

Supplementary Figure S1. Callose-containing encasements around *Bh* haustoria in barley induced by tetraconazole. (A) *Bh* colony and conidia chains developed on barley 4 days after inoculation. (B,C) Tetraconazole-induced encasements around *Bh* haustoria in barley epidermal cells. Inoculation was made 2 h after treatment. Images taken 4 dpi. UV-fluorescence microscopy after aniline blue treatment. Size bars, 100 μ m in A and B, 10 μ m in C.

Supplementary Figure S2. Barley *Hv*MON1 complements the function of Arabidopsis *At*MON1. (A) Transformation of Col-0 *mon1-1* with *35S::*Hv*MON1* rescues it from its lethality phenotype. Size bars, 1 cm, (B) CSLM subcellular localization of GFP-*Hv*MON1 expressed in *mon1-1* leaf cells epidermal. (C) Wortmannin-induced ring-shaped structures of GFP-*Hv*MON1 and GFP-*At*MON1 resolved by CSLM. Roots were treated with 33 µM wortmannin for 1 hour. Size bars, 10 µm in B and 10 µm C.

Supplementary Figure S3. Secondary hyphal lenght of Go on No-O and mon1-2. Lenght of secondary hyphae developed from penetrated appressoria at 2 days after inoculation. Error bars, SE. ***, P<0.001 assessed by Student's T-tests. n=3.

Supplementary Table S1. Primers used in this work.

Name	Information	Sequence (5'-3')
attbHvMON1-F	Hv <i>MON1</i>	AAAAAGCAGGCTACATGGATCCGGCCCCCGAT
attbHvMON1-R	Cloning	AGAAAGCTGGGTCTCACCAGGCAATGGTGCT
attBCSEP0162-F	CSEP0162 Cloning	AAAAAGCAGGCTACATGGCCCAATATTCTAGACATATTAA
attBCSEP0162-R		AGAAAGCTGGGTCTCCCGAGCCAACTGCG
attbAtMON1-F	At <i>MON1</i> Cloning	AAAAAGCAGGCTACATGGCGACTTCAGATTCG
attbAtMON1-R		AGAAAGCTGGGTCTCACCAAGAGAAAGGACTAGCT
pGB9-FP	pDEST-AS2-1	AGTGCGACATCATCG
pGB9-RP	sequencing	CGTTTTAAAACCTAAGAGTCAC
pACT2-FP	pDEST-ACT2	GATGATGAAGATACCCCAC
pACT2-RP	sequencing	CAGTTGAAGTGAACTTGC
attbHvMON1i-F	Hv <i>MON1</i> RNAi Cloning	AAAAAGCAGGCTACCACCACTTCTAGGTGGCACA
attbHvMON1i-R		AGAAAGCTGGGTCGGCAAGCATATGGGTGAAAA
qRT-VIGS-Mi-F1		CCGCACAAAACACAATTCAG
qRT-VIGS-Mi-R1	qRT-PCR for Hv <i>MON1</i> RNAi	CCCTGATCCACTGGCATACT
HvUBC2-F		GGATCCAGGGCACCTCAC
HvUBC2-R		CGTCCAAGCTTTTTGAGGAC
Bgh-GPD-F	Blumeria hordei quantification	TGGCAATGCGTGTTCCTACT
Bgh-GPD-R		CATTTCCGGCGGCAATCTTT
qPCR-HvM-F		TTCTGATGAGGCAATTGGTG
qPCR-HvM-R		TTCTTATGGGCAAGGCAAAC
BS10	VIGS vector	GGTGCTTGATGCTTTGGATAAGG
BS32	sequencing	TGGTCTTCCCTTGGGGGAC
At3g21215-RBD-F	Golovinomyces	GAATCCACCCATACCACCAG
At3g21215-RBD-R		GAGGAGGAGGATGGTGATGA
GoATPase1-F	quantification	TCGCCGCTATATTTGGAGTC
GoATPase1-R	quantineation	CTGGGTCAGATGGTTCACCT
mon1-mutant-LP	mon1 mutant	CGGTTTGCCTGAGTTACTCAG
mon1-mutant-RP		AAAAGCCCAACAATATGGGTC
DS5-3	<i>mon1-2</i> (No-0)	TACCTCGGGTTCGAAATCGAT
LBb1.3	<i>mon1-1</i> (Col-0)	ATTTTGCCGATTTCGGAAC
eds1-F760	eds1-2 mutant	ACACAAGGGTGATGCGAGACA
eds1-R1458		GGCTTGTATTCATCTTCTATCC
eds1-R2333		GTGGAAACCAAATTTGACATTAG
ndr1-F3129		GGTTGTGAAATCAAGAATTAATGTGGA
ndr1-F4443	<i>ndr1-1</i> mutant	TTGCCTAATGGATCGGCTG
ndr1-R4928		GTTCCTTGATTTGAAACCCAACA

