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1 Derivation of interval estimates

1.1 Interval estimates based on the näıve estimator

Suppose that we observe data Wij for i = 1, . . . , n and j = 1, . . . q and Vij for i = 1, . . . , n
and j = 1, . . . , qobs, where qobs < q. Suppose the data is generated according to the following
model:

Vij | µij ∼ Poisson(µij), (S1)

pij =
µij∑q
`=1 µi`

,

Wi· |Mi, µi· ∼ Multinomial(Mi, pi·).

Based on model (S1), for each sample i = 1, . . . , n we have the relationship

µij∑qobs

j=1 µij
=

pij∑qobs

j=1 pij
,

where pij = µij/
∑q

j=1 µij. This relationship suggests the näıve estimator

µ̂näıve
ij := Vij for j = 1, . . . , qobs

µ̂näıve
ij :=

∑qobs

j=1 Vij∑qobs

j=1 Wij

Wij for j = qobs + 1, . . . , q. (S2)

Simple algebraic manipulations yield that, for each i = 1, . . . , n,

Var(log µ̂ij) = Var

log

qobs∑
j=1

Vij

+ Var(logWij) + Var

log

qobs∑
j=1

Wij


− 2Cov

logWij, log

qobs∑
j=1

Wij

 . (S3)
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We then use the delta method and simplify to obtain each individual term in (S3):

Var

log

qobs∑
j=1

Vij

 =
1∑qobs

j=1 µij
;

Var(logWij) =
1− pij
Mipij

;

Var

log

qobs∑
j=1

Wij

 =
1−

∑qobs

j=1 pij

Mi

∑qobs

j=1 pij
; and

Cov

logWij, log

qobs∑
j=1

Wij

 = − 1

Mi

.

Setting p̂ij = Wij/Mi, we have that

V̂ar(log µ̂ij) =
1∑qobs

j=1 Vij
+

1− p̂ij
Mip̂ij

+
1−

∑qobs

j=1 p̂ij

Mi

∑qobs

j=1 p̂ij
+

2

Mi

.

Based on these results, model (S1), and an additional application of the delta method, the
prediction variance for Vij is given by

V̂ar(log Vij) =
1

µ̂ij
+ V̂ar(log µ̂ij).

1.2 Quantile-based prediction intervals for abundance

In Section 3.2.2 (main text) we described a procedure for constructing Wald-type prediction
intervals for Vij. We also investigated the performance of two approaches to constructing
quantile-based prediction intervals for Vij, which we now describe.

The first approach is calculated by taking µ
α/2
ij and µ

1−α/2
ij , the α/2 and 1 − α/2 quan-

tiles of the sampling distribution of µij, respectively; then taking the α/2 quantile of the

Poisson(µ
α/2
ij ) distribution as the lower prediction interval limit and the 1 − α/2 quantile of

the Poisson(µ
1−α/2
ij ) distribution as the upper prediction interval limit. We call this approach

credible interval-based because the α/2 and 1 − α/2 quantiles of the sampling distribution of
µij form a (1− α)× 100% credible interval for µij.

The second approach, which we call sampling distribution-based, is calculated by generating
Vijb ∼ Poisson(µijb), where b denotes the Markov Chain Monte Carlo (MCMC) replicates of

each µij; the prediction interval is then [V
α/2
ijb , V

1−α/2
ijb ], where V q

ijb denotes the qth quantile of
{Vijb}b≥q.

These two approaches to constructing quantile-based prediction intervals are similar, and are
indeed connected. Both options are of the following general form: (a) For each µijb, select
Vijbk ∼ Poisson(µijb), k = 1, . . . , N , then (b) Take the α/2 and 1− α/2 quantiles of the Vijbk.
The first option is equivalent to letting N → ∞; the second option is equivalent to setting
N = 1.

We do not show performance of these intervals in the manuscript since it was very similar to
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performance of the Wald-type intervals. Both types of intervals may be used with either the
efficiency-näıve or varying-efficiency Bayesian estimators proposed in the main manuscript.

2 Initializing chains and assessing algorithm convergence

In the simulated examples of Section 4 (main text), we used four chains, each with 10,000 burn-
in iterations and 10,500 total iterations, to fit our proposed algorithm. We ran all analyses on
a high-performance computing cluster of Linux nodes each with at least four cores and 16GB
of memory; each individual simulation replicate may have been allocated less memory at run-
time. Rather than initializing the chains at random values, we used simple estimates of µ, β,
and Σ as initial values. The näıve estimate of µ (Eqn. (4) in main text) provides a starting
point for these three model parameters: we use the column means of log µ̂näıve as an initial
estimator of β, where zeroes in µ̂näıve are set to zero in log µ̂näıve. We use the column variances
of log µ̂näıve as an initial estimator of the diagonals of the diagonal matrix Σ. For the first chain,
we provide an initial value for µ and initialize the other parameters randomly; for the second
chain, we provide an initial value for β and initialize the other parameters randomly; for the
third chain, we provide an initial value for Σ and initialize the other parameters randomly; and
in the fourth chain, we initialize all parameters randomly. In any simulation where we model
efficiency, we initialize σe randomly.

