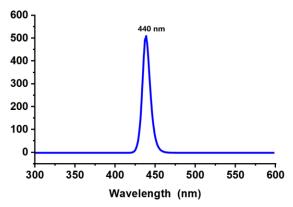
Supplementary information

Iron-mediated ligand-to-metal charge transfer enables 1,2diazidation of alkenes

Zhang et al.

Table of Contents


1. Supplementary Methods	3
2. Supplementary Discussion	4
2.1 Reaction condition optimization	4
2.2 General procedure for alkene diazidation reaction	8
2.3 Synthetic utilizations	25
2.4. Mechanistic studies	28
3. Supplementary Notes	31
3.1 Copies of ¹ H NMR, ¹³ C NMR, ¹⁹ F NMR spectra	31

1. Supplementary Methods

All reactions were performed in flame-dried glassware using conventional Schlenk techniques under a static pressure of nitrogen unless stated otherwise. Liquids and solutions were transferred with syringes. Solvents were dried and purified following standard procedures. Technical grade solvents for extraction or chromatography (npentane, ethyl acetate, and ethanol) were distilled prior to use. Analytical thin layer chromatography (TLC) was performed on ALUGRAM® Xtra SIL G/UV254 TLC-Sheets by Macherey-Nagel. Flash column chromatography was performed on silica gel 60 (40-63 µm, 230-400 mesh, ASTM) by Grace using the indicated solvents. ¹H, $^{13}\text{C},$ and ^{19}F NMR spectra were recorded in CDCl_3 on Bruker AV400 or AV500 instruments. Chemical shifts are reported to 0.01 ppm for ¹H NMR to 0.01 ppm for ¹³C NMR and ¹⁹F NMR spectra. Reference peaks for chloroform in ¹H NMR and ¹³C NMR spectra were set at 7.26 ppm and 77.0 ppm, respectively. Data were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), and integration. Gas liquid chromatography (GLC) was performed on an Agilent Technologies 7820A gas chromatograph equipped with a HP-5 capillary column (30 m \times 0.32 mm, 0.25 μ m film thickness) by Agilent Technologies/CS-Chromatographie Service using the following program: N₂ carrier gas, injection temperature 250 °C, detector temperature 300 °C, flow rate: 1.7 mL/min; temperature program: start temperature 40 °C, heating rate 10 °C/min, end temperature 280 °C for 10 min.

2. Supplementary Discussion

2.1 Reaction condition optimization

Supplementary Figure 1. Emission spectra of the blue LED light and typical reaction setup.

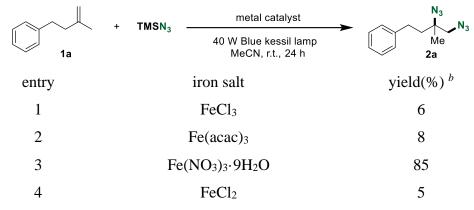
Supplementary Table 1. Cu catalyst screening

\sim	+ TMSN ₃	metal catalyst	\rightarrow \wedge \wedge N_3
1a	· · · · · · · · · · · · · · · · · · ·	40 W Blue kessil lamp MeCN, r.t., 24 h	Me 2a
entry		copper salt	yield(%) ^b
1		CuCl ₂	0
2		CuCl	0
3		CuBr ₂	0
4		CuBr	0
5		Cu(OAc) ₂	0
6		Cu(acac) ₂	0
7		CuCN	0

[a] Reaction conditions: 1a (0.20 mmol, 1.0 equiv), TMSN₃ (1.0 mmol, 5.0 equiv), Cu catalyst (0.24 mmol, 1.2 equiv) and CH₃CN (2 mL), blue

LEDs, 24 h. [b] Yields were determined by analysis of the crude ${}^{1}H$ NMR spectra using CH₂Br₂ as an internal standard.

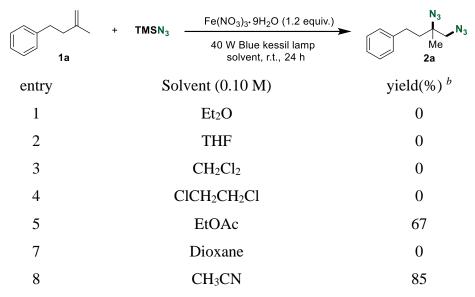
prementary Table 2. Win cataryst servening				
	+ TMSN ₃	\rightarrow N_3		
1a	40 W Blue kessil lamp MeCN, r.t., 24 h	Me 2a		
entry	manganese salt	yield(%) ^b		
1	Mn ₂ (CO) ₁₀	0		
2	Mn(CO) ₅ Br	0		
3	MnBr ₂	0		
4	Mn(OAc) ₃	21		
5	Mn(OAc) ₂	0		
6	Mn(CO) ₅ I	0		
7	Mn(OTf) ₂	0		
[a] Deaction of	anditions: 10 (0.20 mmal 1.0 aquiv)	\mathbf{TMSN}_{10}		


Supplementary Table 2. Mn catalyst screening

[a] Reaction conditions: **1a** (0.20 mmol, 1.0 equiv), TMSN₃ (1.0 mmol, 5.0 equiv), Mn catalyst (0.24 mmol, 1.2 equiv) and CH₃CN (2 mL), blue LEDs, 24 h. [b] Yields were determined by analysis of the crude ¹H NMR spectra using CH₂Br₂ as an internal standard.

Supplementary Table 3. Co catalyst screening

	+ TMSN ₃	\rightarrow N_3 N_3
1a	40 W Blue kessil lamp MeCN, r.t., 24 h	Me 2a
entry	cobalt salt	yield(%) ^b
1	$CoCl_2$	0
2	CoBr ₂	0
3	CoI ₂	0
4	CoCl ₂ ·dppe	0
5	Co(OAc) ₂ ·4H ₂ O	0
6	Co(salen)Cl	0
7	$Cu(acac)_2$	0


[a] Reaction conditions: **1a** (0.20 mmol, 1.0 equiv), TMSN₃ (1.0 mmol, 5.0 equiv), Co catalyst (0.24 mmol, 1.2 equiv) and CH₃CN (2 mL), blue LEDs, 24 h. [b] Yields were determined by analysis of the crude 1 H

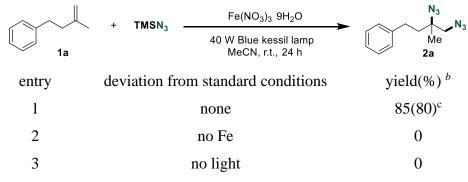
Supplementary Table 4. Fe catalyst screening


[a] Reaction conditions: **1a** (0.20 mmol, 1.0 equiv), TMSN₃ (1.0 mmol, 5.0 equiv), Fe catalyst (0.24 mmol, 1.2 equiv) and CH₃CN (2 mL), blue LEDs, 24 h. [b] Yields were determined by analysis of the crude ¹H NMR spectra using CH₂Br₂ as an internal standard.

Supplementary Table 5. Solvent screening

[a] Reaction conditions: **1a** (0.20 mmol, 1.0 equiv), TMSN₃ (1.0 mmol, 5.0 equiv), Fe(NO₃)₃·9H₂O (0.24 mmol, 1.2 equiv) and solvent (2 mL), blue LEDs, 24 h. [b] Yields were determined by analysis of the crude ¹H NMR spectra using CH₂Br₂ as an internal standard.

Supplementary Table 6. Azido sources screening

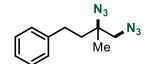


[a] Reaction conditions: **1a** (0.20 mmol, 1.0 equiv), $[N_3]$ (1.0 mmol, 5.0 equiv), Fe(NO₃)₃·9H₂O (0.24 mmol, 1.2 equiv) and solvent (2 mL), blue LEDs, 24 h. [b] Yields were determined by analysis of the crude ¹H NMR spectra using CH₂Br₂ as an internal standard.

Supplementary Table 7. Amount screening

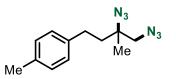
	+ TMSN₃	Fe(NO ₃) ₃ 9H ₂ O	N_3
1a	3	40 W Blue kessil lamp MeCN, r.t., 24 h	Me 2a
entry	Variation of standard conditions		yield(%) ^b
1	0.5 equiv. Fe(NO ₃) ₃ \cdot 9H ₂ O was used		52
2	4.0 equiv. TMSN ₃ was used		76
3	3.0 equiv. TMSN ₃ was used		58
4	1 mL CH ₃ CN was used		76
5	4 mL CH ₃ CN was used		81

[a] Reaction conditions: **1a** (0.20 mmol, 1.0 equiv), TMSN₃ (1.0 mmol, 5.0 equiv), Fe(NO₃)₃·9H₂O (0.24 mmol, 1.2 equiv) and CH₃CN (2 mL), blue LEDs, 24 h. [b] Yields were determined by analysis of the crude ¹H NMR spectra using CH₂Br₂ as an internal standard.



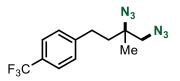
Supplementary Table 8. Control experiments

[a] Reaction conditions: **1a** (0.20 mmol, 1.0 equiv), TMSN₃ (1.0 mmol, 5.0 equiv), Fe(NO₃)₃·9H₂O (0.24 mmol, 1.2 equiv) and solvent (2 mL), blue LEDs, 24 h. [b] Yields were determined by analysis of the crude ¹H NMR spectra using CH₂Br₂ as an internal standard. [c] Isolated yield.


2.2 General procedure for alkene diazidation reaction

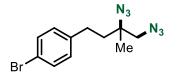
A 10 mL Schlenk tube equipped with a magnetic stir bar was charged with $Fe(NO_3)_3 \cdot 9H_2O$ (0.24 mmol, 100 mg). Then, the tube was evacuated and backfilled with Ar (three times). Alkenes (0.20 mmol, 1.0 equiv.) and TMSN₃ (1.0 mmol) in CH₃CN (2 mL) were added by syringe under Ar atmosphere. The reaction tube was then sealed and was placed at a distance (app. 5 cm) from a 40 W blue kessil lamp (Figure S1). The reaction mixture was stirred for 24-36 h at room temperature. After the reaction, the resulting solution was filtered through a cotton plug and washed with EtOAc. The filtrate was removed under reduced pressure and the residue was purified by silica gel column chromatography (ethyl acetate/*n*-pentane) to afford the desired diazides.

(3,4-diazido-3-methylbutyl)benzene

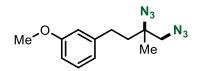

The reaction was carried out according to **the general alkene diazidation procedure** on 0.20-mmol scale (24 h). The residue was purified by flash column chromatography (ethyl acetate/*n*-pentane) to afford the diazide product (**3,4-diazido-3-methylbutyl)benzene** (**2a**) (36.8 mg, 80% yield) as an oil. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.32 – 7.28 (m, 2H), 7.24 – 7.18 (m, 3H), 3.39 – 3.28 (m, 2H), 2.68 (t, J = 8.2 Hz, 2H), 1.92 – 1.81 (m, 2H), 1.39 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 141.05, 128.57, 128.26, 126.19, 63.54, 59.09, 39.41, 30.16, 21.30. **HRMS** for C₁₁H₁₅N₆⁺-N₂ (ESI) [M]⁺: calc.: 203.1291, found: 203.1294.

1-(3,4-diazido-3-methylbutyl)-4-methylbenzene

The reaction was carried out according to **the general alkene diazidation procedure** on 0.20-mmol scale (24 h). The residue was purified by flash column chromatography (ethyl acetate/*n*-pentane) to afford the diazide product **1-(3,4-diazido-3-methylbutyl)-4-methylbenzene** (**2b**) (40.6 mg, 83% yield) as an oil. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.12 (d, *J* = 7.9 Hz, 2H), 7.09 (d, *J* = 8.2 Hz, 2H), 3.36 – 3.28 (m, 2H), 2.68 – 2.62 (m, 2H), 2.33 (s, 3H), 1.92 – 1.78 (m, 2H), 1.38 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 137.95, 135.70, 129.24, 128.12, 63.56, 59.09, 39.55, 29.70, 21.28, 20.96.


HRMS for C₁₂H₁₇N₆⁺-N₂ (ESI) [M]⁺: calc.: 217.1448, found: 217.1449.

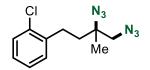
1-(3,4-diazido-3-methylbutyl)-4-(trifluoromethyl)benzene


The reaction was carried out according to **the general alkene diazidation procedure** on 0.20-mmol scale (24 h). The residue was purified by flash column chromatography (ethyl acetate/*n*-pentane) to afford the diazide product **1-(3,4-diazido-3-**

methylbutyl)-4-(trifluoromethyl)benzene (2c) (42.9 mg, 72% yield) as an oil. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.56 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 7.9 Hz, 2H), 3.35 (s, 2H), 2.74 (ddd, J = 9.7, 6.9, 2.1 Hz, 2H), 1.92 – 1.78 (m, 2H), 1.40 (s, 3H).¹³C NMR (101 MHz, Chloroform-*d*) δ 145.18, 128.67 (q, J = 32.4 Hz), 128.62, 125.51 (q, J = 3.9 Hz), 124.16 (q, J = 272.0 Hz), 63.36, 59.05, 39.08, 30.02, 21.29. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -62.41. HRMS for C₁₂H₁₄F₃N₆⁺-N₂ (ESI) [M]⁺: calc.: 271.1165, found: 271.1166.