Name	Information	Reference
pDEST-ACT2-GW	Yeast two-hybrid	Robertson. 2004
pDEST-AS2-GW		
pB4GWnG		
pB4GWcCG		Kamizaki at al. 2016
pB4nGGW	BIFC	Kamigaki et al. 2016
pB4cCGGW		
p35S-mCherry-GW	Protoplast	
pUbi-GW-YFP	transformation and	Kwaaitaal et al. 2010
pUbi-GW-nos	particle bombardment	
pIPKTA30N-GW		Nowara et al. 2010
pCaBS-γ-GW	VIGS	pCaBS-γ (Yuan et al. 2011) were adapted
		to Gateway compatible
pUBN10-GFP-GW	Arabidopsis	Grefen et al. 2010
	overexpression	

Supplementary Table S2. Gateway destination vectors used in this work.

References

Grefen C, Donald N, Hashimoto K, Kudla J, Schumacher K, Blatt MR 2010). A ubiquitin-10 promoter-based vector set for fluorescent protein tagging facilitates temporal stability and native protein distribution in transient and stable expression studies. Plant Journal 64: 355–365

Kamigaki A, Nito K, Hikino K, Goto-Yamada S, Nishimura M, Nakagawa T, Mano S. 2016. Gateway vectors for simultaneous detection of multiple protein–protein interactions in plant cells using bimolecular fluorescence complementation. PLoS One **11**, e0160717.

Kwaaitaal M, Keinath NF, Pajonk S, Biskup C, Panstruga R. 2010. Combined bimolecular fluorescence complementation and Forster resonance energy transfer reveals ternary SNARE complex formation in living plant cells. Plant Physiology **152**, 1135–1147.

Nowara D, Gay A, Lacomme C, Shaw J, Ridout C, Douchkov D, Hensel G, Kumlehn J, Schweizer P. 2010. HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. The Plant Cell **22**, 3130–3141.

Robertson M. 2004. Two transcription factors are negative regulators of gibberellin response in the HvSPYsignaling pathway in barley aleurone. Plant Physiology **136**, 2747–2761.

Yuan C, Li C, Yan L, Jackson AO, Liu Z, Han C, Yu J, Li D. 2011. A high throughput barley stripe mosaic virus vector for virus induced gene silencing in monocots and dicots. PLoS ONE 6, e26468.

Supplementary Table S3. Overview of *Hv*MON1/CSEP0162 bifluorescence complementation (BiFC) results.

Combination	Fluorescence signal
HvMON1-nGFP + CSEP0162-cCFP	No
HvMON1-nGFP + cCFP-CSEP0162	No
nGFP- <i>Hv</i> MON1 + cCFP-CSEP0162	No
nGFP- <i>Hv</i> MON1 + CSEP0162-cCFP	Yes
HvMON1-cCFP + CSEP0162-nGFP	No
HvMON1-cCFP + nGFP-CSEP0162	No
cCFP- <i>Hv</i> MON1 + nGFP-CSEP0162	No
cCFP- <i>Hv</i> MON1 + CSEP0162-nGFP	No