In the data analyses of Section 5 (main text), we used six chains. In these cases, we initialized
the first four chains as described above, and initialized each parameter in the final two chains
using random values.

We used the Gelman-Rubin R̂ statistic and trace plots to assess algorithm convergence.
Ideally, the R̂ statistic is close to one, and trace plots show well-mixed chains after the burn-in
period. We confirmed that this was the case in all simulations and data analyses.

3 Additional numerical results

Before providing any additional empirical results, we first provide the exact specification of
the performance metrics we computed in all simulations:

(i) Root mean squared error for µij, averaged across all n samples and q taxa:

RMSE(µ̂)b :=

√√√√ 1

nq

n∑
i=1

q∑
j=1

(µ̂ijb − µijb)2.

(ii) Root mean squared prediction error (RMSPE) for Vij, j = qobs+1, . . . , q, averaged across
all n samples and q − qobs unobserved taxa:

RMSPE(V̂unobserved)b =

√√√√ 1

n(q − qobs)

n∑
i=1

q∑
j=qobs+1

(V̂ijb − Vijb)2.

(iii) Average coverage of 95% posterior credible intervals for µij: Let (Î`ijb, Î
u
ijb) be the proposed

credible interval for µij in the bth simulation. Then
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Coverage(µ̂)b =
1

nq

n∑
i=1

q∑
j=1

I(Î`ijb ≤ µijb ≤ Îuijb).

(iv) Average coverage of 95% posterior prediction intervals for Vij, j = qobs + 1, . . . , q: Let

(P̂ I
`

ijb, P̂ I
u

ijb) be the proposed prediction interval for Vij in the bth simulation. Then

PredCoverage(V̂unobserved)b =
1

n(q − qobs)

n∑
i=1

q∑
j=qobs+1

I(P̂ I
`

ijb ≤ Vijb ≤ P̂ I
u

ijb).

3.1 Soft- vs hard-centering for e

We considered two possible approaches to specifying the prior distribution on e (Section 3.2.1).
The soft-centering approach is given by

ej ∼ Lognormal(0, σ2
e)

σ2
e ∼ InverseGamma(ασ, κσ),

while the hard-centering approach is provided by ẽj ∼ Lognormal(0, σ2
e), σ

2
e ∼ InverseGamma(ασ, κσ),

and ej = ẽj

/
exp

(
1
qobs

∑qobs

j′=1 log ẽj′
)

.

We investigated the difference between these two approaches in an experiment with n = 50,
q = 20, and qobs = 7. We generated data from the data-generating mechanism described in
the main manuscript, with σe ∈ {0, 0.5, 1}, and in all cases fit our proposed varying-efficiency
Bayesian estimator. We compared the results between running two separate Stan specifications
of this model, each with 4 chains (each with 10,000 burn-in iterations and 10,500 total iterations
per chain): the first using the soft-centering prior on e, and the second using the hard-centering
prior on e. We used R version 3.4.3 for all analyses in this manuscript.

We present the results of this experiment in Figure S1 (figure numbers refer to the supporting
information unless stated otherwise). In the top four-panel plot, we see that interval coverage
for both µ and V is at or above the nominal 95% level regardless of whether e is hard- or soft-
centered, and that RMS(P)E does not differ greatly between the two hierarchical models. These
patterns hold as σe varies. Additionally, the performance at σe = 0 shows the performance
of the varying-efficiency estimator when there is truly no varying efficiency. In the bottom
plot, we see that the posterior mean log efficiency over all 20 taxa is much closer to zero for
the soft-centered procedure than the hard-centered procedure; however, looking only among
the qPCR-observed taxa, the posterior mean log efficiency is much closer to zero for the hard-
centered procedure than the soft-centered procedure. This coincides with what we would
expect, because the hard-centering approach is defined such that the efficiencies of observed
taxa are normalized, while the soft-centering approach is not.

3.2 Effect of applying filters before evaluating performance

As we referenced in Section 4 of the main text, in practice, taxa observed in low abundance
across all samples are typically excluded from analysis [Callahan et al., 2016]. Any filtering
must be done on the observed data, since µ is unobserved. Since W is fully observed, it is nat-
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Figure S1: Top: interval coverage for µ and V , RMSPE, and RMSE (clockwise from top
left) based on the näıve estimator (circles), varying-efficiency estimator with soft-centering
(squares), and varying-efficiency estimator with hard-centering (diamonds). Bottom: posterior
mean log efficiency averaged over all taxa (left) and only qPCR-observed taxa (right) for the
soft-centered estimator (blue) vs hard-centered estimator (red).
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ural that any filters used in practice would be based on W . However, in the main manuscript
we chose to present results after filtering based on µ to provide a more fair comparison: us-
ing the observed data to define how the performance of a method is evaluated is somewhat
nonstandard.