1-bromo-4-(3,4-diazido-3-methylbutyl)benzene

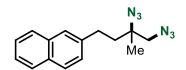
The reaction was carried out according to **the general alkene diazidation procedure** on 0.20-mmol scale (24 h). The residue was purified by flash column chromatography (ethyl acetate/*n*-pentane) to afford the diazide product **1-bromo-4-(3,4-diazido-3-methylbutyl)benzene** (**2d**) (50.1 mg, 81% yield) as an oil. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.42 (d, *J* = 8.4 Hz, 2H), 7.07 (d, *J* = 8.4 Hz, 2H), 3.32 (d, *J* = 1.4 Hz, 2H), 2.63 (t, *J* = 8.7 Hz, 2H), 1.93 – 1.72 (m, 2H), 1.38 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 140.01, 131.64, 130.02, 119.97, 63.40, 59.06, 39.22, 29.59, 21.30. **HRMS** for C₁₁H₁₄BrN₆⁺-N₂ (ESI) [M]⁺: calc.: 281.0396, found: 281.0396.



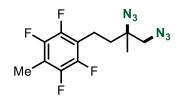
1-(3,4-diazido-3-methylbutyl)-3-methoxybenzene

The reaction was carried out according to **the general alkene diazidation procedure** on 0.20-mmol scale (24 h). The residue was purified by flash column chromatography (ethyl acetate/*n*-pentane) to afford the diazide product **1-(3,4-diazido-3-methylbutyl)-3-methoxybenzene** (**2e**) (38.5 mg, 74% yield) as an oil. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.22 (t, *J* = 7.8 Hz, 1H), 6.81 – 6.73 (m, 3H), 3.81 (s, 3H),

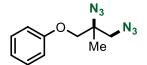
3.37 – 3.28 (m, 2H), 2.65 (ddd, *J* = 9.5, 7.8, 1.9 Hz, 2H), 1.92 – 1.78 (m, 2H), 1.38 (s, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 159.81, 142.68, 129.56, 120.63, 114.12, 111.47, 63.53, 59.09, 55.17, 39.31, 30.21, 21.29.


HRMS for $C_{12}H_{17}N_6O^+-N_2$ (ESI) $[M]^+$: calc.: 233.1397, found: 233.1393.

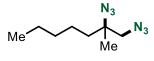
1-chloro-2-(3,4-diazido-3-methylbutyl)benzene


The reaction was carried out according to **the general alkene diazidation procedure** on 0.20-mmol scale (24 h). The residue was purified by flash column chromatography (ethyl acetate/*n*-pentane) to afford the diazide product **1-chloro-2-(3,4-diazido-3-methylbutyl)benzene** (**2f**) (33.9 mg, 64% yield) as an oil. ¹H **NMR** (500 MHz, Chloroform-*d*) δ 7.35 (d, *J* = 7.5 Hz, 1H), 7.25 – 7.14 (m, 3H), 3.40 – 3.31 (m, 2H), 2.87 – 2.74 (m, 2H), 1.89 – 1.79 (m, 2H), 1.41 (s, 3H). ¹³C **NMR** (101 MHz, Chloroform-*d*) δ 138.66, 133.78, 130.35, 129.63, 127.78, 127.07, 63.49, 59.05, 37.58, 28.17, 21.15.

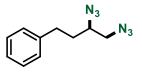
HRMS for C₁₁H₁₄ClN₆⁺-N₂ (ESI) [M]⁺: calc.: 237.0902, found: 237.0906.


2-(3,4-diazido-3-methylbutyl)naphthalene

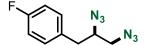
The reaction was carried out according to **the general alkene diazidation procedure** on 0.20-mmol scale (36 h). The residue was purified by flash column chromatography (ethyl acetate/*n*-pentane) to afford the diazide product **2-(3,4-diazido-3-methylbutyl)naphthalene** (**2g**) (45.4 mg, 81% yield) as an oil. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.84 – 7.77 (m, 3H), 7.64 (s, 1H), 7.49 – 7.40 (m, 2H), 7.33 (d, *J* = 9.6 Hz, 1H), 3.40 – 3.32 (m, 2H), 2.85 (t, *J* = 8.7 Hz, 2H), 2.00 – 1.88 (m, 2H), 1.42 (s, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 138.51, 133.63, 132.10, 128.21, 127.63, 127.39, 126.95, 126.36, 126.09, 125.39, 63.59, 59.13, 39.32, 30.33, 21.34. **HRMS** for C₁₅H₁₇N₆⁺-N₂ (ESI) [M]⁺: calc.: 253.1448, found: 253.1449.


1-(3,4-diazido-3-methylbutyl)-2,3,5,6-tetrafluoro-4-methylbenzene

The reaction was carried out according to **the general alkene diazidation procedure** on 0.20-mmol scale (24 h). The residue was purified by flash column chromatography (ethyl acetate/*n*-pentane) to afford the diazide product **1-(3,4-diazido-3-methylbutyl)-2,3,5,6-tetrafluoro-4-methylbenzene** (**2h**) (48.0 mg, 76% yield) as an oil. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 3.39 – 3.32 (m, 2H), 2.77 (ddd, *J* = 9.2, 7.4, 1.5 Hz, 2H), 2.24 (t, *J* = 2.1 Hz, 3H), 1.84 – 1.75 (m, 2H), 1.40 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 146.33 – 145.51 (m), 143.95 – 143.01 (m), 116.24 (t, *J* = 18.3 Hz), 114.08 (t, *J* = 19.1 Hz), 63.13, 58.99, 36.68, 31.24, 20.96, 17.24. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -144.04 – -144.93 (m), -146.63 (dd, *J* = 22.9, 13.5 Hz). **HRMS** for C₁₂H₁₃F₄N₆⁺-N₂ (ESI) [M]⁺: calc.: 289.1071, found: 289.1075.


(2,3-diazido-2-methylpropoxy)benzene

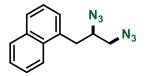
The reaction was carried out according to **the general alkene diazidation procedure** on 0.20-mmol scale (24 h). The residue was purified by flash column chromatography (ethyl acetate/*n*-pentane) to afford the diazide product (**2,3-diazido-2-methylpropoxy)benzene** (**2i**) (35.3 mg, 81% yield) as an oil. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.31 (dd, *J* = 8.6, 7.4 Hz, 2H), 7.00 (t, *J* = 7.4 Hz, 1H), 6.93 (d, *J* = 8.7 Hz, 2H), 3.99 – 3.93 (m, 2H), 3.54 – 3.46 (m, 2H), 1.46 (s, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 158.07, 129.57, 121.61, 114.62, 71.33, 62.85, 56.26, 19.25. **HRMS** for C₁₀H₁₃N₆O⁺-N₂ (ESI) [M]⁺: calc.: 205.1084, found: 205.1086.


1,2-diazido-2-methylheptane

The reaction was carried out according to **the general alkene diazidation procedure** on 0.20-mmol scale (24 h). The residue was purified by flash column chromatography (ethyl acetate/*n*-pentane) to afford the diazide product **1,2-diazido-2-methylheptane** (**2j**) (29.4 mg, 75% yield) as an oil. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 3.29 – 3.21 (m, 2H), 1.57 – 1.52 (m, 2H), 1.38 – 1.25 (m, 9H), 0.90 (t, *J* = 6.9 Hz, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 63.82, 59.11, 37.33, 31.97, 23.33, 22.46, 21.22, 13.92. **HRMS** for C₈H₁₇N₆⁺-N₂ (ESI) [M]⁺: calc.: 169,1448, found: 169,1449.

3,4-diazidobutyl)benzene

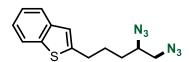
The reaction was carried out according to **the general alkene diazidation procedure** on 0.20-mmol scale (24 h). The residue was purified by flash column chromatography (ethyl acetate/*n*-pentane) to afford the diazide product **3,4-diazidobutyl)benzene** (**2k**) (31.5 mg, 73% yield) as an oil. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.31 (t, *J* = 7.5 Hz, 2H), 7.21 (dd, *J* = 18.8, 7.2 Hz, 3H), 3.48 – 3.33 (m, 3H), 2.85 – 2.78 (m, 1H), 2.75 – 2.67 (m, 1H), 1.91 – 1.80 (m, 2H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 140.35, 128.65, 128.37, 126.34, 61.13, 54.94, 33.40, 32.01. **HRMS** for C₁₀H₁₃N₆⁺-N₂ (ESI) [M]⁺: calc.: 189.1135, found: 189.1138.



1-(2,3-diazidopropyl)-4-fluorobenzene

The reaction was carried out according to **the general alkene diazidation procedure** on 0.20-mmol scale (24 h). The residue was purified by flash column chromatography (ethyl acetate/*n*-pentane) to afford the diazide product **1-(2,3-diazidopropyl)-4-fluorobenzene (2l)** (37.8 mg, 86% yield) as an oil. ¹H NMR (500 MHz, Chloroform-

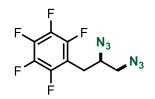
d) δ 7.19 (dd, J = 8.7, 5.3 Hz, 2H), 7.03 (t, J = 8.7 Hz, 2H), 3.71 – 3.65 (m, 1H), 3.40 (dd, J = 12.7, 4.2 Hz, 1H), 3.30 (dd, J = 12.7, 6.8 Hz, 1H), 2.90 – 2.79 (m, 2H). ¹³C **NMR** (101 MHz, Chloroform-*d*) δ 162.01 (d, J = 245.8 Hz), 132.02 (d, J = 3.7 Hz), 130.76 (d, J = 7.6 Hz), 115.67 (d, J = 21.6 Hz), 62.88, 53.85, 37.19. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -115.41.


HRMS for C₉H₁₀FN₆⁺-N₂ (ESI) [M]⁺: calc.: 193.0884, found: 193.0886.

1-(2,3-diazidopropyl)naphthalene

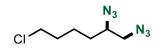
The reaction was carried out according to the general alkene diazidation procedure on 0.20-mmol scale (24 h). The residue was purified by flash column chromatography (ethyl acetate/*n*-pentane) to afford the diazide product 1-(2,3diazidopropyl)naphthalene (2m) (40.8 mg, 81% yield) as an oil. ¹H NMR (500 MHz, Chloroform-d) δ 7.99 (d, J = 8.4 Hz, 1H), 7.90 (d, J = 8.0 Hz, 1H), 7.81 (d, J =8.1 Hz, 1H), 7.60 - 7.50 (m, 2H), 7.46 - 7.38 (m, 2H), 3.91 (qd, J = 7.0, 4.1 Hz, 1H), 3.44 (dd, J = 12.7, 4.1 Hz, 1H), 3.40 - 3.32 (m, 3H). ¹³C NMR (101 MHz, Chloroform-d) & 134.01, 132.39, 131.70, 129.11, 128.12, 127.96, 126.48, 125.85, 125.50, 123.02, 61.97, 54.13, 35.13.

HRMS for $C_{13}H_{13}N_6^+-N_2$ (ESI) [M]⁺: calc.: 225.1135, found: 225.1138.



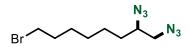
2-(4,5-diazidopentyl)benzo[b]thiophene

The reaction was carried out according to **the general alkene diazidation procedure** on 0.20-mmol scale (24 h). The residue was purified by flash column chromatography (ethyl acetate/*n*-pentane) to afford the diazide product **2-(4,5-diazidopentyl)benzo[b]thiophene** (**2n**) (37.2 mg, 65% yield) as an oil. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.77 (d, *J* = 8.3 Hz, 1H), 7.68 (d, *J* = 7.7 Hz, 1H), 7.34 –


7.30 (m, 1H), 7.29 – 7.25 (m, 1H), 7.02 (s, 1H), 3.50 (dt, J = 12.5, 5.5 Hz, 1H), 3.39 (dd, J = 12.7, 4.1 Hz, 1H), 3.33 (dd, J = 12.7, 7.3 Hz, 1H), 2.96 (t, J = 7.7 Hz, 2H), 1.98 – 1.90 (m, 1H), 1.88 – 1.78 (m, 1H), 1.67 – 1.59 (m, 2H). ¹³**C NMR** (101 MHz, Chloroform-d) δ 145.06, 140.06, 139.30, 124.19, 123.63, 122.80, 122.15, 121.01, 61.82, 54.84, 31.11, 30.32, 27.29.

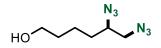
HRMS for C₁₃H₁₅N₆S⁺-N₂ (ESI) [M]⁺: calc.: 259.1012, found: 259.1013.

1-(2,3-diazidopropyl)-2,3,4,5,6-pentafluorobenzene


The reaction was carried out according to **the general alkene diazidation procedure** on 0.20-mmol scale (24 h). The residue was purified by flash column chromatography (ethyl acetate/*n*-pentane) to afford the diazide product **1-(2,3-diazidopropyl)-2,3,4,5,6-pentafluorobenzene** (**2o**) (42.6 mg, 73% yield) as an oil. ¹H NMR (500 MHz, Chloroform-*d*) δ 3.80 – 3.74 (m, 1H), 3.49 (dd, *J* = 12.8, 4.4 Hz, 1H), 3.43 (dd, *J* = 12.8, 7.0 Hz, 1H), 2.94 (dt, *J* = 7.0, 1.7 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.33 – 140.82 (m), 140.13 – 137.24 (m), 110.23 – 109.79 (m), 60.61, 54.23, 25.17. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -142.20 (dd, *J* = 23.6, 10.1 Hz), -154.68 (t, *J* = 21.2 Hz), -158.60 – -170.67 (m). HRMS for C₉H₆F₅N₆⁺-N₂ (ESI) [M]⁺: calc.: 265.0507, found: 265.0509.

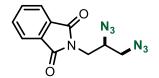
1,2-diazido-6-chlorohexane

The reaction was carried out according to **the general alkene diazidation procedure** on 0.20-mmol scale (24 h). The residue was purified by flash column chromatography (ethyl acetate/*n*-pentane) to afford the diazide product **1,2-diazido-6-chlorohexane** (**2p**) (33.9 mg, 84% yield) as an oil. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 3.55 (t, *J* = 6.5 Hz, 2H), 3.48 (ddd, *J* = 8.5, 3.9, 2.0 Hz, 1H), 3.43 – 3.39 (m, 1H), 3.34 (dd, *J* =

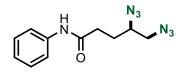

12.6, 7.2 Hz, 1H), 1.85 – 1.78 (m, 2H), 1.65 – 1.49 (m, 4H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 61.82, 54.76, 44.45, 32.10, 31.07, 23.26. **HRMS** for C₆H₁₂ClN₆⁺-N₂ (ESI) [M]⁺: calc.: 175.0745, found: 175.0749.

