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Text S1. Methods used for this review 

 

We used three sources of information. 

1. The online portal LITTERBASE (http://litterbase.org) is a regularly updated database on 

the global distribution and composition of litter pollution and its impacts on biota [1, 2]. 

The data held in the portal are taken from peer-reviewed publications (2459 studies in 

January 2021) and are fed manually into a database using standardised protocols. Striving 

for a comprehensive picture, the scientific literature is continuously screened for new 

articles, and bulk updates are performed periodically. 

2. This database was then extensively analysed for the report “Impacts of plastic pollution 

in the oceans on marine species, biodiversity and ecosystems” [3]. For the report, further 

extensive literature searches were conducted using appropriate keywords. 

3. To augment these two extensive libraries of publications, we conducted literature 

searches on Google Scholar in March 2022 using appropriate keywords such as ‘plastic 

pollution, ‘litter’ in various combinations with ‘ecosystem’, ‘ecosystem functioning’, 

‘ecosystem services’, and ‘multiple stressor’. Importantly, whenever a relevant 

publication was found, we also checked the references cited within that publication as 

well as publications which cited that publication. 

Many previous reviews (see Results) have already published good summaries of (1) 

macroplastic and microplastic abundances, compositions, and distributions, (2) possible 

origin and pathways, and (3) presence of plastics in biota. Therefore, we instead focused on 

extracting and summarizing all the published observational, correlational, or (at best) 

experimental evidence that plastic pollution harms these already threatened ecosystems. 

However, in the supplements, we also review much of the literature which merely reports 

on the presence of microplastics in mangroves (Text S3) and seagrasses (Text S4). 
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Text S2. Brief description of marine ecosystems, their ecosystem services and man-made 

threats 

 

Mangroves 

Mangrove forests consist of specialized salt-tolerant shrubs and small trees which can 

survive in brackish or saline water and are found in the transition area between the 

terrestrial coastlines and the ocean of the tropics and the subtropics. Estimates for the 

total area covered by mangrove forests in 2000 vary substantially from 83495 to 173067 

km2, with mangroves found 118 countries on all continents except Antarctica [4, 5]. An 

estimate for 2010 is 137600 km2 [6], and two estimates for 2016 are 135870 km2 [7] and 

160143 km2 [8]. 

Ecosystem services include coastal protection (e.g., against storm surges and tsunamis), 

erosion protection, food and wood production, carbon sequestration, nutrient cycling, 

water purification, and recreation [9-23]. 

Mangrove ecosystems face a combination of several stressors besides plastic pollution 

[24]. Habitat loss and fragmentation are probably the most important ones as up to 35% of 

all mangroves have already been destroyed, and possibly more, often for aquaculture or 

development [4, 7, 8, 18, 25-27]. However, rates of annual loss were estimated to be only 

0.13% for the period of 2000-2016 which is substantially lower than estimates for pre-2000 

rates [8]. Climate change and the associated sea-level rise and increased storm frequency 

and severity are additional and increasing stressors, leading to erosion and land subsidence 

[12, 18, 28-30]. Further stressors are altered hydrological regimes, eutrophication, 

pollution, exotic species, and overharvesting of wood [18, 31]. To maintain mangrove 

ecosystems will also require drastic changes in human activities and widespread 

conservation measures [4, 24, 32]. 

 

Sea grasses 

Seagrasses are flowering marine plants which form extensive underwater meadows in 

shallow waters (typically down to 60 m) and constitute a unique, productive, and highly 

diverse ecosystem found on all continents except Antarctica [33]. They are a critical habitat 

for endangered dugongs, manatees, and sea turtles [34] and provide various ecosystem 

services: disease control, fertilizer and food production, carbon sequestration, coastal 
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protection, nutrient cycling, sediment production, water purification, and recreation [16, 

17, 35-38]. Together with coral reefs and mangroves, seagrass meadows are one of the 

most productive coastal habitats [39] but their ecosystem services remain understudied in 

comparison to those of coral reefs and mangroves [11]. 

Seagrass ecosystems also face a combination of several stressors [40-42] besides plastic 

pollution: worsening water quality due to runoff of sediments, nutrients, changing salinity, 

and toxic chemicals [34]; climate change [34, 43, 44]; invasive species, disease, and physical 

disturbance due to dredging and boating effects [40]; and accelerating habitat loss (30-

50%, see [45-48]) due to coastal development, damming, and other factors. To maintain 

seagrass ecosystems will also require drastic changes in human activities and widespread 

conservation measures [34, 49-52]. 
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Text S3. Additional information about microplastics in mangroves 

 

A study in Colombia compared microplastic densities in mangrove forest sediments close 

to and far away from populated centers [53]. 734 microplastics/1 kg of dry weight were 

found in the three sites near centers, and 1090 microplastics/1 kg of dry weight in the 

three sites far away (across all sites, the mean was 912, and the range was 31-2863). 