In practice, low abundance taxa are typically excluded because we do not expect to have
much information for estimating the true concentration. Taxa for which we observe fewer
counts than the number of samples appear to have particularly low information. This, in turn,
will lead to poor estimates, regardless of the method used to analyze the data. The filter
applied also depends greatly on the units of the observed data. These two facts suggest that
a filtering rule must be developed for each dataset of interest. However, a good starting point
may be that the average count for a single taxon (averaged over samples) should be greater
than 1/2. This implies that there is some information, since the total count is at least half of
the sample size.

To investigate whether applying different filters results in average coverage closer to the
nominal level, we consider coverage of credible intervals in the simulation setting of Section
4.1 (main text). We only investigate the efficiency-näıve Bayesian estimator in this simple
setting, with the expectation that the proposed varying-efficiency Bayesian estimator would
perform comparably. We found that two filters performed well: only including taxon j if
n−1

∑n
i=1(Wij − 1

n

∑n
i=1 Wij)

2 > 1, and only including taxon j if n−1
∑n

i=1Wij > 0.5. Again,
these filters are appropriate based on the units of data that we created in this experiment.

The results of this experiment are presented in Figure S2. In the left-hand panel, we have
applied the filter on the mean of W , and see that coverage is much closer to the nominal level
for q = 40 and q = 60. In the right-hand panel, we have applied a filter based on the variance
of µ; in this case, coverage is not as much improved. However, filtering based on the variance
of W leads to similar performance as in the left-hand panel of Figure S2.

We further investigate coverage of credible intervals in Section 3.4.

3.3 Effect of varying priors on β, Σ, and e

The prior distributions on β, Σ, and e must be specified before running the proposed algorithm.
As described in Section 4 (main text), the default hyperparameters are σ2

β = 50, σ2
Σ = 50,

ασ = 2 and κσ = 1. These defaults create diffuse priors on β and Σ and a less diffuse prior on
e. We investigate here the effect of using both stronger and weaker priors. In one simulation,
we vary the hyperparameters σ2

β and σ2
Σ in a setting without varying efficiency, and focus on

the efficiency-näıve Bayesian estimator for simplicity. In a second simulation in a setting with
varying efficiency, we vary the hyperparameters ασ and κσ and focus on the proposed varying-
efficiency Bayesian estimator. In all cases, we set qobs = 7. In the simulation examining σ2

β

and σ2
Σ, we set n = 50. In the simulation examining ασ and κσ, we set n = 100. In both

simulations, the data was generated from the hierarchical distribution described in Section
3.2.1 (main text) with σ2

β = 50, σ2
Σ = 50, ασ = 2 and κσ = 1.

The results of the first experiment are presented in Figures S3 and S4. In Figure S3, we see
that coverage is poor for small σβ (recall that we set σβ = σΣ); this reflects the fact that small
σβ is a strong and misspecified prior, since the true σβ =

√
50. However, performance plateaus

after σβ =
√

50. In Figure S4, we see that the coverage results are primarily driven by the
rarest taxa: for q = 40, we see that strong priors result in poor coverage of the rarest taxa,
while diffuse priors result in the same pattern observed in the main manuscript.
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Figure S2: Coverage of nominal 95% credible intervals for µ based on the näıve estimator (cir-
cles) and efficiency-naive Bayesian estimator (triangles), in a setting with no varying efficiency
(Section 4.1 of the main text), with filtering applied based on the mean of W over samples (top
left) and the variance of µ over samples (top right) and no filter applied (bottom left). Recall
that we cannot return an interval estimate based on the näıve estimator for (i, j) pairs where
Wij = 0. The different total numbers of taxa q are differentiated by color in the electronic
version of this manuscript.
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Figure S3: Performance of the näıve estimator and efficiency-näıve Bayesian estimator in
a setting with no varying efficiency versus the hyperparameter σβ for q ∈ {10, 20, 40} and
qobs = 7. Top row : coverage of nominal 95% intervals based on the näıve (circles) and efficiency-
näıve Bayesian (triangles) estimators. Bottom row : root mean squared prediction error and
root mean squared error for both estimators. The values of q are differentiated by color in the
electronic version of this manuscript.