1,2-diazido-8-bromooctane

The reaction was carried out according to **the general alkene diazidation procedure** on 0.20-mmol scale (24 h). The residue was purified by flash column chromatography (ethyl acetate/*n*-pentane) to afford the diazide product **1,2-diazido-8-bromooctane** (**2q**) (47.9 mg, 87% yield) as an oil. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 3.49 – 3.43 (m, 1H), 3.43 – 3.37 (m, 3H), 3.32 (dd, *J* = 12.6, 7.3 Hz, 1H), 1.90 – 1.83 (m, 2H), 1.58 – 1.52 (m, 2H), 1.51 – 1.33 (m, 6H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 61.96, 54.82, 33.68, 31.66, 28.43, 27.90, 25.71.

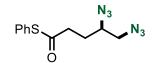

HRMS for $C_8H_{16}BrN_6^+-N_2$ (ESI) $[M]^+$: calc.: 247.0553, found: 247.0555.

5,6-diazidohexan-1-ol


The reaction was carried out according to **the general alkene diazidation procedure** on 0.20-mmol scale (24 h). The residue was purified by flash column chromatography (ethyl acetate/*n*-pentane) to afford the diazide product **5,6-diazidohexan-1-ol** (**2r**) (23.9 mg, 65% yield) as an oil. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 3.68 (t, *J* = 6.0 Hz, 2H), 3.49 (d, *J* = 13.2 Hz, 1H), 3.42 – 3.38 (m, 1H), 3.36 – 3.31 (m, 1H), 2.04 (br s, 1H), 1.65 – 1.56 (m, 6H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 62.51, 61.98, 54.80, 32.19, 31.56, 22.25.

HRMS for C₆H₁₃N₆O⁺-N₂ (ESI) [M]⁺: calc.: 157.1084, found: 157.1084.

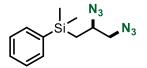
2-(2,3-diazidopropyl)isoindoline-1,3-dione


The reaction was carried out according to the general alkene diazidation procedure on 0.20-mmol scale (36 h). The residue was purified by flash column chromatography (ethyl acetate/*n*-pentane) to afford the diazide product 2-(2,3diazidopropyl)isoindoline-1,3-dione (2s) (38.5 mg, 76% yield) as an oil. ¹H NMR $(500 \text{ MHz}, \text{Chloroform-}d) \delta 7.89 \text{ (dd}, J = 5.5, 3.1 \text{ Hz}, 2\text{H}), 7.76 \text{ (dd}, J = 5.5, 3.1 \text{ Hz},$ 2H), 3.98 – 3.92 (m, 1H), 3.88 (dd, J = 14.0, 7.4 Hz, 1H), 3.77 (dd, J = 13.9, 5.5 Hz, 1H), 3.54 (dd, J = 12.9, 4.2 Hz, 1H), 3.44 (dd, J = 12.9, 7.1 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.94, 134.37, 131.72, 123.64, 59.61, 52.94, 38.90. **HRMS** for $C_{11}H_{10}N_7O_2^+-N_2$ (ESI) $[M]^+$: calc.: 244.0829, found: 244.0829.

4,5-diazido-N-phenylpentanamide

The reaction was carried out according to **the general alkene diazidation procedure** on 0.20-mmol scale (36 h). The residue was purified by flash column chromatography (ethyl acetate/*n*-pentane) to afford the diazide product **4,5-diazido-N-phenylpentanamide** (**2t**) (38.3 mg, 74% yield) as an oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.54 – 7.45 (m, 2H), 7.36 – 7.28 (m, 3H), 7.18 – 7.06 (m, 1H), 3.67 – 3.60 (m, 1H), 3.49 (dd, *J* = 12.8, 4.0 Hz, 1H), 3.38 (dd, *J* = 12.7, 7.3 Hz, 1H), 2.52 (ddt, *J* = 17.7, 15.5, 7.4 Hz, 2H), 2.04 (dtd, *J* = 15.0, 7.6, 4.0 Hz, 1H), 1.88 – 1.74 (m, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 169.60, 137.51, 129.05, 124.55, 119.89, 61.13, 54.97, 33.17, 27.28.

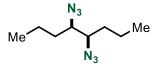
HRMS for C₁₁H₁₄N₇O⁺-N₂ (ESI) [M]⁺: calc.: 232.1193, found: 232.1198.



S-phenyl-4,5-diazidopentanethioate

The reaction was carried out according to **the general alkene diazidation procedure** on 0.20-mmol scale (36 h). The residue was purified by flash column chromatography (ethyl acetate/*n*-pentane) to afford the diazide product **S-phenyl-4,5-**

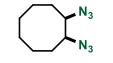
diazidopentanethioate (2u) (47.5 mg, 86% yield) as an oil. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.42 (d, J = 1.3 Hz, 5H), 3.64 – 3.57 (m, 1H), 3.45 (dd, J = 12.8, 4.2 Hz, 1H), 3.36 (dd, J = 12.7, 7.2 Hz, 1H), 2.83 (t, J = 7.1 Hz, 2H), 2.02 – 1.93 (m, 1H), 1.85 – 1.76 (m, 1H).¹³C NMR (101 MHz, Chloroform-*d*) δ 196.46, 134.46, 129.60, 129.28, 127.22, 60.86, 54.85, 39.37, 27.34.


HRMS for C₁₁H₁₃N₆OS⁺-N₂ (ESI) [M]⁺: calc.: 249.0805, found: 249.0809.

(2,3-diazidopropyl)dimethyl(phenyl)silane

The reaction was carried out according to **the general alkene diazidation procedure** on 0.20-mmol scale (24 h). The residue was purified by flash column chromatography (ethyl acetate/*n*-pentane) to afford the diazide product (2,3-diazidopropyl)dimethyl(phenyl)silane (2v) (36.9 mg, 71% yield) as an oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.54 – 7.49 (m, 2H), 7.41 – 7.36 (m, 3H), 3.51 – 3.43 (m, 1H), 3.29 (dd, *J* = 12.6, 3.8 Hz, 1H), 3.21 (dd, *J* = 12.6, 7.3 Hz, 1H), 1.20 – 0.99 (m, 2H), 0.40 (s, 3H), 0.38 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 137.37, 133.44, 129.46, 128.08, 59.54, 57.03, 19.16, -2.35, -2.87.

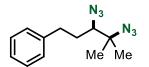
HRMS for C₁₁H₁₇N₆Si⁺-N₂ (ESI) [M]⁺: calc.: 233.1217, found: 233.1219.



4,5-diazidooctane

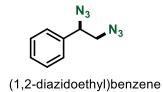
The reaction was carried out according to **the general alkene diazidation procedure** on 0.20-mmol scale (24 h). The residue was purified by flash column chromatography (ethyl acetate/*n*-pentane) to afford the diazide product **4,5-diazidooctane** (**2w**) (28.6 mg, 72% yield, d.r. = 1.1:1) as an oil. ¹H NMR (500 MHz, Chloroform-*d*) δ 3.37 – 3.32 (m, 1H), 3.30 – 3.25 (m, 1H), 1.69 – 1.50 (m, 6H), 1.46 – 1.37 (m, 2H), 1.02 – 0.94 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 65.63, 65.03, 33.36, 32.45,

19.59, 19.47, 13.79.

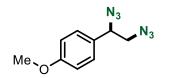

HRMS for C₈H₁₇N₆⁺-N₂(ESI) [M]⁺: calc.: 169.1448, found: 169.1445.

1,2-diazidocyclooctane

The reaction was carried out according to **the general alkene diazidation procedure** on 0.20-mmol scale (24 h). The residue was purified by flash column chromatography (ethyl acetate/*n*-pentane) to afford the diazide product **1,2-diazidocyclooctane** (**2x**) (32.6 mg, 84% yield, d.r. = 4.4:1) as an oil. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 3.75 (dd, *J* = 8.1, 3.8 Hz, 0.37H), 3.50 (dd, *J* = 4.8, 2.2 Hz, 1.63H), 1.98 – 1.90 (m, 2H), 1.84 – 1.70 (m, 4H), 1.69 – 1.62 (m, 2H), 1.61 – 1.50 (m, 2H), 1.48 – 1.38 (m, 2H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 66.57, 63.43, 29.27, 28.14, 26.45, 25.59, 24.72, 23.47.

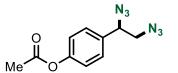

HRMS for C₈H₁₅N₆⁺-N₂(ESI) [M]⁺: calc.: 167.1291, found: 167.1292.

(3,4-diazido-4-methylpentyl)benzene


The reaction was carried out according to the general alkene diazidation procedure on 0.20-mmol scale (24 h). The residue was purified by flash column chromatography (ethyl acetate/*n*-pentane) to afford the diazide product (3,4-diazido-4methylpentyl)benzene (2y) (50.0 mg, 84% yield) as an oil. ¹H NMR (500 MHz, Chloroform-d) δ 7.33 (d, J = 7.8 Hz, 2H), 7.24 – 7.19 (m, 3H), 3.07 (dd, J = 11.2, 2.3) Hz, 1H), 2.94 (ddd, J = 13.8, 9.3, 4.7 Hz, 1H), 2.67 (ddd, J = 13.8, 8.9, 7.8 Hz, 1H), 1.98 – 1.90 (m, 1H), 1.77 – 1.70 (m, 1H), 1.31 (s, 3H), 1.28 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) & 140.63, 128.44, 126.27, 69.73, 64.57, 33.05, 31.30, 22.95, 22.83.

HRMS for $C_{12}H_{17}N_6^+-N_2$ (ESI) [M]⁺: calc.: 217.1448, found: 217.1445.

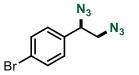
The reaction was carried out according to **the general alkene diazidation procedure** on 0.20-mmol scale (24 h). The residue was purified by flash column chromatography (ethyl acetate/*n*-pentane) to afford the diazide product (**1,2-diazidoethyl)benzene** (**2z**) (26.3 mg, 70% yield) as an oil. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.44 – 7.32 (m, 5H), 4.67 (dd, *J* = 8.3, 4.9 Hz, 1H), 3.51 (dd, *J* = 12.8, 8.3 Hz, 1H), 3.45 (dd, *J* = 12.7, 4.9 Hz, 1H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 136.32, 129.08, 129.04, 126.93, 65.52, 55.96.


HRMS for C₈H₉N₆⁺-N₂ (ESI) [M]⁺: calc.: 161.0822, found: 161.0822.

1-(1,2-diazidoethyl)-4-methoxybenzene

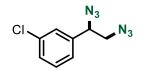
The reaction was carried out according to **the general alkene diazidation procedure** on 0.20-mmol scale (24 h). The residue was purified by flash column chromatography (ethyl acetate/*n*-pentane) to afford the diazide product **1-(1,2-diazidoethyl)-4-methoxybenzene** (**2a'**) (28.3 mg, 65% yield) as an oil. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.26 (d, *J* = 8.7 Hz, 2H), 6.93 (d, *J* = 8.7 Hz, 2H), 4.62 (dd, *J* = 8.3, 5.0 Hz, 1H), 3.82 (s, 3H), 3.49 (dd, *J* = 12.7, 8.3 Hz, 1H), 3.41 (dd, *J* = 12.7, 5.1 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 128.27, 127.55, 114.45, 113.68, 65.04, 55.89, 55.33.

HRMS for C₉H₁₁N₆O⁺ (ESI) [M]⁺: calc.: 191.0927, found: 191.0927.



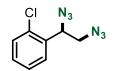
4-(1,2-diazidoethyl)phenyl acetate

The reaction was carried out according to the general alkene diazidation procedure


on 0.20-mmol scale (24 h). The residue was purified by flash column chromatography (ethyl acetate/*n*-pentane) to afford the diazide product **4-(1,2-diazidoethyl)phenyl acetate** (**2b**') (36.9 mg, 75% yield) as an oil. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.35 (d, *J* = 8.5 Hz, 2H), 7.15 (d, *J* = 8.6 Hz, 2H), 4.67 (dd, *J* = 8.4, 4.8 Hz, 1H), 3.49 (dd, *J* = 12.8, 8.3 Hz, 1H), 3.43 (dd, *J* = 12.8, 4.8 Hz, 1H), 2.31 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.18, 151.01, 133.92, 128.03, 122.25, 64.99, 56.03, 21.10.

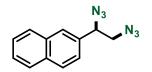
HRMS for C₁₀H₁₁N₆O₂⁺ (ESI) [M]⁺: calc.: 219.0877, found: 219.0872.

1-bromo-4-(1,2-diazidoethyl)benzene


The reaction was carried out according to **the general alkene diazidation procedure** on 0.20-mmol scale (24 h). The residue was purified by flash column chromatography (ethyl acetate/*n*-pentane) to afford the diazide product **1-bromo-4-(1,2-diazidoethyl)benzene** (**2c'**) (37.9 mg, 71% yield) as an oil. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.55 (d, *J* = 8.4 Hz, 2H), 7.22 (d, *J* = 8.4 Hz, 2H), 4.63 (dd, *J* = 8.0, 5.0 Hz, 1H), 3.48 (dd, *J* = 12.7, 8.0 Hz, 1H), 3.43 (dd, *J* = 12.8, 5.0 Hz, 1H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 135.39, 132.25, 128.58, 123.08, 64.83, 55.80. **HRMS** for C₈H₈BrN₆⁺-N₂ (ESI) [M]⁺: calc.: 238.9927, found: 238.9923.