Along the Atrato River in Colombia, microplastic density was 91.3 items/100 m3 in four 

different habitats of which one was mangroves [54]. Very high microplastic concentrations 

were also found in six mangrove forests in Brazil, with a mean of 10782 microplastics/kg 

[55]. 

Examining the sediments of five mangrove sites in Iran, a mean density of 27.2 

microplastics/1 kg of dry sediment was detected (range 19.5-34.5), with fibers and 

fragments being the most common types while films and pellets were much more 

uncommon [56]. 

Examining sediments sampled within seven intertidal mangroves habitats in Singapore, 

microplastics were found in all of them [57]. A mean of 36.7 microplastics/1 kg of dry 

sediment was found (range 12.0-62.8). 

In Indonesian mangrove, microplastics were found up to a depth of 30 cm, with films and 

fibers being most abundant [58].  

In a Brazilian estuary which includes mangrove areas, 26.1 microplastics/100 m3 were 

detected in water samples [59]. Sampling 12 mangrove creeks in the same estuary, the 

density of macro- and microplastics was 4.77 items/100 m3 [60]. 

In the same estuary, three catfish species had ingested plastics (18% of Cathorops spixii 

individuals, 33% of C. agassizii individuals, and 17% of Sciades herzbergii individuals) [61]. 

Contaminated fish contained 1-10 microplastics, and one C. agassizii individual was found 

entangled in a nylon monofilament net in 2006. In the same estuary, 64% of all individuals 

of an economically important fish species, the Acoupa weakfish (Cynoscion acoupa), had 

ingested microplastics, with 97% being plastic fibers [62]. In fact, all of the sampled adults 

were contaminated. 

Thirty out of 32 species of mangrove fish species from southern China contained 

microplastics (mean 2.83 ± 1.84 items/individual, range 0.6-8.0 items/individual), with 

larger fish containing more microplastics [63]. Relatively few microplastics were also found 
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in mudskipper fish in mangrove forests in southern Iran [64]. In Hong Kong, every one of 49 

individuals representing four crab species had microplastics in their digestive or respiratory 

systems, with a mean of 61 microplastics per individual [65]. Microplastics were also 

detected in hard clams taken from a Malaysian mangrove forest [66]. Near Jakarta, 

microplastics were found in five species of fish consumed by the mangrove-dwelling little 

black cormorant (Phalacrocorax sulcirostris) [67]. 
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Text S4. Additional information about microplastics and leached chemicals in seagrass 

meadows 

 

Several studies have demonstrated that seagrass meadows can trap microplastics and 

may thus be another sink for microplastics. These studies mostly relied on showing that 

there were more microplastics in the seagrass meadows than in adjacent unvegetated 

habitats. For example, in seagrass (Enhalus acodoides) meadows in Hainan, China, 

microplastic density ranged from 80.0 to 884.5 items/kg of dry sediment [68]. The trapping 

effect was also demonstrated: sediments with seagrass growing on them had two to three 

times more microplastics than sediments from unvegetated plots. In a later study in 

different localities, eight comparisons of seagrass sediments with sediments from adjacent 

unvegetated sites also demonstrated higher microplastic concentrations in the seagrass 

sediments in each case (see [69]; one-sample sign test, P = 0.008). 

In an eelgrass bed in Orkney, Scotland, microplastics were found in samples of seawater, 

sediments and its associated biota, and eelgrass blades and its associated biota, with 94% 

of samples containing microplastics (of which > 50% were fibers) [70]. This study also 

showed that seagrass sediments (113000 microplastics/m3) trapped more microplastics 

than clean sandy sediments (68000 microplastics/m3). 

In the Florida Keys, seven comparisons of seagrass sediments with sediments from 

adjacent unvegetated sites showed that, on average, seagrass sites had higher microplastic 

concentrations; however, the statistical difference was weak [71]. 

In Mediterranean seagrass meadows, microplastics accumulated mainly along the inner 

margin of the meadows. They were predominantly trapped there because the reduction of 

the current’s flow velocity within the meadow facilitates sedimentation and hinders the 

resuspension of particles [72]. 

The trapping effect was further corroborated by three experimental studies. Two decades 

ago, the ability of seagrass meadows to trap sestonic particles was demonstrated 

experimentally with suspended fluorescent tracer particles (using both biological and intert 

tracer particles). Seagrass canopies trapped up to four times more particles than the 

unvegetated and plankton controls [73]. Another experimental study used eelgrass 

(Zostera marina), a common seagrass species, kept in laboratory tanks [74]. While bare 

sand did not retain microplastics, the seagrass canopy retained them. The probability of 
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retention increased with the plastic density and the canopy density and decreased with the 

water velocity. A similar experiment reached similar conclusions [75]. Within an 

experimental field flume setup, microplastics were trapped in three biogenic habitats: 

seagrasses, macroalgae, and scleractinian corals. More than 90% of the microplastics were 

trapped within the sediment which is thus the main sink for microplastics. Seagrasses had 

the lowest trapping potential, and corals the highest one. This trapping effect is likely due 

to the near-bed turbulent kinetic energy, which is a hydrodynamic process that causes 

sediment trapping. Less than 10% of the microplastics adhered to the benthic structures, 

and architectural complexity and species cuticle characteristics of these benthic structures 

were identified as key contributors to higher plastic adhesion. 

