Table S1. Chemical library.

Compound	Class	Company
3,4-Dihydroxybenzoic acid (protocatechuic	Hydroxybenzoic acid	Sigma-Aldrich
acid)		
γ-Valerolactone	Valerolactone	Sigma-Aldrich
Benzene-1,2-diol (catechol or pyrocatechol)	Benzene diol	Sigma-Aldrich
1,5-Dicaffeoylquinic acid	Caffeoylquinic acid	Sigma-Aldrich
(4 <i>R</i>)-5-(3',4'-dihydroxyphenyl)-γ- valerolactone	Phenyl-γ-valerolactone	Toronto Research Chemicals
2-Furoylglycine	N-containing compound	Sigma-Aldrich
2-Piperidone (delta-Valerolactam)	N-containing compound	Sigma-Aldrich
3-(4'-hydroxy-3'-methoxyphenyl)propanoic acid (Dihydroferulic acid)	Phenylpropanoic acid	Sigma-Aldrich
3-(4'-hydroxyphenyl)propanoic acid	Phenylpropanoic acid	Sigma-Aldrich
3',4'-Dihydroxyphenylacetic acid	Phenylacetic acid	Sigma-Aldrich
3-Methoxytyrosine (3-O-methyldopa)	N-containing compound	Maybridge
3-Methylglutaconic acid	Dicarboxylic acid	Vitas-M Laboratory, Ltd.
4-Hydroxybenzoic acid	Hydroxybenzoic acid	Sigma-Aldrich
2-Hydroxy-2-(4'-hydroxyphenyl)acetic acid	Hydroxy-2-	Ark Pharm, Inc.
(4'-hydroxymandelic acid)	(phenyl)acetic acid	
3,5-Dihydroxy-4-methoxybenzoic acid (4-O- methylgallic acid or 5-Hydroxyisovanillic acid)	Hydroxybenzoic acid	Extrasynthese
5-(3',4'-Dihydroxyphenyl)valeric acid (5- (3',4'-Dihydroxyphenyl)pentanoic acid)	Phenylvaleric acid	ENAMINE
alpha-Hydroxyhippuric ((benzoylamino)hydroxyacetic acid)	N-containing compound	Sigma-Aldrich
3',4'-Dihydroxycinnamic acid (caffeic acid)	Cinnamic acid	Sigma-Aldrich
(+)-Catechin	Flavan-3-ol	Extrasynthese
(+)-Catechin-3-gallate	Flavan-3-ol	Sigma-Aldrich
5-caffeoylquinic acid (Chlorogenic acid)	Caffeoylquinic acid	Sigma-Aldrich
3-(3',4'-Dihydroxyphenyl)propanoic acid (dihydrocaffeic acid)	Phenylpropanoic acid	Extrasynthese
(–)-Epicatechin	Flavan-3-ol	Extrasynthese
(–)-Epicatechin-3-gallate	Flavan-3-ol	Extrasynthese
(–)-Epigallocatechin-3-gallate	Flavan-3-ol	Extrasynthese
4'-Hydroxy-3'-methoxycinnamic acid (ferulic acid)	Cinnamic acid	Extrasynthese
3,4,5-Trihydroxybenzoic acid (gallic acid)	Hydroxybenzoic acid	Fluka
(+)-Gallocatechin	Flavan-3-ol	Sigma-Aldrich
(+)-Gallocatechin-3-gallate	Flavan-3-ol	Sigma-Aldrich
Glycitein 7-O-glucoside (glycitin)	Isoflavone	Extrasynthese
Hippuric acid	Hippuric acid	Extrasynthese

4'-Hydroxy-3'-methoxyphenylacetic acid (homovanillic acid)	Phenylacetic acid	Extrasynthese
3'-Hydroxy-4'-methoxycinnamic acid	Cinnamic acid	Extrasynthese
Laricitrin	Flavonol	Extrasynthese
Luteolin	Flavone	Extrasynthese
Naringenin	Flavanone	Extrasynthese
3-caffeoylquinic acid (neochlorogenic acid)	Caffeoylquinic acid	TransMIT
2'-Hydroxycinnamic acid (<i>o</i> -coumaric acid)	Cinnamic acid	Sigma-Aldrich
4'-Hydroxycinnamic acid (p-coumaric acid)	Cinnamic acid	Sigma-Aldrich
Phenylacetic acid	Phenylacetic acid	Sigma-Aldrich
Phloretin	Dihydrochalcone	Sigma-Aldrich
Phloretin-2'-O-glucoside (phloridizin)	Dihydrochalcone	Sigma-Aldrich
Benzene-1,3,5-triol (phloroglucinol)	Benzene triol	Sigma-Aldrich
Procyanidin B1	Flavan-3-ol	Extrasynthese
Procyanidin B2	Flavan-3-ol	Sigma-Aldrich
Benzene-1,2,3-triol (pyrogallol)	Benzene triol	Sigma-Aldrich
Quercetin	Flavonol	Fluka
Quercetin-3-glucuronide	Flavonol	Extrasynthese
Quinic acid	Sugar acid	Roth
Resveratrol	Stilbene	Sigma-Aldrich
Salvianolic acid A	Cinnamic acid	Sigma-Aldrich
4'-Hydroxy-3',5'-dimethoxycinnamic acid	Cinnamic acid	Fluka
(sinapic acid)	Tritornonoid	Sigma Aldrich
	Interpenoid	Sigma-Aldrich
4-Hydroxy-3-methoxybenzoic acid (vanillic	Hydroxybenzoic acid	Extrasynthese
acid)		