1-chloro-3-(1,2-diazidoethyl)benzene

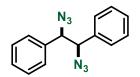
The reaction was carried out according to **the general alkene diazidation procedure** on 0.20-mmol scale (24 h). The residue was purified by flash column chromatography (ethyl acetate/*n*-pentane) to afford the diazide product **1-chloro-3-(1,2-diazidoethyl)benzene** (2d') (30.6 mg, 69% yield) as an oil. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.37 – 7.33 (m, 3H), 7.24 – 7.21 (m, 1H), 4.64 (dd, *J* = 8.0, 5.0 Hz,


1H), 3.49 (dd, J = 12.8, 8.0 Hz, 1H), 3.44 (dd, J = 12.8, 5.0 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 138.42, 135.04, 130.35, 129.21, 127.13, 125.07, 64.88, 55.89. HRMS for C₈H₈ClN₆⁺-N₂ (ESI) [M]⁺: calc.: 195.0432, found: 195.0434.

1-chloro-2-(1,2-diazidoethyl)benzene

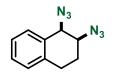
The reaction was carried out according to **the general alkene diazidation procedure** on 0.20-mmol scale (24 h). The residue was purified by flash column chromatography (ethyl acetate/*n*-pentane) to afford the diazide product **1-chloro-2-(1,2-diazidoethyl)benzene** (**2e'**) (25.8 mg, 58% yield) as an oil. ¹H **NMR** (500 MHz, Chloroform-*d*) δ 7.50 (dd, *J* = 7.6, 1.8 Hz, 1H), 7.42 (dd, *J* = 7.7, 1.5 Hz, 1H), 7.38 – 7.29 (m, 2H), 5.22 (dd, *J* = 8.3, 3.8 Hz, 1H), 3.55 (dd, *J* = 12.8, 3.8 Hz, 1H), 3.41 (dd, *J* = 12.8, 8.3 Hz, 1H). ¹³C **NMR** (101 MHz, Chloroform-*d*) δ 134.10, 132.64, 129.95, 128.08, 127.55, 62.10, 54.83.

HRMS for C₈H₈ClN₆⁺-N₂ (ESI) [M]⁺: calc.: 195.0432, found: 195.0435.


2-(1,2-diazidoethyl)naphthalene

The reaction was carried out according to the general alkene diazidation procedure on 0.20-mmol scale (24 h). The residue was purified by flash column chromatography (ethyl acetate/*n*-pentane) afford the diazide product 2-(1.2to diazidoethyl)naphthalene (2f') (33.3 mg, 70% yield) as an oil. ¹H NMR (500 MHz, Chloroform-d) δ 7.92 – 7.85 (m, 3H), 7.82 (d, J = 1.7 Hz, 1H), 7.57 – 7.52 (m, 2H), 7.43 (dd, J = 8.5, 1.9 Hz, 1H), 4.84 (dd, J = 8.3, 4.9 Hz, 1H), 3.61 (dd, J = 12.8, 8.3 Hz, 1H), 3.53 (dd, J = 12.8, 4.9 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 133.65, 133.42, 133.14, 129.13, 128.04, 127.78, 126.72, 126.55, 123.97, 65.72, 55.90. **HRMS** for C₁₂H₁₁N₆⁺-N₂ (ESI) [M]⁺: calc.: 211.0978, found: 211.0979.

The reaction was carried out according to **the general alkene diazidation procedure** on 0.20-mmol scale (24 h). The residue was purified by flash column chromatography (ethyl acetate/*n*-pentane) to afford the diazide product **1,2-diazidopropyl)benzene** (**2g'**) (28.7 mg, 71% yield, d.r. = 1.6:1) as an oil. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.45 – 7.30 (m, 5H), 4.52 (d, *J* = 5.8 Hz, 0.62H), 4.37 (d, *J* = 7.7 Hz, 0.39H), 3.75 – 3.63 (m, 1H), 1.26 (d, *J* = 6.6 Hz, 2.36H), 1.11 (d, *J* = 6.7 Hz, 1.21H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 136.52, 136.29, 129.23, 129.09, 129.04, 127.80, 71.03, 69.89, 61.76, 61.28, 16.99, 15.29.


HRMS for C₉H₁₁N₆⁺-N₂(ESI) [M]⁺: calc.: 175.0978, found: 175.0979.

1,2-diazido-1,2-diphenylethane

The reaction was carried out according to **the general alkene diazidation procedure** on 0.20-mmol scale (24 h). The residue was purified by flash column chromatography (ethyl acetate/*n*-pentane) to afford the diazide product **1,2-diazido-1,2-diphenylethane** (**2h'**) (33.8 mg, 64% yield, d.r. = 2.2:1) as an oil. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.30 (dd, *J* = 5.4, 1.9 Hz, 2H), 7.21 – 7.12 (m, 5.46H), 6.99 (dd, *J* = 6.6, 3.0 Hz, 2.71H), 4.61 (s, 0.62H), 4.56 (s, 1.37H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 135.81, 135.75, 128.92, 128.66, 128.63, 128.52, 127.92, 127.63, 70.71, 69.65.

HRMS for C₁₄H₁₃N₆⁺-N₂ (ESI) [M]⁺: calc.: 237.1135, found: 237.1139.

1,2-diazido-1,2,3,4-tetrahydronaphthalene

The reaction was carried out according to **the general alkene diazidation procedure** on 0.20-mmol scale (24 h). The residue was purified by flash column chromatography (ethyl acetate/*n*-pentane) to afford the diazide product **1,2-diazido-1,2,3,4-tetrahydronaphthalene** (**2i'**) (32.1 mg, 75% yield, d.r. = 4.9:1) as an oil. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.30 (dd, *J* = 5.6, 3.6 Hz, 1H), 7.21 – 7.18 (m, 2H), 7.07 (dd, *J* = 5.4, 3.6 Hz, 1H), 4.59 – 4.55 (m, 0.17H), 4.36 (d, *J* = 6.6 Hz, 0.84H), 3.80 (ddd, *J* = 8.8, 6.7, 3.2 Hz, 0.87H), 3.73 (dt, *J* = 11.5, 3.4 Hz, 0.17H), 2.90 – 2.78 (m, 2H), 2.20 – 2.14 (m, 1H), 1.95 – 1.87 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 135.64, 135.35, 131.69, 131.51, 129.59, 129.30, 129.00, 128.96, 128.53, 126.71, 126.57, 63.49, 62.52, 61.54, 59.73, 27.37, 25.97, 25.10, 22.83. **HRMS** for C₁₀H₁₁N₆⁺-N₂ (ESI) [M]⁺: calc.: 187.0978, found: 187.0976.

2.3 Synthetic utilization

General Procedure for Scaling Up in Batch Reactor

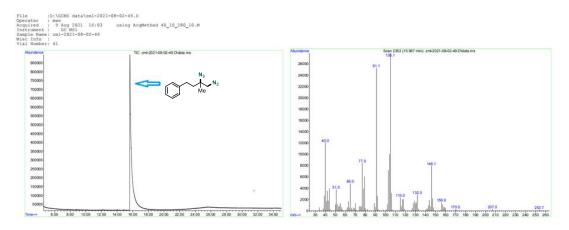
Supplementary Figure 2. Batch reactor set-up with light irradiation

A 100 mL Schlenk tube equipped with a magnetic stir bar was charged with $Fe(NO_3)_3 \cdot 9H_2O$ (5.5 mmol, 2.22 g). Then, the tube was evacuated and backfilled with Ar (three times). ((2-methylallyl)oxy)benzene (0.74 g, 5.0 mmol, 1.0 equiv.) and TMSN₃ (22 mmol, 2.53 g) in CH₃CN (50 mL) were added by syringe under Ar atmosphere. The reaction tube was then sealed and was placed at a distance (app. 5 cm) from a 40 W blue kessil lamp (Figure S2). The reaction mixture was stirred for 36 h at room temperature. After the reaction, the resulting solution was filtered through a cotton plug and washed with EtOAc. The filtrate was removed under reduced pressure and the residue was purified by silica gel column chromatography (ethyl acetate/*n*-pentane) to afford the desired diazide **2i** (0.87 g, 75%).

A 100 mL Schlenk tube equipped with a magnetic stir bar was charged with $Fe(NO_3)_3 \cdot 9H_2O$ (6.6 mmol, 2.45 g). Then, the tube was evacuated and backfilled with Ar (three times). 8-bromooct-1-ene (1,14 g, 6.0 mmol, 1.0 equiv.) and TMSN₃ (25 mmol, 2.88 g) in CH₃CN (60 mL) were added by syringe under Ar atmosphere. The reaction tube was then sealed and was placed at a distance (app. 5 cm) from a 40 W blue kessil lamp (Figure S2). The reaction mixture was stirred for 36 h at room temperature. After the reaction, the resulting solution was filtered through a cotton plug and washed with EtOAc. The filtrate was removed under reduced pressure and the residue was purified by silica gel column chromatography (ethyl acetate/*n*-pentane) to afford the desired diazide **2q** (1.29 g, 75%).

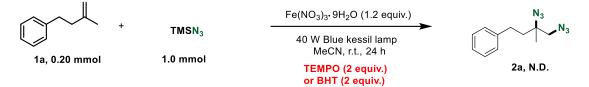
A 10 mL Schlenk tube equipped with a magnetic stir bar was charged with $Fe(NO_3)_3 \cdot 9H_2O$ (0.12 mmol, 50 mg). Then, the tube was evacuated and backfilled with Ar (three times). Alkene (23.8 mg, 0.10 mmol, 1.0 equiv.) and TMSN₃ (0.44 mmol) in CH₃CN (2 mL) were added by syringe under Ar atmosphere. The reaction tube was then sealed and was placed at a distance (app. 5 cm) from a 40 W blue kessil lamp (Figure S1). The reaction mixture was stirred for 24 h at room temperature. After the reaction, the resulting solution was filtered through a cotton plug and washed with EtOAc. The filtrate was removed under reduced pressure and the residue was purified by silica gel column chromatography (ethyl acetate/*n*-pentane) to afford the desired diazide (1*R*,2*S*,5*R*)-2-isopropyl-5-methylcyclohexyl-4,5-diazidopentanoate 2j' (22.9 mg, 71% yield, d.r. = 1:1). ¹H NMR (500 MHz,

Chloroform-*d*) δ 4.74 – 4.66 (m, 1H), 3.60 – 3.53 (m, 1H), 3.44 (dd, J = 12.7, 4.1 Hz, 1H), 3.35 (dd, J = 12.8, 7.5 Hz, 1H), 2.48 – 2.41 (m, 2H), 2.00 – 1.95 (m, 1H), 1.94 – 1.87 (m, 1H), 1.85 – 1.81 (m, 1H), 1.79 – 1.72 (m, 1H), 1.70 – 1.66 (m, 2H), 1.52 – 1.45 (m, 1H), 1.41 – 1.33 (m, 1H), 1.10 – 1.03 (m, 1H), 1.01 – 0.94 (m, 1H), 0.92 – 0.88 (m, 7H), 0.76 (dd, J = 6.9, 1.9 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 171.96, 74.68, 74.67, 61.23, 61.21, 54.88, 47.03, 46.99, 40.92, 40.89, 34.20, 31.38, 30.66, 30. 65, 27.15, 27.12, 26.39, 26.36, 23.44, 21.98, 20.72, 20.70, 16.30, 16.29. **HRMS** for C₁₅H₂₇N₆O₂⁺-N₂ (ESI) [M]⁺: calc.: 295.2129, found: 295.2128.

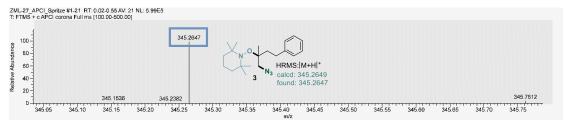

A 10 mL Schlenk tube equipped with a magnetic stir bar was charged with Fe(NO₃)₃·9H₂O (0.24 mmol, 100 mg). Then, the tube was evacuated and backfilled with Ar (three times). Ibuprofen derivative (52.0 mg, 0.20 mmol, 1.0 equiv.) and TMSN₃ (1.0 mmol) in CH₃CN (2 mL) were added by syringe under Ar atmosphere. The reaction tube was then sealed and was placed at a distance (app. 5 cm) from a 40 W blue kessil lamp (Figure S1). The reaction mixture was stirred for 24 h at room temperature. After the reaction, the resulting solution was filtered through a cotton plug and washed with EtOAc. The filtrate was removed under reduced pressure and the residue was purified by silica gel column chromatography (ethyl acetate/*n*-pentane) to afford the desired diazide **3,4-diazidobutyl 2-(4-isobutylphenyl)propanoate 2k**' (44.1 mg, 64% yield, d.r. = 1:1). ¹**H** NMR (500 MHz, Chloroform-d) δ 7.19 (d, J = 7.8 Hz, 2H), 7.11 (d, J = 7.8 Hz, 2H), 4.33 – 4.08 (m, 2H), 3.70 (q, J = 7.2 Hz, 1H), 3.37 – 3.12 (m, 3H), 2.45 (d, J = 7.2 Hz, 2H), 1.89 – 1.65 (m, 3H), 1.50 (d, J = 7.2 Hz, 3H), 0.90 (d, J = 7.6 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.39, 140.81, 140.77, 137.54, 137.48, 129.43, 127.07, 60.64, 60.56, 58.91, 58.88, 54.71, 54.67, 45.11, 45.07, 44.99, 30.84, 30.79, 30.15, 22.34, 18.11.

HRMS for C₁₇H₂₅N₆O₂⁺-N₂ (ESI) [M]⁺: calc.: 317.1972, found: 317.1974.