Only two studies had less convincing or contradictory evidence concerning this trapping 

potential of seagrass meadows. A study in Portugal also showed that microplastics were 

trapped in seagrass habitats [76]. While there were more microplastics in the sediments of 

seagrasses than in the sediments of adjacent unvegetated plots when subtidal plots were 

compared, the results were reversed when intertidal plots were compared. 

Mirroring the study by Huang et al. [69], eight comparisons of seagrass sediments with 

sediments from adjacent unvegetated sites did not show any significant differences in 

microplastic concentrations [77]. Despite most studies (5.5 out of 7 or 79%) showing more 

microplastics in seagrass sediments compared to adjacent unvegetated sediments, 

Unsworth et al. [77] claimed that “the contamination reflects a general build-up of 

microplastics in the wider environment rather than becoming concentrated within seagrass 

as an enhanced sink” and that “there is limited field evidence that seagrass meadows do 

accumulate microplastics at higher concentrations than surrounding sediments.” In our 

opinion, it appears to be rather subjective what should be considered limited versus 

considerable evidence. Fact is that the majority of studies so far contradict Unsworth et 

al.’s [77] conclusion. Therefore, we conclude that the current evidence points more 

strongly towards seagrass meadows, just like other structurally complex habitats (e.g., 

coral reefs and mangroves), trap microplastics and thus can be considered a sink for 

microplastics. Furthermore, our conclusion is backed up by experimental evidence which 

clearly demonstrated the trapping potential of benthic organisms with a complex 

architecture and rough surface [73-75]. 
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Accordingly, numerous other studies have also detected microplastics in seagrass 

meadows. Examining the sediments of seagrass ecosystems in the Saudi Arabian Red Sea, 

great variation was detected, ranging from 10 to 160 microplastics (size of > 1 mm) per m2 

of sediment [78]. Microplastics were also found in Balearic sediments adjacent to Posidonia 

oceanica seagrass meadows [79] and in Indian sediments within seagrass meadows [80]. 

Microplastics were also found in the sediment of seagrass meadows along the Spanish 

coast (68-3819 items/kg) [81]. Interestingly, both the spatial and temporal distribution 

could be explained by the recent intensification of the agricultural industry in the region. 

Spatially, areas close to agricultural areas with more plastic-covered greenhouses had 

higher microplastic concentrations, and these concentrations began to rise in the 1970s 

when this intensive agriculture took off. 

Microplastics were found in samples of sediments and benthos collected in several 

seagrass ecosystems in South Sulawesi, Indonesia [82]. 10 out of 51 individuals belonging 

to five benthos species contained microplastics, with a mean of 0.37 microplastics per 

individual. Microplastics were also detected in samples of seagrass blades, seawater, 

sediments, benthos, fishes, and invertebrates (sea cumumber, sea hare, sea urchin) 

collected in seagrass ecosystems in South Sulawesi, Indonesia [83-87]. 13 out of 46 

individuals belonging to four fish species contained microplastics, with a mean of 0.46 

microplastics per individual, and 11 out of 42 individuals belonging to three benthos 

species contained microplastics, with a mean of 0.38 microplastics per individual [86]. 

Many tropical seagrass communities are dominated by the turtle grass (Thalassia 

testudinum). In such a community near an urban center of Belize, microplastics were found 

on 75% of all grass blades, with 81% of microplastics being fibers [88]. Microplastics were 

also detected on 55-63% of the surfaces of three species of intertidal seagrasses 

(Cymodocea rotundata, Cymodocea serrulata, Thalassia hemprichii) growing around 

Singapore, with a little less than one microplastic item per seagrass blade [89].  

Near Corsica, researchers sampled the invertebrate community colonizing a seagrass 

species (Posidonia oceanica) [90]. The invertebrates themselves are prey for fish and other 

species, and 27% of the invertebrates contained fibers of viscose (also called rayon, which 

is a cellulose-based fiber often used in clothing), with a mean of approximately one fiber 

per individual. Some of the dyes used to colour these fibers may be carcinogenic for 

vertebrates. Since microplastics are found on the vegetation and within the invertebrates 
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living on it, any herbivores or predators eating these food items likely also ingest 

microplastics. Thus microplastics are introduced into marine food webs. Corroborating this 

assumption was a study which found a mean of one microplastic per individual fish in the 

stomachs of seagrass fishes caught along Saudi Arabia’s Red Sea coast [91]. 

A few studies also focused on chemicals leached from plastics. Examining the sediments 

of seagrass ecosystems in the Saudi Arabian Red Sea, various metals and PAHs were 

detected, but concentrations of both contaminant groups were relatively low [78]. 

Negative effects of BPA on the growth of a seagrass species (Cymodocea nodosa) were 

found in laboratory studies [92-94], but whether BPA has the same effect in natural 

ecosystems remains, to our knowledge, unknown. 
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