The results of the second experiment are presented in Figure S5. In this experiment, the
correct values are (ασ, κσ) = (2, 1), corresponding to a mean log efficiency of 1. In the left-
hand panel, we see that interval coverage for µ, V , and e is close to nominal for all choices of ασ
and κσ. However, as the chosen hyperparameters diverge from the data generating process, the
coverage degrades. This is especially true for (ασ, κσ) = (3, 0.5), which is a strongly informative
prior that is centered much closer to zero than the other combinations (mean/variance is
0.25/0.125 while true mean/variance is 1/∞). In the middle panel, we see that the RMSE
for estimating e is small for all choices of ασ and κσ. In contrast, RMSE for estimating µ
and V is minimized at (ασ, κσ) = (2, 0.5). Finally, credible interval widths are shown in the
right-hand plot. We see that a larger credible interval width (e.g., (ασ, κσ) = (1, 0.5)) tends
to translate to a higher coverage (left-hand plot), while a smaller credible interval width (e.g.,
for (ασ, κσ) = (3, 0.5)) results in lower coverage. Taken together, these results suggest that
concentrated priors reduce interval width at the possible expense of coverage. We recommend
that users carefully investigate the sensitivity of their results to the chosen priors, making
selections that reflect the relative importance they place on narrow intervals versus coverage.

3.4 Coverage and rank order of abundance

In Section 4.1 (main text), we investigated the effect of varying q and qobs for a fixed sample
size, and where there was truly no varying efficiency. We noticed that for q = 40 and q = 60,
coverage of credible intervals was slightly below the nominal 95% level. To further investigate
this phenomenon in the simple setting with no varying efficiency, we computed coverage across
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Figure S4: Credible interval coverage based on the efficiency-näıve Bayesian estimator for
each taxon versus rank order in W for four different values of σβ, in a case with no varying
efficiency, q = 40, and qobs = 7. Taxa are differentiated by color in the electronic version of
this manuscript.

Figure S5: Credible interval coverage, root mean squared error, and interval width when esti-
mating µ (circles), V (squares), and e (triangles), for the proposed varying-efficiency Bayesian
estimator, across different values of the hyperparameters for the efficiency prior (ασ and κσ).
In this case, there truly is varying efficiency, q = 40, and qobs = 7.
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Figure S6: Coverage of nominal 95% credible intervals for µ based on the efficiency-näıve
Bayesian estimator versus rank order in W , for q ∈ {10, 20, 40, 60} (clockwise from top left,
respectively) and qobs = 7, in a setting with no varying efficiency (Section 4.1 of the main
text). Taxon j is only included in coverage evaluation if n−1

∑n
i=1 µij > 1, and the taxa are

differentiated by color in the electronic version of this manuscript.

samples for each taxon and each Monte Carlo iteration. We then plotted this coverage versus
the taxon’s rank order in W .

The results of this investigation are presented in Figures S6 and S7, where Figure S6 is filtered
to include taxon j only if n−1

∑n
i=1 µij > 1 and Figure S7 is not filtered. Here, we see that for

each q, there is some variability about the nominal 95% line. We also see that coverage is near
the nominal level for many taxa, regardless of q. However, for q = 40 and q = 60, we see that
coverage dips below the nominal level and that there is a large amount of variation for taxa
with rank order greater than 34. Additionally, for q = 60, we see that coverage increases again
for taxa with rank order greater than 40; for the lowest abundance taxa, coverage is near one.

This investigation led to a second question: do the taxa for which we have poor coverage
depend on M , the read depth? We studied this by running 50 replicates of this simulation
for q = 60 and qobs = 7, but with M ∼ DiscreteUniform(103, 104) to yield smaller read
depths. In Figure S8, we see that the taxa with poor coverage have shifted to a higher rank
order, indicating that read depth does influence the coverage of our proposed method. This
matches with our expectations: shorter read depth leads to more taxa that are observed in low
abundance, which leads to decreased coverage.

Taken together, these results suggest that our method provides coverage control for high-
and moderate-abundance taxa and for very rare taxa. However, our method does not provide
coverage control for rare (but not very rare) taxa. One explanation for this phenomenon is our
Bayesian approach: we control average coverage, but we have no guarantee to control coverage
for each individual taxon. Additionally, we are using here a frequentist evaluation metric.
Low coverage for somewhat rare taxa may also be explained as a logical result of the input
data: for somewhat rare taxa, W is near zero for all samples (in fact, the variance of W across
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Figure S7: Coverage of nominal 95% credible intervals for µ based on the efficiency-näıve
Bayesian estimator versus rank order in W , for q ∈ {10, 20, 40, 60} (clockwise from top left,
respectively) and qobs = 7, in a setting with no varying efficiency (Section 4.1 of the main
text). No filtering is performed prior to evaluation. The taxa are differentiated by color in the
electronic version of this manuscript.

Figure S8: Coverage of nominal 95% credible intervals for µ based on the efficiency-näıve
Bayesian estimator versus rank order in W , for q = 60 and qobs = 7 and M ranging from 103

to 104, in a setting with no varying efficiency (Section 4.1 of the main text). The boxplots
show Monte Carlo error over the 50 replications, and the taxa are differentiated by color in
the electronic version of this manuscript.
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samples tends to be lower than one). Since our proposed method does not borrow information
across taxa, we do not expect to perform well for taxa that are somewhat rare. For extremely
rare taxa, however, we have high coverage because our method essentially over-estimates the
variance.