Table S2. Extended Table 1 summarizing the spheroid integrity (average value) and the standard deviation (SD) for each compound. 3D spheroids were treated with all the compounds listed below at 50 μ M, from at least four independent experiments. After 72h treatment, the spheroid integrity parameter was calculated as a percentage of the control (DMSO 0.05%).

COMPOUND	Spheroid	Standard
	Integrity	Deviation
	(Average)	
(+)-Gallocatechin-3-gallate (GCG)	1.0	1.1
Benzene-1,2,3-triol (pyrogallol)	1.5	1.6
(-)-Epigallocatechin-3-gallate (EGCG)	1.6	0.6
Ursolic acid	1.9	2.5
(+)-Gallocatechin	9.7	4.9
3,4,5-Trihydroxybenzoic acid (gallic acid)	34.0	19.1
5-Fluorouracil	39.0	10.8
(4 <i>R</i>)-5-(3',4'-dihydroxyphenyl)-γ-valerolactone	44.7	22.3
Benzene-1,2-diol (catechol or pyrocatechol)	50.7	16.3
Naringenin	54.7	6.3
Resveratrol	55.6	27.7
Luteolin	58.9	28.2
2'-Hydroxycinnamic acid (o-coumaric acid)	63.8	36.5
3-(3',4'-Dihydroxyphenyl)propanoic acid (dihydrocaffeic acid)	65.2	14.7
3',4'-Dihydroxyphenylacetic acid	67.6	18.8
5-(3',4'-Dihydroxyphenyl)valeric acid	68.7	7.9
Glycitein 7-O-glucoside (glycitin)	76.1	10.1
4'-Hydroxy-3'-methoxycinnamic acid (ferulic acid)	80.1	13.4
2-Furoylglycine	80.4	16.7
4'-Hydroxycinnamic acid (p-coumaric acid)	83.7	10.3
(-)-Epicatechin-3-gallate	85.2	21.1
3-Methylglutaconic acid	86.9	7.8
Salvianolic acid A	87.3	4.1
3,5-Dihydroxy-4-methoxybenzoic acid (4- <i>O</i> -methylgallic acid or 5-Hydroxyisovanillic acid)	88.0	15.7
Quinic acid	89.9	10.0
Phloretin-2'-O-glucoside (phloridizin)	91.0	17.0
3'-Hydroxy-4'-methoxycinnamic acid (isoferulic acid)	91.9	10.4
Quercetin-3-glucuronide	92.0	10.5
1,5-Dicaffeoylquinic acid	92.8	14.1
3',4'-Dihydroxycinnamic acid (caffeic acid)	93.0	18.5
3-caffeoylquinic acid (neochlorogenic acid)	93.1	10.7
4'-Hydroxy-3'-methoxyphenylacetic acid (homovanillic acid)	93.5	12.0
4-Hydroxy-3-methoxybenzoic acid (vanillic acid)	94.0	7.4
4'-Hydroxy-3',5'-dimethoxycinnamic acid (sinapic acid)	94.1	10.5

4-Hydroxybenzoic acid	94.9	5.1
3,4-Dihydroxybenzoic acid (protocatechuic acid)	95.6	7.4
(+)-Catechin-3-gallate	95.8	9.5
Laricitrin	96.2	9.2
Hippuric acid	96.7	7.1
Benzene-1,3,5-triol (phloroglucinol)	97.2	24.6
γ-Valerolactone	98.3	2.6
Phenylacetic acid	98.4	8.7
3-(4'-hydroxy-3'-methoxyphenyl)propanoic acid (Dihydroferulic acid)	99.4	9.3
DMSO (0.05%)	100	9.1
2-Hydroxy-2-(4'-hydroxyphenyl)acetic acid (4'- hydroxymandelic acid)	100.1	5.5
Quercetin	100.1	22.6
Procyanidin B2	101.8	8.3
2-Piperidone (delta-valerolactam)	103.1	4.0
Procyanidin B1	104.2	11.0
5-caffeoylquinic acid (Chlorogenic acid)	104.5	7.3
alpha-Hydroxyhippuric ((benzoylamino)hydroxyacetic acid)	104.9	6.4
(-)-Epicatechin	105.0	4.1
(+)-Catechin	106.3	6.5
Phloretin	114.5	21.2
3-(4'-hydroxyphenyl)propanoic acid	115.9	13.9
3-Methoxytyrosine (3-O-methyldopa)	118.0	6.8