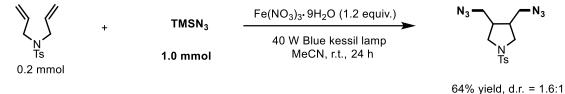
2.4 Mechanistic Investigations


The analysis for the reaction mixture by GC-MS

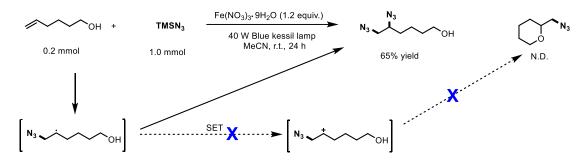
A 10 mL Schlenk tube equipped with a magnetic stir bar was charged with $Fe(NO_3)_3 \cdot 9H_2O$ (0.24 mmol, 100 mg). Then, the tube was evacuated and backfilled with Ar (three times). Alkene **1a** (29.2 mg, 0.20 mmol, 1.0 equiv.) and TMSN₃ (1.0 mmol) in CH₃CN (2 mL) were added by syringe under Ar atmosphere. The reaction tube was then sealed and was placed at a distance (app. 5 cm) from a 40 W blue kessil lamp (Figure S1). The reaction mixture was stirred for 24 h at room temperature. The reaction mixture was analyzed by GC-MS.


Supplementary Figure 3. Spectra of the reaction mixture by GC-MS analysis.

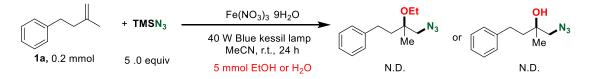
Control Experiment with Additives


A 10 mL Schlenk tube equipped with a magnetic stir bar was charged with $Fe(NO_3)_3 \cdot 9H_2O$ (0.24 mmol, 100 mg) and TEMPO or BHT (0.4 mmol, 2 equiv.). Then, the tube was evacuated and backfilled with Ar (three times). Alkene **1a** (29.2 mg, 0.20 mmol, 1.0 equiv.) and TMSN₃ (1.0 mmol) in CH₃CN (2 mL) were added by syringe under Ar atmosphere. The reaction tube was then sealed and was placed at a distance (app. 5 cm) from a 40 W blue kessil lamp (Figure S1). The reaction mixture was stirred for 24 h at room temperature. The corresponding diazide product **2a** was

not detected according to both TLC and GC-Mass analysis. The TEMPO-adduct **3** was detected by ESI-HRMS.


Supplementary Figure 4. ESI-HRMS Spectra using TEMPO

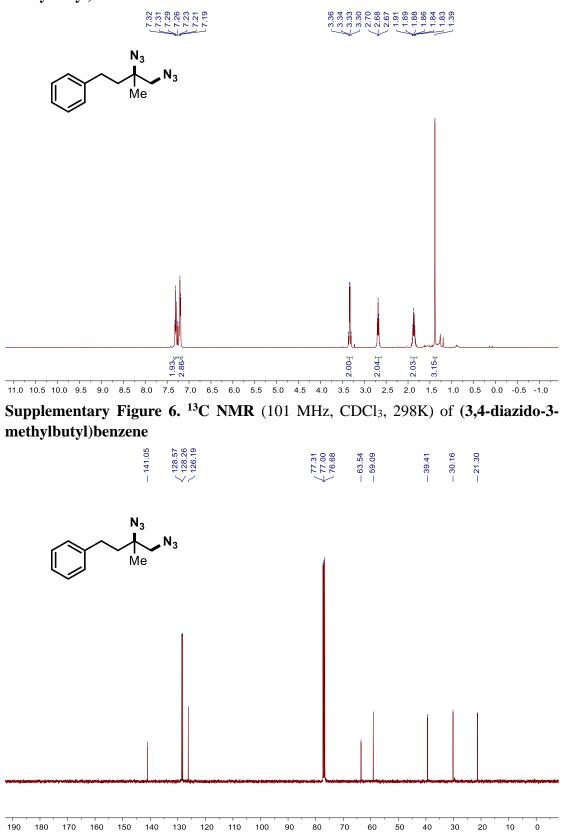
Radical cyclic experiments

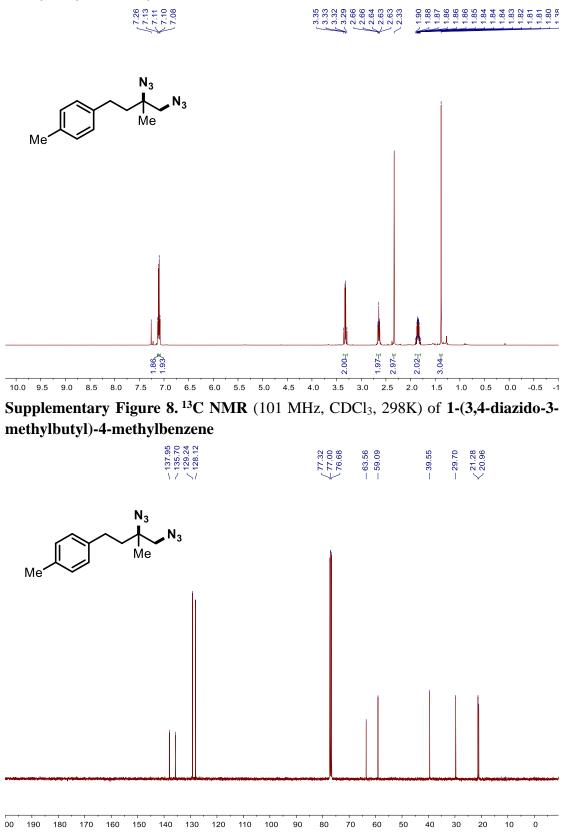


A 10 mL Schlenk tube equipped with a magnetic stir bar was charged with Fe(NO₃)₃·9H₂O (0.24 mmol, 100 mg). Then, the tube was evacuated and backfilled with Ar (three times). N,N-diallyl-4-methylbenzenesulfonamide (50.2 mg, 0.20 mmol, 1.0 equiv.) and TMSN₃ (1.0 mmol) in CH₃CN (2 mL) were added by syringe under Ar atmosphere. The reaction tube was then sealed and was placed at a distance (app. 5 cm) from a 40 W blue kessil lamp (Figure S1). The reaction mixture was stirred for 24 h at room temperature. After the reaction, the resulting solution was filtered through a cotton plug and washed with EtOAc. The filtrate was removed under reduced pressure and the residue was purified by silica gel column chromatography (ethyl acetate/npentane) to afford the product 3,4-bis(azidomethyl)-1-tosylpyrrolidine (42.9 mg, 64% yield) as an oil. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.75 – 7.70 (m, 2H), 7.36 (d, J = 8.0 Hz, 2H), 3.45 – 3.36 (m, 2H), 3.34 – 3.26 (m, 2H), 3.26 – 3.21 (m, 0.62H), 3.18 -3.09 (m, 2.55H), 3.02 (dd, J = 10.4, 6.1 Hz, 0.58H), 2.45 -2.43 (m, 3H), 2.41 -2.36 (m, 1.33H), 2.13 – 2.08 (m, 0.55H). ¹³C NMR (101 MHz, Chloroform-d) δ 143.95, 143.88, 133.38, 132.69, 129.79, 129.65, 127.71, 127.49, 52.83, 50.59, 50.27, 49.61, 41.22, 39.82, 21.56, 21.53.

Exclusion of radical-polar crossover pathway

A 10 mL Schlenk tube equipped with a magnetic stir bar was charged with $Fe(NO_3)_3 \cdot 9H_2O$ (0.24 mmol, 100 mg). Then, the tube was evacuated and backfilled with Ar (three times). hex-5-en-1-ol (20.0 mg, 0.20 mmol, 1.0 equiv.) and TMSN₃ (1.0 mmol) in CH₃CN (2 mL) were added by syringe under Ar atmosphere. The reaction tube was then sealed and was placed at a distance (app. 5 cm) from a 40 W blue kessil lamp (Figure S1). The reaction mixture was stirred for 24 h at room temperature. After the reaction, the resulting solution was filtered through a cotton plug and washed with EtOAc. The filtrate was removed under reduced pressure and the residue was purified by silica gel column chromatography (ethyl acetate/*n*-pentane) to afford the product 5,6-diazidohexan-1-ol (23.9 mg, 65% yield) as an oil. And no cyclic product was observed by MS analysis.

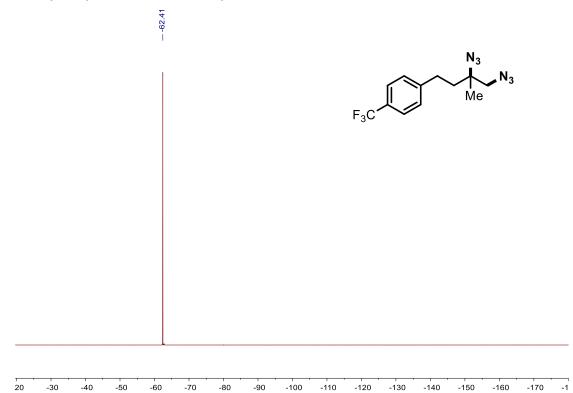



The intermolecular trapping experiments were performed with a large excess of nucleophiles such as H_2O and EtOH added into reaction system, however, the compounds trapped by nucleophiles could not be detected. A radical-polar crossover mechanism should be excluded.

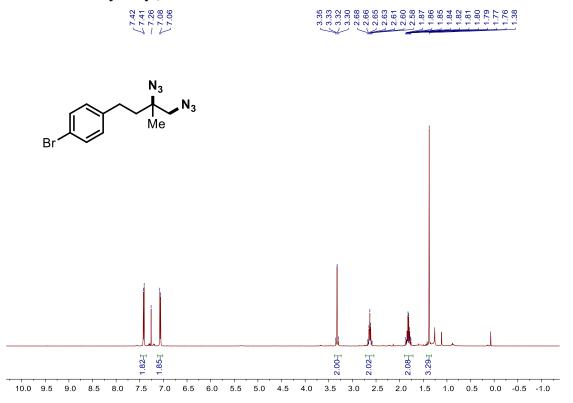
3. Supplementary Notes

3.1 Copies of ¹H, ¹³C and ¹⁹F NMR spectra

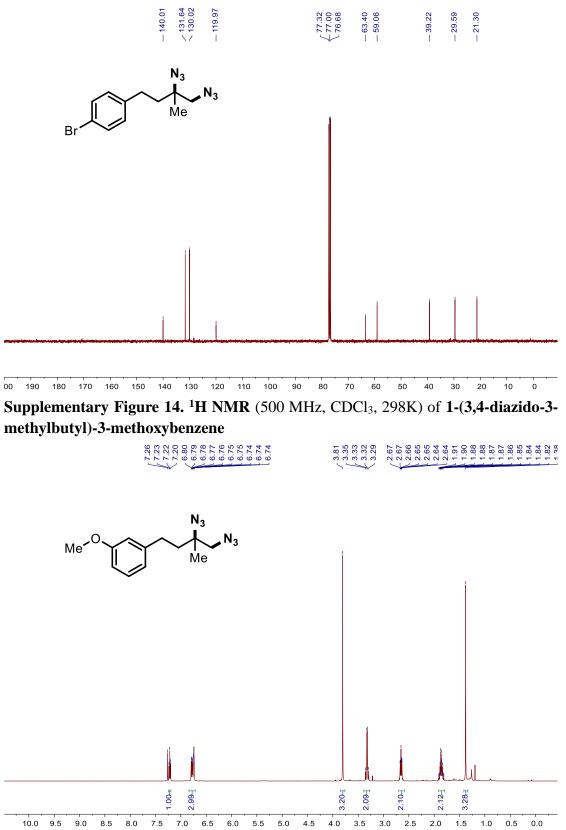
Supplementary Figure 5. ¹H NMR (500 MHz, CDCl₃, 298K) of (3,4-diazido-3-methylbutyl)benzene

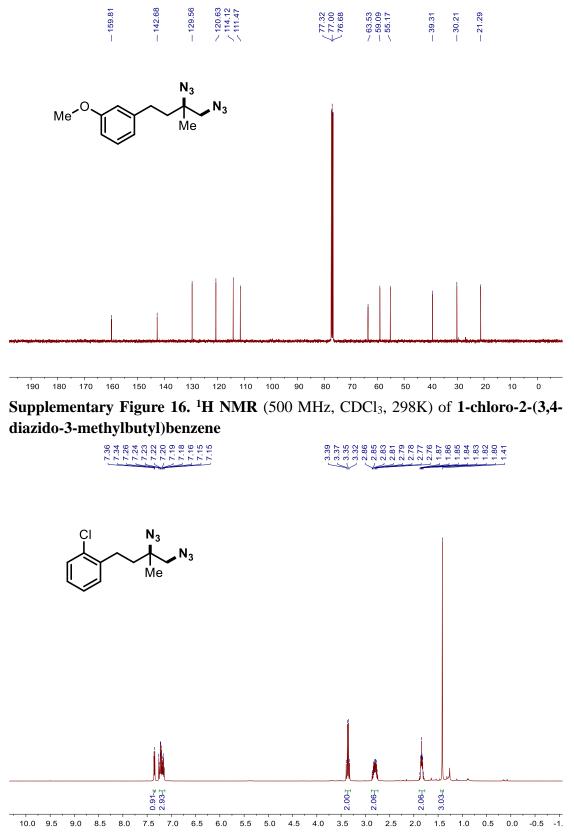


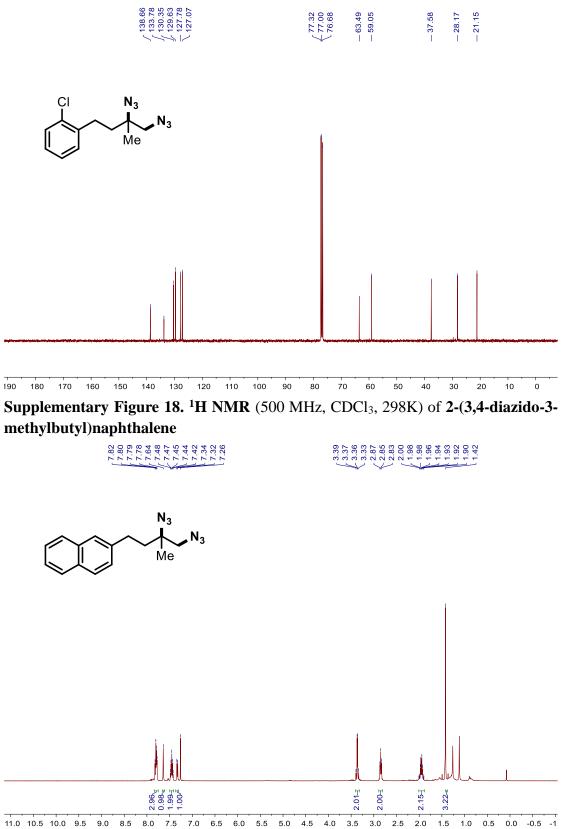
Supplementary Figure 7. ¹H NMR (500 MHz, CDCl₃, 298K) of 1-(3,4-diazido-3-methylbutyl)-4-methylbenzene