3.5 Mean squared error decoupled into bias and variance

In Section 4 (main text) we presented results in terms of mean squared error. However, it is
also of interest to investigate whether or not the proposed estimator is biased.

We first investigate the average estimation bias of the efficiency-näıve Bayesian estimator in
the case where there truly is no varying efficiency (Section 4.1 of the main text); this simple
case provides us with a baseline to compare against our proposed varying-efficiency Bayesian
estimator. In Figure S9, we show this bias only for qobs = 7; we see similar patterns for all other
values of qobs. For each q ∈ {10, 20, 40, 60}, we show bias versus rank order in W . This allows
us to see patterns in over- or under-estimation. Here, we see that the efficiency-näıve Bayesian
estimator has small bias that decreases with rank order. However, as rank order increases, the
true concentration decreases towards zero. Therefore, it is somewhat unsurprising that bias
decreases with rank order. Of more interest is the observation that for high- and moderate-
abundance taxa, the efficiency-näıve Bayesian estimator does not uniformly over- or under-
estimate the true abundance. The small bias observed here suggests that the variance of the
efficiency-näıve Bayesian estimator is driving mean squared error.

In Figure S10, we show the average squared estimation bias of the näıve estimator, the
efficiency-näıve Bayesian estimator, and the proposed varying-efficiency Bayesian estimator in
the case where there truly is varying efficiency (Section 4.2 of the main text). Here, we see
that for σe = 0, the näıve estimator and efficiency-näıve Bayesian estimator have comparable
bias for many taxa, as we saw in Figure S9; for the highest-abundance taxa in this case
with no varying efficiency, the efficiency-naive and varying-efficiency Bayesian estimators are
nearly identical. The proposed varying-efficiency Bayesian estimator tends to under-estimate
other high abundance taxa, especially when the true variance of the efficiencies is small. As
σe increases, we see that the näıve estimator and efficiency-näıve Bayesian estimator both
have substantially more bias than the proposed varying-efficiency Bayesian estimator for high-
abundance taxa. For low abundance taxa, all three estimators have similar bias. While the
magnitude of bias observed in this example is larger than that in Figure S9, it is small compared
to the mean squared error seen in the main manuscript, suggesting that variance again plays
a large role in driving mean squared error.

3.6 Effect of model misspecification

The simulation results presented in Section 4 of the main manuscript are all in cases where the
distributions for µ, e, V , and W are correctly specified. In this section we investigate the per-
formance of our estimator under various misspecified data generating processes. Throughout
this section, we simulate data from varying efficiency models (i.e., such that V ar(ej) > 0).

We first investigated simulating data where the distributions for µ and/or e are misspecified
but the distributions of V and W are correctly specified. We consider the following possible
distributions for µ:

1. A gamma distribution: µij
iid∼ Gamma(αµ,j, βµ,j), where αµ,j

iid∼ Gamma(0.1, 10−4) for all
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Figure S9: Estimated bias versus rank order in W for the efficiency-näıve Bayesian estimator,
where qobs = 7, in a setting with no varying efficiency (Section 4.1 of the main text). The taxa
are differentiated by color in the electronic version of this manuscript.
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Figure S10: Estimated bias versus rank order in W for the näıve estimator (circles), efficiency-
näıve Bayesian estimator (triangles), and the proposed varying-efficiency Bayesian estimator
(squares), in a setting with differing levels of truly varying efficiency (Section 4.2 of the main
text). The taxa are differentiated by color in the electronic version of this manuscript.
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j and βµ,j = 0.5 for all j;

2. A non-central half-t distribution: µij
iid∼ |t2(aµ,j)|, where the non-centrality parameter is

distributed as aµ,j
iid∼ Uniform(0, 100) for all j

3. The correctly specified distribution: µij
iid∼ N(βj,Σjj) where βj

iid∼ N(0, 50) and Σjj
iid∼

Lognormal(0, 50) for all j

We consider the following distributions on e

1. A gamma distribution ej
iid∼ Gamma(0.5, 0.5) for all j

2. A half-t distribution with four degrees of freedom ej
iid∼ |t4(0)|

3. The correctly specified distribution: ej
iid∼ Lognormal(0, σ2

e)

We investigated the performance of our proposed approach under each combination of these
true distributions on µ and e.

We also considered settings in which the distributions for µ and e are correctly specified but
the distributions for V and/or W are misspecified. The distributions we considered for V are
the correctly specified Poisson distribution and a negative binomial distribution:

Vij | µij, σV,i ∼ NegativeBinomial(µij, σV,i),

where σV,i = 1 for all i. The distributions we considered for W are the correctly specified
multinomial distribution and a compound Dirichlet-Multinomial distribution:

αi· ∼ Dirichlet

(
eµi·∑q
j=1 ejµij

)
Wi· |Mi, µi· ∼ Multinomial(Mi, αi·).