Figure S1. (A) Growth curves of HCT116 wild-type (red) and HCT116 EGFP (green) cell lines grown as monolayers in presence of vehicle (DMSO 0.05%) quantified as normalized cell index by *xCELLigence* System. (B) Dose response curves of HCT116 wild-type (red) and HCT116 EGFP (green) cell lines grown as monolayers for different concentration levels of 5-FU (1, 10, 100µM) for 72h, quantified as normalized cell index by *xCELLigence* System. Cell index was normalized to time point 24h corresponding to drug or vehicle addition. Dose-response curve of 3D multicellular spheroids (C) Dose-response curve of 3D multicellular spheroids (C) Dose-response curve of 3D multicellular spheroids HCT116 wild-type (red) and HCT116 EGFP (green) at different concentration levels of 5-FU (10, 30, 100µM) for 72h. Spheroid integrity was quantified by High Content Imaging (Perkin Elmer) and normalized to vehicle control (DMSO 0.05%). Data are expressed as mean ± SD obtained. All experiments were performed in triplicates. (D) Images of HCT116 wild-type (grey) and HCT116 EGFP (green) grown as monolayers (2D) and spheroids (3D). Images were acquired by High Content Imaging System Operetta (Perkin Elmer) with 10XLWD objective in brightfield and green fluorescent channels. Scale bars, 200 µm.

Figure S2. Z' factor was evaluated treating 3D HCT116 EGFP spheroids (n=27) with DMSO 0.05% (negative control) and 5-FU (50 μ M, positive control). Z' factor was calculated using the formula below (σ_p = the standard deviation of the positive control, σ_n = the standard deviation of the negative controls, μ_p = the mean of the positive control, and μ_n = the mean of the negative control). Spheroids were imaged on High Content Imaging System Operetta (Perkin Elmer) with 10XLWD objective in brightfield and green fluorescent channels (merged images). Scale bars, 200 μ m.

Figure S3. Results of the screening on 3D HCT EGFP forming spheroids treated with the chemical library at 50 μ M for 72h. Round white dots represent positive (5-FU) and negative (vehicle) (DMSO 0,05%) controls. The classification of the compounds in metabolites and native is reported in the legend. Spheroid integrity (SI) was quantified by High Content Imaging System Operetta (Perkin Elmer) and expressed as a percentage of SI of vehicle-treated controls (DMSO 0.05%). Molecules affecting the spheroid integrity between 0-80% (red line) were selected as primary hits (green dots), and they are also reported in Table 1. The data are the mean ± standard deviation from at least four independent experiments.

- Controls
- Metabolites
- Natives
 - Natives/Metabolites

Figure S4. Seven-point dose-response curve of butyric acid (ranging from 100 to 2000 μ M) on HCT116 EGFP forming spheroids (A), and formed spheroids (B) for 72h of incubation. Spheroid integrity (SI) was quantified by High Content Imaging System Operetta (Perkin Elmer) and expressed as a percentage of SI of vehicle-treated controls (DMSO 0.05%). IC₅₀ was calculated applying dose-response-inhibition nonlinear regression analysis. Data are expressed as mean ± SD. All experiments were performed from at least three independent experiments. HCT116 EGFP spheroids were imaged on High Content Imaging System Operetta (Perkin Elmer) with 10XLWD objective in brightfield and green fluorescent channels (merged images) at different concentrations. Scale bars, 200 μ m.

Figure S5. Six-point dose-response curves of GICs forming spheroids (from 500 cell) were calculated for etoposide (A), and an EGCG (B temozolomide (C) at different concentrations increasing from 0.3 to 1000 μ M. Drug treatment was carried out in GravityPLUSTM microplate for four days and repeated after transfer in GravityTRAPTM plate for other four days with fresh medium Spheroid integrity (SI) was quantified by High Content Imaging System Operetta (Perkin Elmer) and expressed as a percentage of SI of vehicle-treated controls (DMSO 0.05%). IC₅₀ was calculated applying dose-response-inhibition nonlinear regression analysis. Data are expressed as mean ± SD obtained. All experiments were performed from at least three independent experiments. GICS spheroids were imaged on the High Content Imaging System Operetta (Perkin Elmer) with 10XLWD objective in brightfield and red fluorescent channels (merged images) at different compound concentrations. Scale bars, 200 µm.

Figure S6. Seven-point dose-response curves of GICs forming spheroids (from 2000 cells) treated with (A) etoposide, (B) quercetin, (c) isorhamnetin and (D) quercetin-3-glucuronide at different concentrations (0 to 100 μM). Drug addition was carried out in GravityPLUS[™] microplate for four days and repeated after transfer it into a GravityTRAP[™] plate for other four days with fresh medium. Spheroids were imaged in red and green channel by High Content Imaging System Operetta (Perkin Elmer) to evaluate spheroid reduction (spheroid integrity SI) and apoptosis, respectively. These parameters were expressed as a percentage of vehicle-treated controls (DMSO 0.05%). Dose-response inhibition nonlinear regression analysis was applied. Data are expressed as mean ± SD obtained. All experiments were performed from at least three independent experiments. GICS spheroids were imaged on High Content Imaging System Operetta (Perkin Elmer) with 10XLWD objective in brightfield, green and red fluorescent channels (merged images) at different concentrations. Scale bars, 200 μm.