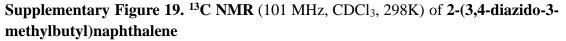


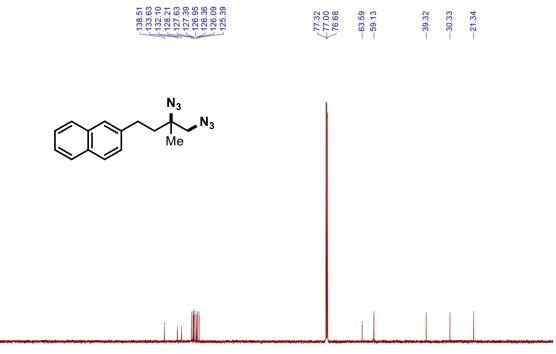
Supplementary Figure 9. ¹H NMR (500 MHz, CDCl₃, 298K) of 1-(3,4-diazido-3-

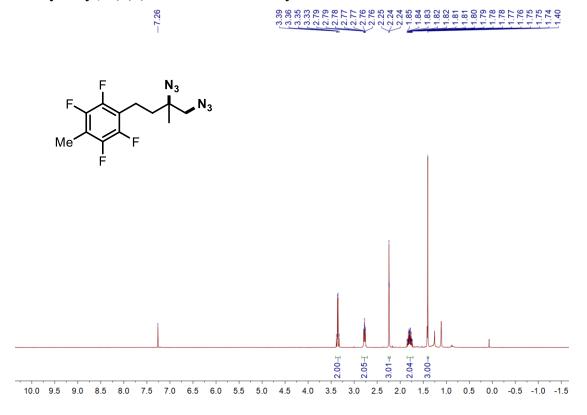

Supplementary Figure 11. ¹⁹F NMR (471 MHz, CDCl₃, 298K) of 1-(3,4-diazido-3-methylbutyl)-4-(trifluoromethyl)benzene

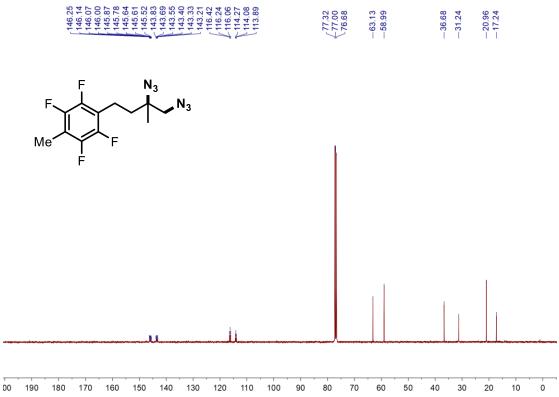

Supplementary Figure 12. ¹H NMR (500 MHz, CDCl₃, 298K) of 1-bromo-4-(3,4-diazido-3-methylbutyl)benzene

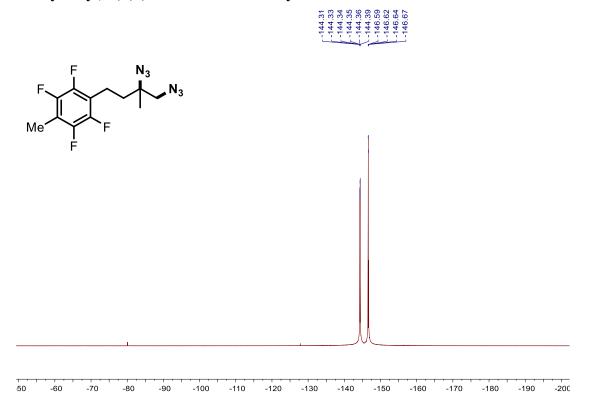

Supplementary Figure 13. ¹³C NMR (101 MHz, CDCl₃, 298K) of 1-bromo-4-(3,4-diazido-3-methylbutyl)benzene

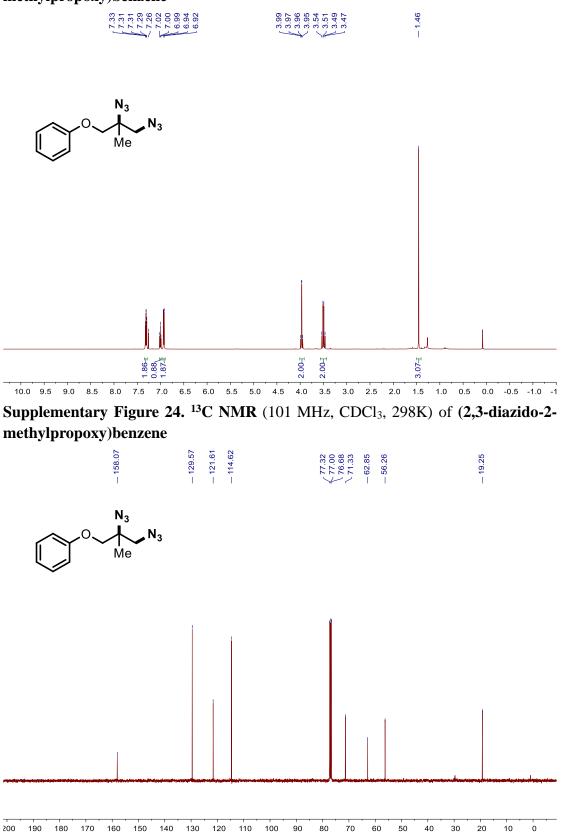


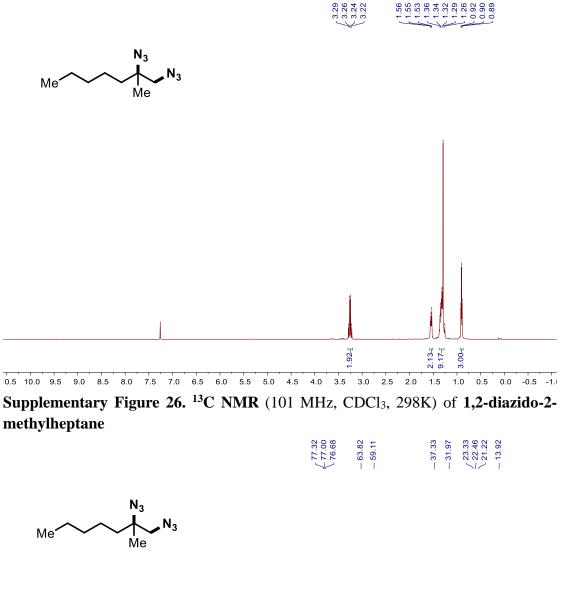

Supplementary Figure 15. ¹³C NMR (101 MHz, CDCl₃, 298K) of 1-(3,4-diazido-3-methylbutyl)-3-methoxybenzene

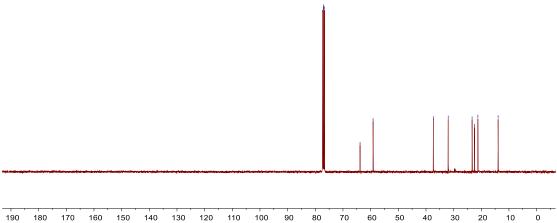

Supplementary Figure 17. ¹³C NMR (101 MHz, CDCl₃, 298K) of 1-chloro-2-(3,4-diazido-3-methylbutyl)benzene



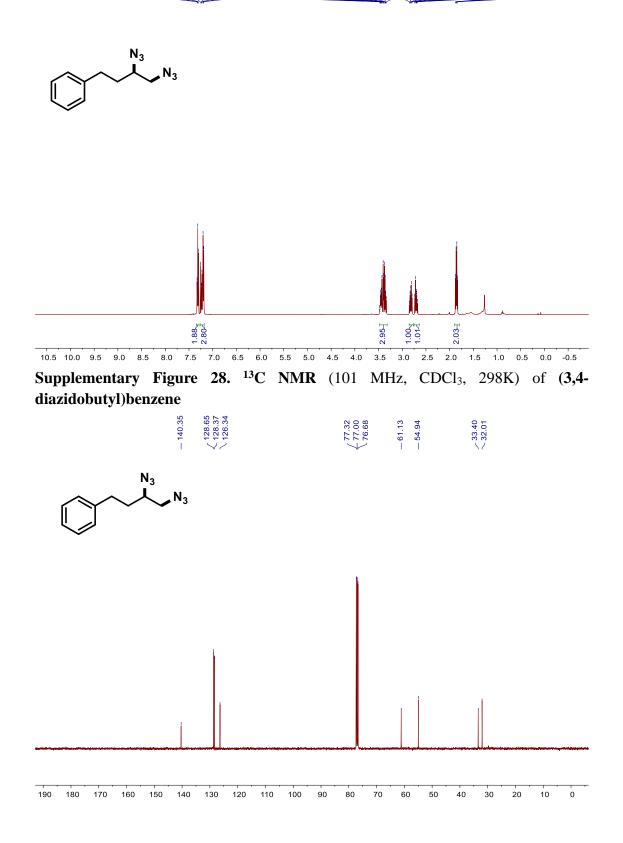

170 160 150 140 130 120 110 100 Supplementary Figure 20. ¹H NMR (500 MHz, CDCl₃, 298K) of 1-(3,4-diazido-3methylbutyl)-2,3,5,6-tetrafluoro-4-methylbenzene

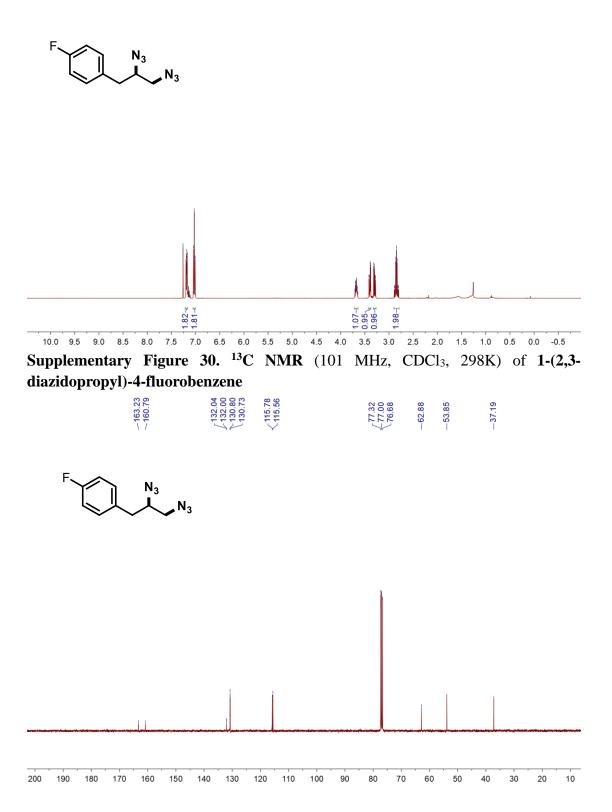

Supplementary Figure 21. ¹³C NMR (101 MHz, CDCl₃, 298K) of 1-(3,4-diazido-3-methylbutyl)-2,3,5,6-tetrafluoro-4-methylbenzene


Supplementary Figure 22. ¹⁹F NMR (471 MHz, CDCl₃, 298K) of 1-(3,4-diazido-3-methylbutyl)-2,3,5,6-tetrafluoro-4-methylbenzene