For each combination of data-generating mechanisms that we studied, we used Stan to fit our
proposed varying-efficiency model using 4 chains per simulated dataset, each with 20,000 burn-
in iterations and 18,000 total iterations (8,000 total iterations for each of B = 50 simulations
for each data-generating model combination to investigate). We only display the results of
this estimator and the näıve estimator; we expect that results based on the efficiency-näıve
Bayesian estimator would follow similar patterns to the varying-efficiency Bayesian estimator,
but would suffer from the fact that there truly was varying efficiency (similar to the main
mansucript, Section 4.2). In all cases, we fix q = 40, qobs = 7, and n = 100, and simulate Mi

according to Mi ∼ DiscreteUniform(104, 105).

Figure S11 displays the results of this experiment (the top row shows the varying-efficiency
Bayesian estimator, while the bottom row shows the näıve estimator). We denote a gamma
distribution by “G”, a Poisson distribution by “P”, a multinomial distribution by “M”, a half-t
distribution by “H-t”, a negative binomial distribution by “NB”, and a compound Dirichlet
multinomial distribution by “CDM”. We compare all results to the correctly specified data-
generating mechanism N/N/P/M. Results for N/N/P/M are shown as the left-most results in
each plot.
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Figure S11: Performance of the proposed varying-efficiency Bayesian (top) and näıve (bottom)
estimators in estimating µ (stars) and V (crossed diamonds) versus data-generating model
combination for q = 40 and qobs = 7 in a setting with truly varying efficiencies. (A) Interval
coverage, (B) root mean squared error for µ and root mean squared prediction error for V , (C)
mean interval width.

We first discuss the varying-efficiency Bayesian estimator. In the correctly specified case,
coverage for µ and prediction interval coverage for V are both close to the nominal 95%. Moving
from left to right, we see that coverage for both µ and V decreases slightly if the distribution
for W or e alone is misspecified. If both µ and e are misspecified and µ is gamma-distributed,
then coverage decreases further. If the distribution for V is misspecified, then coverage for µ
suffers but coverage for V is maintained at near the nominal level. The lowest coverage for both
µ and V occurs when µ follows a half-t distribution. This phenomenon appears to be driven by
the adversarial nature of the half-t distribution: this is a very heavy-tailed distribution for µ.
To illustrate this, we display boxplots showing the distribution of the generated objects over
Monte Carlo replicates in Figure S12. The two boxplots for each data-generating mechanism
combination denote whether or not V was observed for the particular taxon. We see that in
the case of a noncentralized half-t distribution on µ, the observed and unobserved µ and V
values are most similar across all scenarios studied here – this appears to be the main driver
of the poor coverage observed in this case. In this setting there is little sparsity in V , and the
highest-abundance taxa are equally likely to be in qobs as the lowest abundance taxa. However,
in practice, typically high abundance taxa are those for which qPCR data is available. Thus,
our procedure is relatively robust to misspecifying the distribution on e, somewhat robust to
mild misspecification of the model on µ, but not robust to large departures from the true
data-generating distribution on µ.

The näıve estimator has consistently poor coverage, and in many cases has larger mean
squared error than the propose varying-efficiency Bayesian estimator. This was expected,
because there truly is varying efficiency in these experiments which the näıve estimator does
not take into account.
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Figure S12: Boxplots showing the distribution of the true values of µ, V , e, and W (clockwise
from top left) over Monte Carlo replications for each true data-generating combination in a
setting with truly varying efficiencies, q = 40, and qobs = 7. The distributions of each are
broken up by the indicator of whether or not Vj was observed; the left-hand boxplot for each
combination is the distribution for taxa 1–7 and the right-hand boxplot is the distribution for
taxa 8–40.

17



Our procedure appears to be more robust to misspecification of W than misspecification of
V (Figure S11). Coverage is near the nominal level if only W is misspecified, but if only V is
misspecified coverage decreases to below 75%. This appears to be driven by large mean squared
error for estimating µ for the high-abundance taxa; in contrast, prediction interval coverage
is maintained at nearly the nominal level. The distribution on V here is highly misspecified:
the Poisson distribution poorly approximates the negative binomial distribution with the given
parameters.

4 Computational details

4.1 Stan hierarchical model specifications

As mentioned in Section 3.2 (main text), we use Stan to fit all hierarchical models. This
allows substantial flexibility in how the models are specified—including specifying alternative
priors to reflect knowledge about the true data-generating process and utilizing alternative
parameterizations to improve model convergence. In particular, there are several methods for
so-called “efficiency tuning” (Chapter 22 of the Stan User’s Guide) that we have explored in
an effort to achieve a reasonable limit on computation time.

The first method is by changing control parameters passed to Stan. We use the No-U-Turn
Sampler (NUTS) algorithm by default; the primary parameters controlling the behavior of
this algorithm (specified through the control argument) are adapt delta (the target aver-
age proposal acceptance probability) and max treedepth (controls the maximum depth of a
NUTS tree). Changing these parameters may affect convergence speed, but also may affect
convergence itself.

