Cite as: Ioannis Tsamardinos, Vincenzo Lagani, Automated Machine Learning and Knowledge Discovery, ECCB 2018 Tutorial;

Slides are a modified excerpt from the ECCB 2018 tutorial

Automated Machine Learning and Knowledge Discovery

IOANNIS TSAMARDINOS

PROFESSOR, CSD, UNIVERSITY OF CRETE

GNOSIS DATA ANALYSIS, CO-FOUNDER

VINCENZO LAGANI

ILIA STATE UNIVERSITY

GNOSIS DATA ANALYSIS, CO-FOUNDER

A fictional execution trace of Nested Cross Validation (NCV)

- o Choose among Pipelines (Learners) a, b
- o Split data to 3 Folds named 1, 2, 3
- o All accuracies reported as fictional estimates

- Inner Cross-Validation loop: cross-validation of a single pipeline to determine the winning pipeline
- Outer Cross-Validation loop: cross-validation of the selecting-the-winner procedure to determine the predictive performance of the winning pipelines

NCV Trace: Model Production

- o Choose among Pipelines (learners) a, b
- o Split data to Folds 1, 2, 3

Train On	With Pipeline	Produce	Apply on	Accuracy	
1, 2	а	M_1	3	0.7 📕	
1, 3	а	M_2	2	0.8	
2, 3	а	M ₃	1	0.6	
				Mean _a = 0.7	No direct
1, 2	b	M_4	3	0.6	estimation of the
1, 3	b	M_5	2	0.7	performance of
2, 3	b	M ₆	1	0.5	model.
				Mean _b = 0.6	No loss of data to
Select a as winning					estimation
1, 2, 3	а	M ₇	N/A		

Model

Performances on

held out fold

Final Model to return using Cross Validation with Tuning (CVT): M₇

NCV Trace: Performance Estimation (1 of 3)

o Outer loop iteration 1

• Fold 3 is held-out as an Estimation set ; the other folds serve as Tune sets in the inner CV loop.

Train On	With Pipel.	Produce	Apply on	Accuracy
1	а	M ₈	2 🔸	0.7
2	а	M ₉	1	0.8
				Mean _a = 0.75
1	b	M ₁₀	2	0.6
2	b	M ₁₁	1	0.7
				Mean _a = 0.65
Select a	as winning			
1, 2	а	M ₁₂	3 🖛	0.9

NCV Trace: Performance Estimation (2 of 3)

• Outer loop iteration 2

• Fold 2 is held-out as an Estimation set ; the other folds serve as Tune sets in the inner CV loop.

Train On	With Pipel.	Produce	Apply on	Accuracy
1	а	M ₁₃	3	0.6
3	а	M ₁₄	1	0.7
				Mean _a = 0.65
1	b	M ₁₅	3	0.7
3	b	M ₁₆	1	0.8
				Mean _a = 0.75
Select b				
1, 3	b	M ₁₇	2	0.7

NCV Trace: Performance Estimation (3 of 3)

• Outer loop iteration 3

• Fold 1 is held-out as an Estimation set ; the other folds serve as Tune sets in the inner CV loop.

Train On	With Pipel.	Produce	Apply on	Accuracy
2	а	M ₁₈	3	0.8
3	а	M ₁₉	2	0.6
				Mean _a = 0.7
2	b	M ₂₀	3	0.6
3	b	M ₂₁	2	0.6
				Mean _a = 0.6
Select a				
2, 3	а	M ₂₂	1	0.8

Final Estimate to return is the Learner performance : mean accurate on Estimation folds over three iterations 0.9 + 0.7 + 0.8 = **0.8**

How many models trained?

C: number of pipelines

K: number of folds

- To produce the final model the inner CV loop is called with K folds
 - o C pipelines × K folds for estimating the winning pipeline
 - +1 times to train on the full dataset
 - $\circ = \mathbf{C} \times \mathbf{K} + 1$
- To estimate the performance of the returned model
 - Run the inner CV with K-1 folds, K times
 - $\circ = (C \times (K-1) + 1) \times K$
- Total number of models trained for model production and estimation
- $\circ \quad = \mathbf{C} \times \mathbf{K}^2 + \mathbf{K} + \mathbf{1}$