing values 0-0.001 0
One condition random - 5% missing values 0-0 0
One condition random - 10% missing values 0-0 0
One condition random - 15% missing values 0-0 0
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