The second method is by increasing the statistical efficiency. For example, a well-known issue
in Stan is that centered parameterizations can be slow to converge in some cases (see Section
22.7 of the Stan User’s Guide). An example of a centered parameterization involves parameter
µ and hyperparameters β and Σ:

µ ∼ N(β,Σ)

β ∼ N(0, 1)

Σ ∼ N(0, 1).

Indeed, hierarchical model (5) (main text) is specified in a centered form. In these settings, a
noncentered parameterization may help to speed up convergence; for the example given above,
the noncentered parameterization would place a simpler prior on a transformed parameter of
µ and then back-transform:

µ̃ ∼ N(0, 1)

µ =
√

Σµ̃+ β

β ∼ N(0, 1)

Σ ∼ N(0, 1).

We have implemented both a centered and a noncentered version of our proposed algorithm,
available in paramedic by specifying the centered argument. In all cases in the manuscript,
we have fit the noncentered model, and have found that it generally speeds up computation
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Table 1: Time comparison (in minutes) for analyzing a dataset with n samples and q total
taxa using hierarchical model (6) or (5). In all cases, qobs = 7.

n q Hierarchical model
Efficiency-näıve (6) Varying-efficiency (5)

100 27 86.22 200.85
100 37 111.10 324.40
200 27 359.19 550.06
200 37 301.50 1008.39

time compared to the centered model. We have also used wherever possible the log-transformed
version of a distribution, which can help in computing gradients of probability distributions
(especially for constrained objects, like count data).

A third method of speeding up computations is through vectorization. Here, the gradients
of log probability functions used in the hierarchical model are made simpler by working with
vectors (and fast linear algebra operations) rather than single variables or loops. Unfortunately,
while some parts of our proposed hierarchical model can be vectorized (e.g., the priors on e,
β0, and Σ), others cannot—the most notable example is the counts V , which are specified as
a matrix. The Poisson and Negative Binomial distributions (both of which can be specified
in paramedic) in Stan can be used on vectors but not arrays or matrices—Stan uses strong
typing, which is useful in many respects but can be limiting in others.

Finally, one could consider use a different programming method entirely. While Stan is
highly flexible (e.g., allowing a swap between a Poisson and Negative Binomial distribution for
V requires only a few lines of code in Stan), this flexibility can be constraining, as mentioned
above. It is possible that a bespoke algorithm (e.g., a Metropolis-Hastings within Gibbs
sampler) could be coded for our proposed hierarchical model (e.g., in C++) and could yield
faster computation time. However, we believe that the benefits offered by Stan outweigh the
cost of increased time, which remains less than optimizing new primers for measuring absolute
abundance.

4.2 Computation time for the proposed estimators

Table 1 displays the approximate time (in minutes) to run the proposed efficiency-näıve and
varying-efficiency Bayesian algorithms for 10,500 iterations (with 10,000 burn-in iterations)
with six chains for qobs = 7 and varying q and n. We ran these data analyses on a cluster
computer with six cores and 256 GB of memory, using one core per chain. The chains were
all initialized using random values for the model parameters. We generally observed that in-
creasing the sample size has a larger effect on computation time than increasing the number
of taxa. Additionally, the proposed varying-efficiency algorithm tends to have a longer compu-
tation time than the efficiency-näıve algorithm. One cell in the table does not fit the general
trends we observed: at n = 200, we observed a shorter computation time for q = 37 than
q = 27 for hierarchical model (6). This may be due to an anomalous load on the cluster at
time of running.
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5 Additional results from a study of the vaginal micro-

biome

In Section 5 of the main manuscript, we presented an analysis of the data from McClelland
et al. [2018] where we fit the model

log µi· ∼ Nq(β0 + β1Xi,Σ), (S4)

i = 1, . . . , n, where Xi = 1 if subject i is HIV-positive and Xi = 0 otherwise. In this section
we present two sensitivity analyses.

In the first sensitivity analysis, we do not adjust for HIV status. That is, we fit the model

log µi· ∼ Nq(β0,Σ), (S5)

i = 1, . . . , n, where β0 ∈ Rq. The same hyperparameters were chosen as in the original analysis
(see Section 5 of the main text). Our results are shown in Figure S13. By comparing this
figure to Figure 4 of the main text, we see that the estimated concentrations are extremely
similar across the covariate-adjusted and unadjusted models. Interval and point estimates are
available as Supplementary Data for the covariate-adjusted and unadjusted models.

We also performed a test-set analysis. After estimating the model parameters of both the
efficiency-näıve and varying-efficiency Bayesian estimators on the sampled 55 women, we pre-
dicted the observed qPCR values for the held-out 55 women. It is not straightforward to obtain
test-set predictions based on the näıve estimator, so we did not include this estimator in our
analysis. In Figure S14, we see that while test-set prediction interval coverage varies across
taxa, for many taxa the prediction interval coverage is at or above 75% (the average coverage
for both estimators across taxa is approximately 73%). The mean squared error is approxi-
mately on the same order as the jackknifed mean squared error observed in the leave-one-out
analysis.

