Supplementary Material

Plasma Sphingomyelins in Late-Onset Alzheimer's Disease

Supplementary Figure 1. Synthesis and structure of sphingomyelin species. Addition of a choline group to ceramide by sphingomyelin synthase produces a sphingomyelin. Removal of that group from SM is facilitated by sphingomyelinase. The length, saturation, and hydroxylation status of the acyl chain generates structural variability between SM species.

Supplementary Figure 2. Histogram of total SM, the sum of all measured plasma SM levels.

Supplementary Figure 3. Total plasma SM levels in μ Mol/L separated by *APOE* status. Individuals carrying at least one copy of *APOE* 2 or *APOE* 4 were grouped together respectively, while *APOE* 3 represents carriers of two copies of *APOE* 3. Includes individuals in all three disease states. Box plot center line represents mean, upper and lower bounds and whiskers generated by Tukey method; outliers plotted as points beyond whiskers. **Supplementary Table 1.** Literature review of sphingolipid dysregulation in AD. Increase in sphingolipid or enzyme levels or activity is indicated in pink, whereas decreases in levels or activity are indicated in blue. Where results were equivocal in direction, cell is not colored and explanation is found in the notes column.

First Author	Date	Sphingolipid	Subjects	Tissue	Notes	
Li et al.	2019	SM	Human	Plasma	High SMs association with higher total brain volume on MRI	
Li et al.	2017	SM	Human	Plasma	Prospective association of high SM with dementia in African Americans	
Mielke et al.	2017	SM	Human	Plasma	High SM in men increases risk of AD, whereas high SM in women decreases risk of AD	
Mielke et al.	2011	SM	Human	Plasma		
Han et al.	2011	SM	Human	Plasma	Early AD metabolomics	
Oberacher et al.	2017	SM	Human	Platelets	SM(OH)C14:1 is part of lipidomic model to differentiate normal control from MCI patients	
Torretta et al.	2018	SM	Human	Serum		
Toledo et al.	2017	SM	Human	Serum	Risk of conversion from MCI to AD positively associated with SMOH C 14:1 and SM C16:0	
Oresic et al.	2011	SM	Human	Serum		
Torretta et al.	2018	SM	Human	CSF	SM C24:1	
Koal et al.	2015	SM	Human	CSF		
Fonteh et al.	2015	SM	Human	CSF		
Mielke et al.	2014	SM	Human	CSF		
Kosicek et al.	2012	SM	Human	CSF	Levels correlate with amyloid and tau	
Varma et al.	2018	SM	Human	Brain	Increased risk of conversion to incident AD associated with: SM C 16:0, SMC 16:1, SM OH C 14:1, SM C 18:1	
Diaz et al.	2015	SM	Human	Brain	More highly saturated in lipid rafts in cortex and cerebellum	
Chan et al.	2012	SM	Human	Brain		
He et al.	2010	SM	Human	Brain		
Bandaru et al.	2009	SM	Human	Brain	In grey matter of APOE4 AD verses APOE3 AD	
Soderberg et al.	1992	SM	Human	Brain		
Bandaru et al.	2009	SM	Human	Brain	Grey mater	
Pettegrew et al.	2001	SM	Human	Brain		
Lin et al.	2017	SM	Rat	Plasma	Metabolomics identified sphingolipid metabolism as dysregulated, SM 18:1/24:1 and SM 18:0/2:0 decreased	
Tajima et al.	2013	SM	Mouse	Plasma		

Tajima et al.	2013	SM	Mouse	Brain		
Gonzalez-	2014	SM	Mouse	Brain	Saturated SMs increase in hippocampus, unsaturated decreased in	
Dominguez et al.					cortex, long chain SMs decreased	
Fabelo et al.	2012	SM	Mouse	Brain	Within lipid rafts	
Kim et al.	2018	Cer	Human	Plasma	Lipid species found in plasma HDL and LDL/VLDL	
Kim et al.	2017	Cer	Human	Plasma		
Mielke et al.	2017	Cer	Human	Plasma	High Cer increases AD risk in men	
Mielke et al.	2011	Cer	Human	Plasma	Not significant but higher trended towards disease progression	
Han et al.	2011	Cer	Human	Plasma		
Mielke et al.	2010	Cer	Human	Plasma	Ceramides decreased in MCI versus NC, but in MCI group higher	
					Cers were predictive of cognitive decline	
Torretta et al.	2018	Cer	Human	Serum		
Mielke et al.	2012	Cer	Human	Serum	Increased serum ceramides increases risk of AD in women	
Fonteh et al.	2015	Cer	Human	CSF	Increased in prodromal disease, decreased with memory	
					impairment	
de Wit et al.	2017	Cer	Human	Brain	Cer increased in astrocytesin AD with capillary cerebral amyloid	
					angiopathy compared to AD brain	
Filippov et al.	2012	Cer	Human	Brain		
He et al.	2010	Cer	Human	Brain		
Bandaru et al.	2009	Cer	Human	Brain	White matte	
Bandaru et al.	2009	Cer	Human	Brain	In grey matter of APOE4 AD verses APOE3 AD	
Cutler	2004	Cer	Human	Brain	Advanced AD	
Han et al.	2002	Cer	Human	Brain	Cers elevated early in AD, decline in late stages of AD	
den Hoedt	2017	Cer	Mouse	Brain	In transgenic human APOE4 mice, compared to WT	
Fonteh et al.	2015	aSMase	Human	CSF		
de Wit et al.	2017	aSMase	Human	Brain	aSMase increased in microglia in AD brain with capillary	
					cerebral amyloid angiopathy compared to AD brain	
He et al.	2010	aSMase	Human	Brain		
Lee et al.	2014	aSMase	Mouse	Blood		
Lee et al.	2014	aSMase	Mouse	Brain		
Lu et al.	2019	SM synthase	Mouse	Brain	Inhibition of SM synthase 1 ameliorates Aβ in mouse	
Hsiao et al.	2013	SM synthase	Human	Brain	Elevated SM synthase activity increases A ^β	
Lin et al.	2017		Rat	Brain	Metabolomics identified sphingolipid metabolism as dysregulated	

Supplementary Table 2. Frequency of *APOE* genotypes in each disease state. Percentage of each genotype overall is in farthest right column, and percentage within each group in parentheses.

APOE Genotype Frequency									
	Normal	Pre-converter	MCI/AD	% of					
APOE	Control (n=71)	(n=28)	(n=46)	Total					
2/2	1 (1.4%)	0	1 (2.2%)	1.38					
2/3	0	0	4 (8.7%)	2.76					
3/3	42 (59%)	23 (82%)	21 (46%)	59.31					
3/4	16 (23%)	5 (18%)	18 (39%)	26.90					
4/4	1 (1.4%)	0	0	1.38					
2/4	1 (1.4%)	0	1 (2.2%)	1.38					