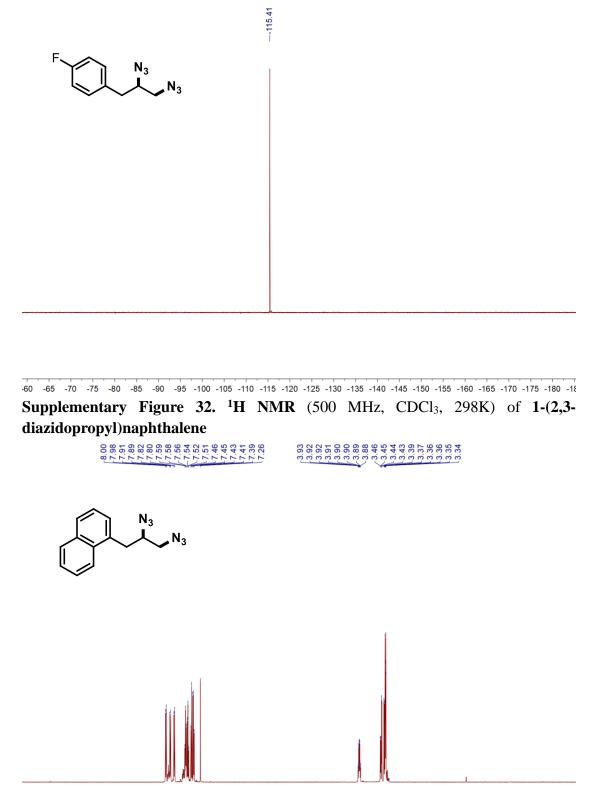


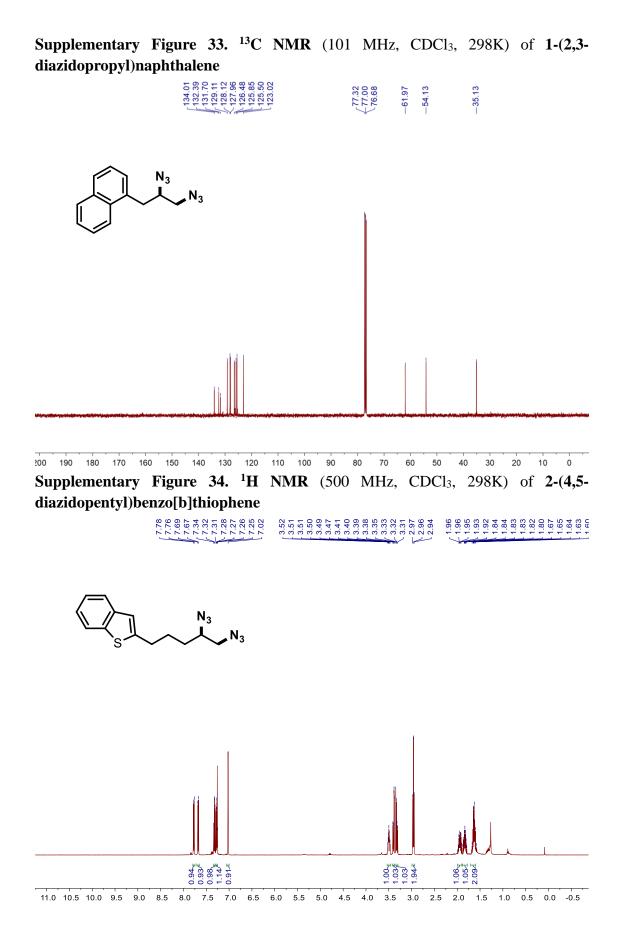
Supplementary Figure 23. ¹H NMR (500 MHz, CDCl₃, 298K) of (2,3-diazido-2-methylpropoxy)benzene

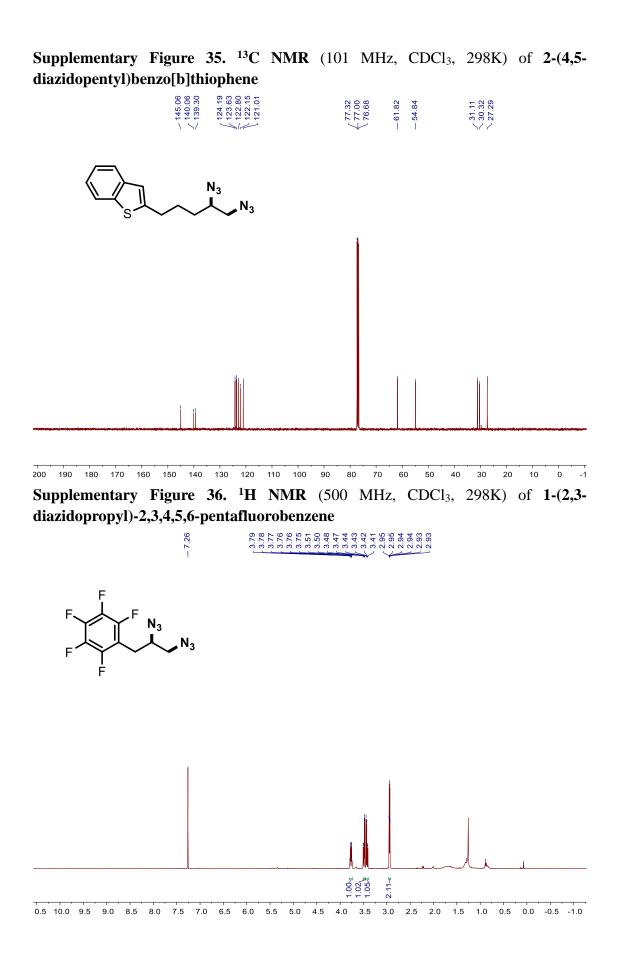

Supplementary Figure 25. ¹H NMR (500 MHz, CDCl₃, 298K) of 1,2-diazido-2-methylheptane

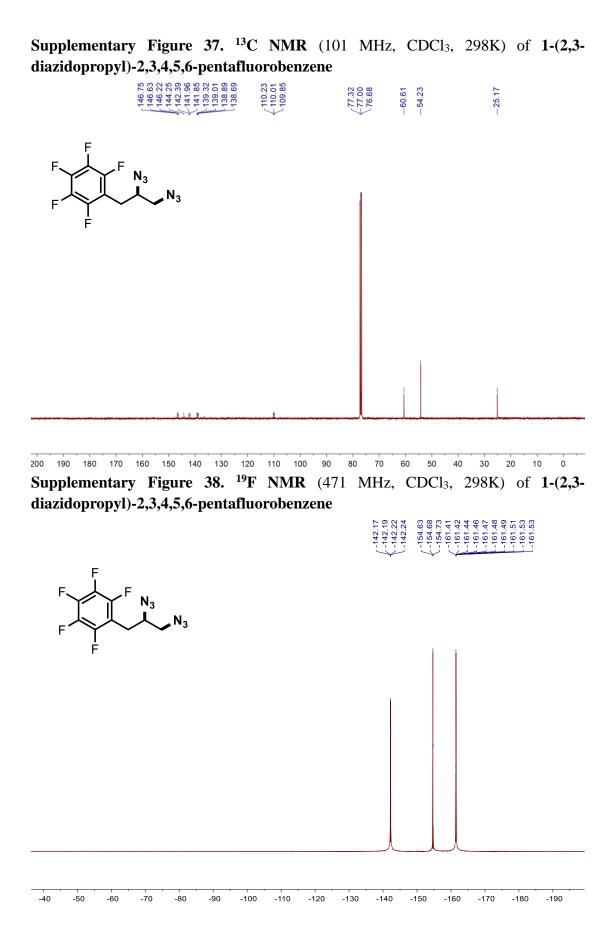


Supplementary Figure 27. ¹H NMR (500 MHz, CDCl₃, 298K) of (3,4-diazidobutyl)benzene

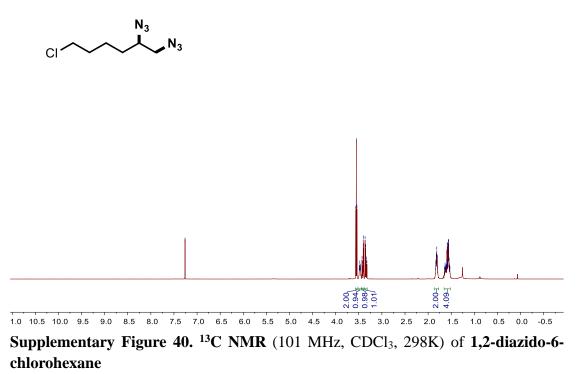

7.33 7.31 7.30 7.26 7.23 7.23 7.23 7.23 3, 48 3, 46 4, 474, 47 4, 47

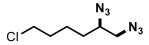

Supplementary Figure 29. ¹H NMR (500 MHz, CDCl₃, 298K) of 1-(2,3-diazidopropyl)-4-fluorobenzene

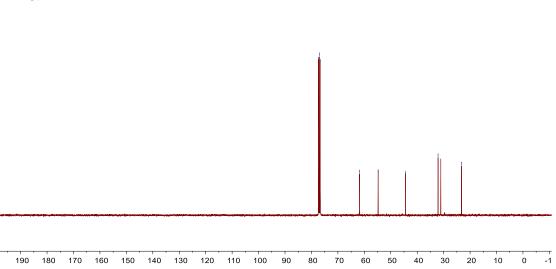



Supplementary Figure 31. ¹⁹F NMR (471 MHz, CDCl₃, 298K) of 1-(2,3-diazidopropyl)-4-fluorobenzene

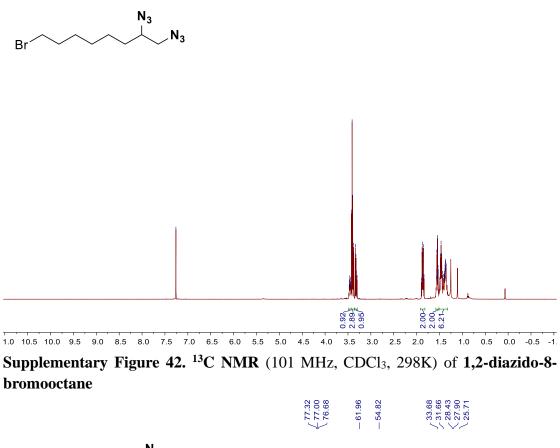
 I.0
 10.5
 10.0
 9.5
 9.0
 8.5
 8.0
 7.5
 7.0
 6.5
 6.0
 5.5
 5.0
 4.5
 4.0
 3.5
 3.0
 2.5
 2.0
 1.5
 1.0
 0.5
 0.0
 -0.5

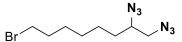


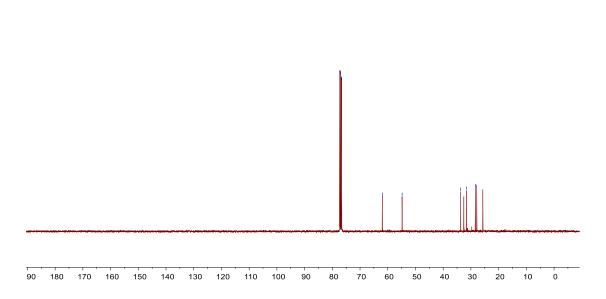


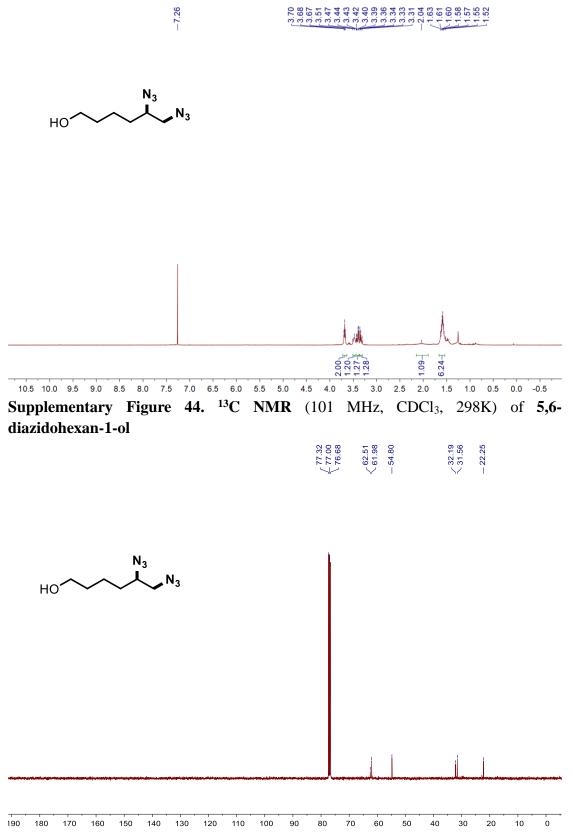

Supplementary Figure 39. ¹H NMR (500 MHz, CDCl₃, 298K) of 1,2-diazido-6-chlorohexane

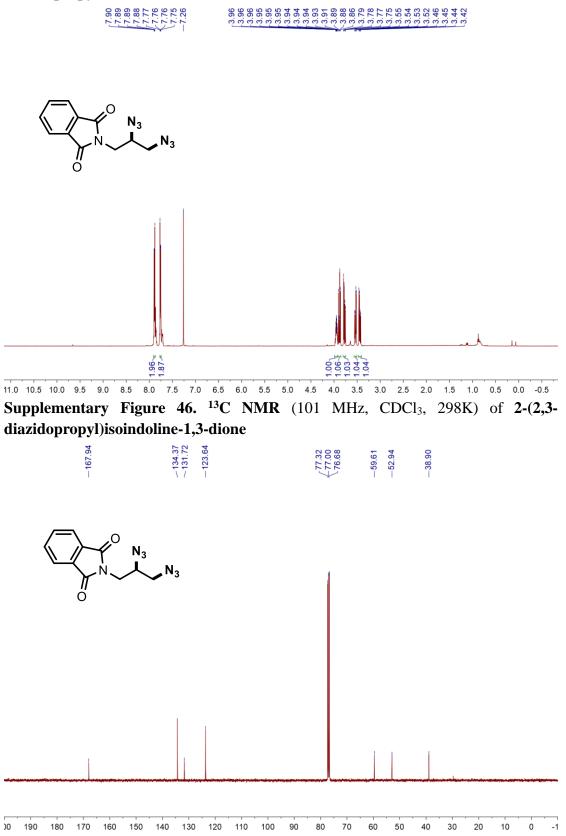
7,7,26 33,54 33,54 33,54 33,54 33,54 33,44 33,44 33,44 33,34 33,44 33,34 34,34 34,34 34,34534,345 34,345 34,345 34,345 34,34534,345 34,345 34,34534,345 34,345 34,345 34,34534,345 34,345 34,34534,345 34,34534,345 34,34534,345 34,345 34,34534,34534,345 34,34534,34534,34534,34