We also compare our leave-one-out analysis from the covariate-adjusted analysis to our unad-
justed analysis and again draw similar conclusions. In Figure S15, we see that the conclusions
of the leave-one-out analysis are similar to those presented in the main manuscript (Section
5.3). In fact, prediction interval coverage is controlled for 13 out of 13 taxa (coverage was only
controlled for 12 out of 13 taxa in the covariate-adjusted model). Furthermore, we tend to
observe both a smaller RMSPE in the unadjusted model, along with a smaller variance in the
left-out efficiencies (Figure S16).

In the second sensitivity analysis, we vary the priors on the efficiency model and fit the
covariate-unadjusted model described above. In our original model, we chose ασ = 4 and
κσ = 3. Here, we present results obtained from setting ασ = 2 and κσ = 3 (a more diffuse
prior on the efficiency parameters). The results are shown in Figure S17. We see that varying
the priors on the efficiency model results in nearly identical point estimates of concentration
to both the adjusted analysis (Figure 4 in the main manuscript) and the unadjusted analysis
(Figure 4).

We compare the widths of the intervals in Figure S18. In general, we observe that intervals
derived from the sensitivity analysis (a covariate-unadjusted model) are wider than the origi-
nal covariate-adjusted analysis. This is unsurprising, since these intervals arose from a more
diffuse prior on the efficiencies. We also observed that the covariate-adjusted intervals are not
uniformly narrower than the intervals obtained from fitting the unadjusted model. In fact, the
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Figure S13: A. A heatmap showing posterior mean log concentrations for 20 taxa (the 13 taxa
with observed qPCR and seven randomly-sampled taxa) and all 55 samples from the unad-
justed analysis. Red indicates large concentration relative to the maximum in this subsample,
while blue indicates small concentration relative to the maximum in this subsample. B. The
relative abundance of taxa observed with qPCR versus the estimated relative abundance of the

taxa based on the variable-efficiency estimator. Specifically, Vij/
∑qobs

k=1 Vik is plotted against

µ̂ij/
∑qobs

k=1 µ̂ik. q
obs = 13 and n = 55 in this dataset.
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Figure S14: Left: Average coverage of nominal 95% prediction intervals for each taxon with
observed qPCR averaged over originally withheld study participants. Right: MSPE for each
taxon with observed qPCR. Top row: the unadjusted analysis. Bottom row: the covariate-
adjusted analysis. Triangles denote the efficiency-näıve Bayesian estimator and squares denote
the proposed varying-efficiency Bayesian estimator.
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Figure S15: Left: Average coverage of nominal 95% prediction intervals for the left-out taxon
averaged over study participants based on the unadjusted analysis. Right: MSPE on the left-
out taxon. Circles denote the näıve estimator, triangles denote the efficiency-näıve Bayesian
estimator, and squares denote the proposed varying-efficiency Bayesian estimator.

Figure S16: Boxplots showing the posterior distribution of estimated efficiencies in the unad-
justed analysis. Left: estimated efficiencies from the full data analysis and from an analysis
where G. vaginalis was left out. Right: estimated efficiencies from the full data analysis and
from an analysis where BVAB2 spp. was left out.
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Figure S17: A. A heatmap showing posterior mean log concentrations for 20 taxa (the 13
taxa with observed qPCR and seven randomly-sampled taxa) and all 55 samples from the
unadjusted analysis with prior parameters ασ = 2 and κσ = 3. In our original model, we
chose ασ = 4 and κσ = 3 (a less diffuse prior on the ej’s). Red indicates large concentration
relative to the maximum in this subsample, while blue indicates small concentration relative
to the maximum in this subsample. B. The relative abundance of taxa observed with qPCR
versus the estimated relative abundance of the taxa based on the variable-efficiency estimator.

Specifically, Vij/
∑qobs

k=1 Vik is plotted against µ̂ij/
∑qobs

k=1 µ̂ik. qobs = 13 and n = 55 in this
dataset. A color version of this figure can be found in the electronic version of the article.
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Figure S18: The widths of credible intervals for µij (circles) and prediction intervals for Vij
(triangles) across 3 variations on the data analysis: the covariate-adjusted analysis described
in the main text (light blue), the covariate-unadjusted analysis with varied hyperparameters
described in SI Section 6 (sky blue), and the covariate-unadjusted analysis described in SI
Section 6 (purple). The same data is shown with different y-axis scales in the left and right
panels.

covariate-adjusted credible intervals for µij are narrower than the unadjusted credible intervals
in 61% of taxon-subject pairs (see Supplementary Data). On average the covariate-adjusted
intervals were 6.4% wider than their unadjusted counterparts. This suggests that if covariate
information is available, it can be used to constrain the intervals for the concentrations.
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