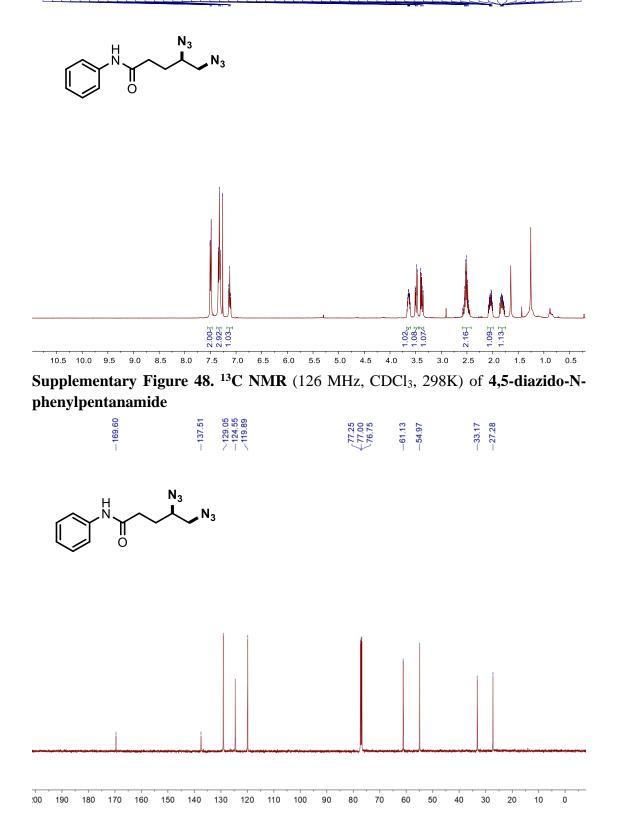


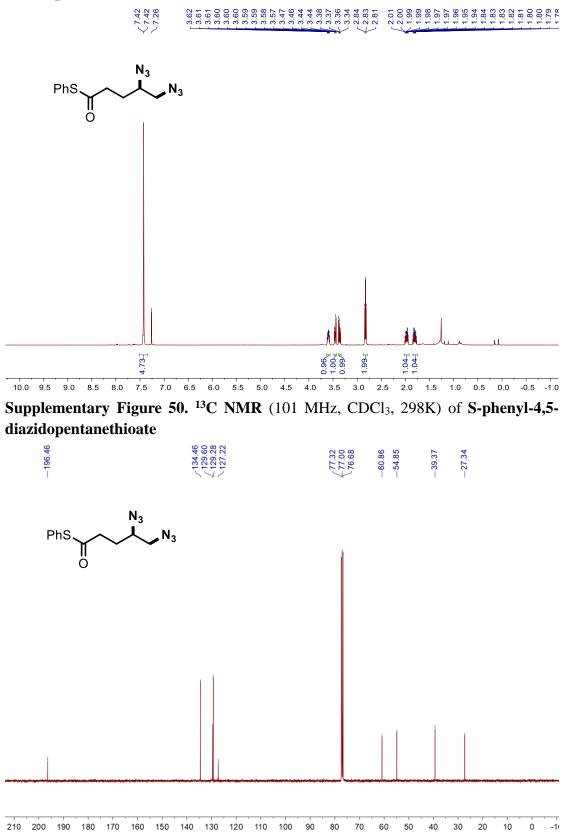

 $\begin{cases} 77.32 \\ 77.00 \\ 76.08 \\ 76.08 \\ -61.82 \\ -54.76 \\ -44.45 \\ -44.45 \\ -31.07 \\ -23.26 \end{cases}$

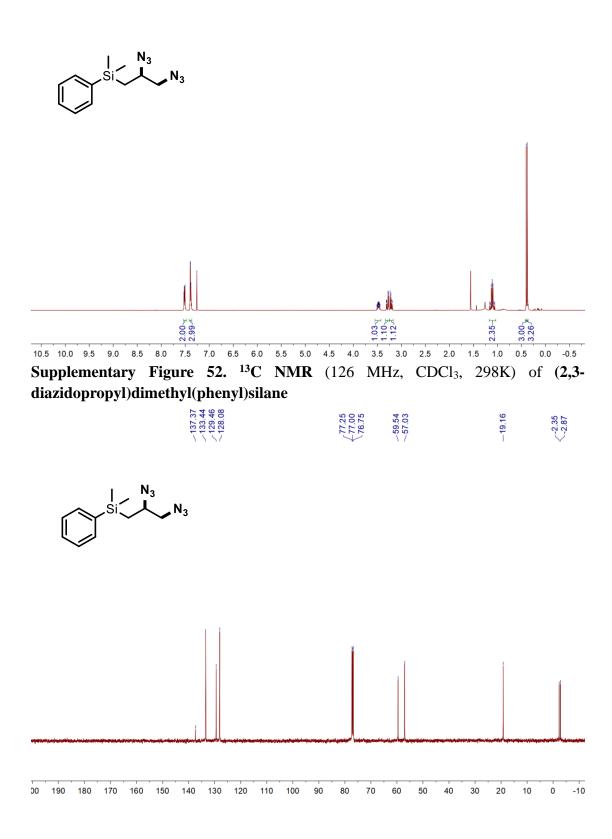


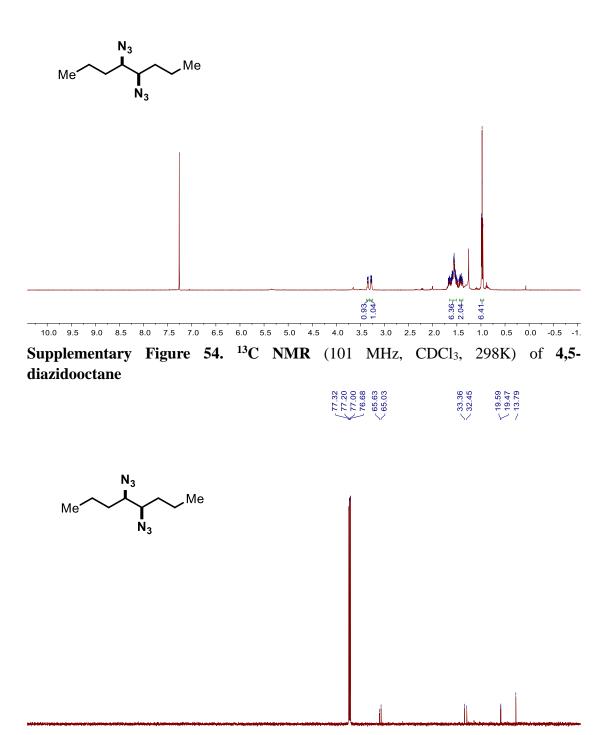

Supplementary Figure 41. ¹H NMR (500 MHz, CDCl₃, 298K) of 1,2-diazido-8-bromooctane



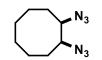

Supplementary Figure 43. ¹H NMR (500 MHz, CDCl₃, 298K) of 5,6diazidohexan-1-ol

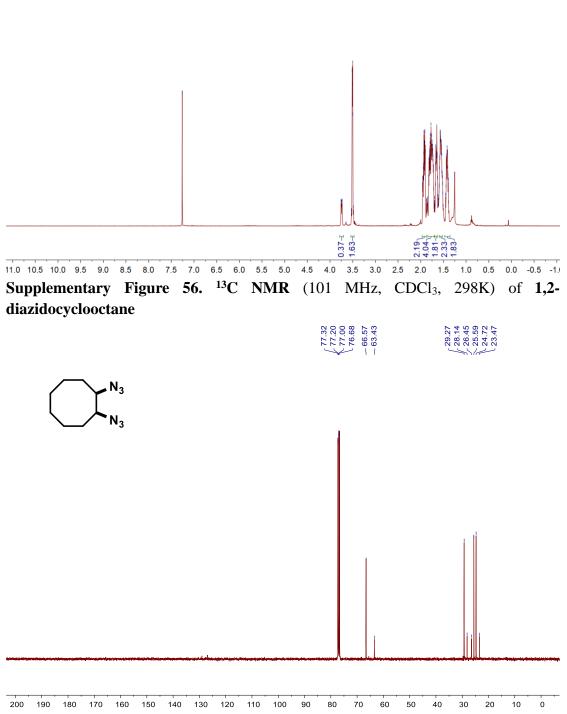

Supplementary Figure 45. ¹H NMR (500 MHz, CDCl₃, 298K) of 2-(2,3-diazidopropyl)isoindoline-1,3-dione

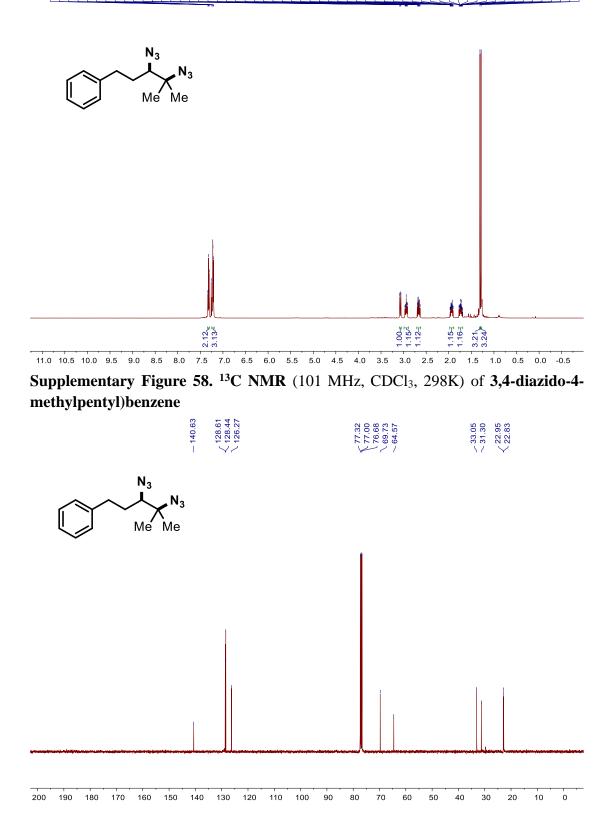

Supplementary Figure 47. ¹H NMR (500 MHz, CDCl₃, 298K) of 4,5-diazido-N-phenylpentanamide


Supplementary Figure 49. ¹H NMR (500 MHz, CDCl₃, 298K) of S-phenyl-4,5diazidopentanethioate

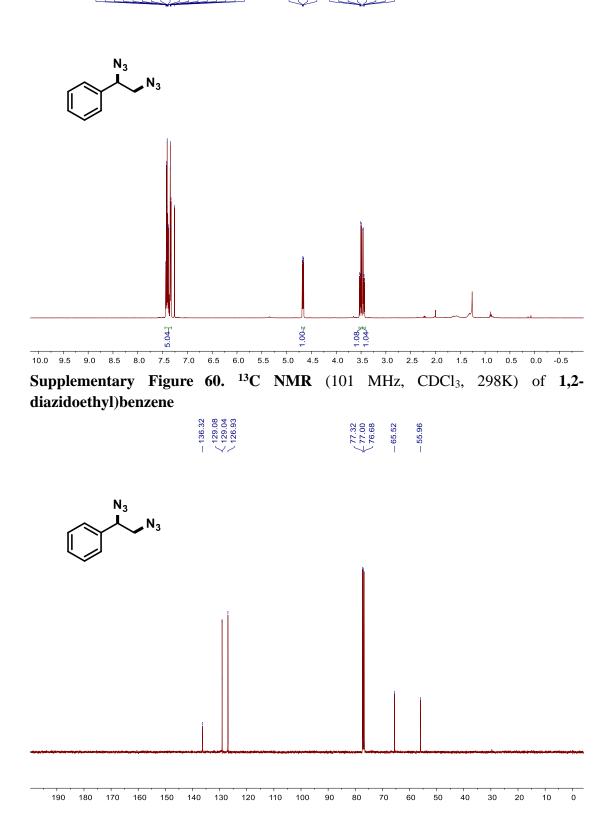
Supplementary Figure 51. ¹H NMR (500 MHz, CDCl₃, 298K) of (2,3-diazidopropyl)dimethyl(phenyl)silane

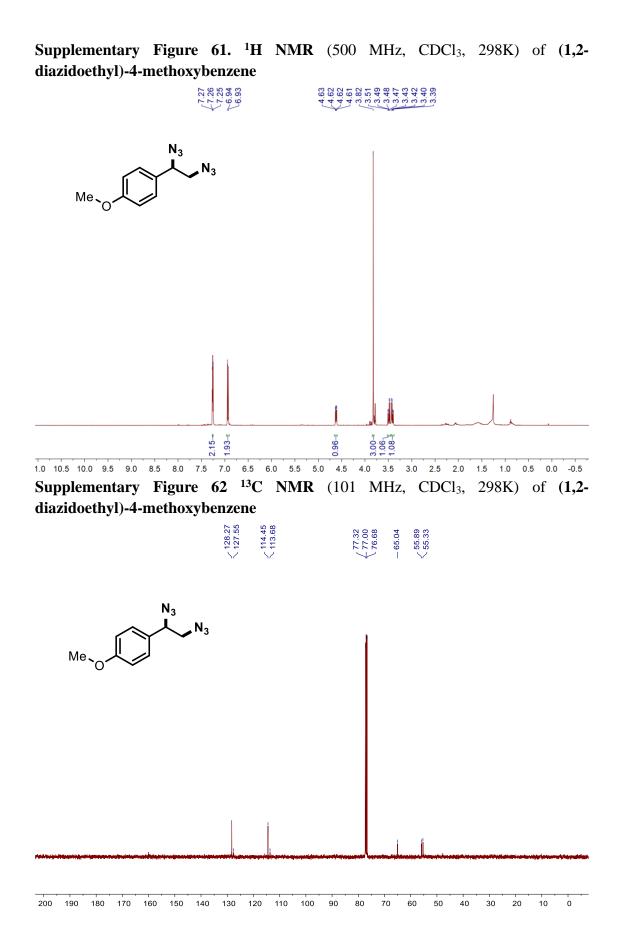




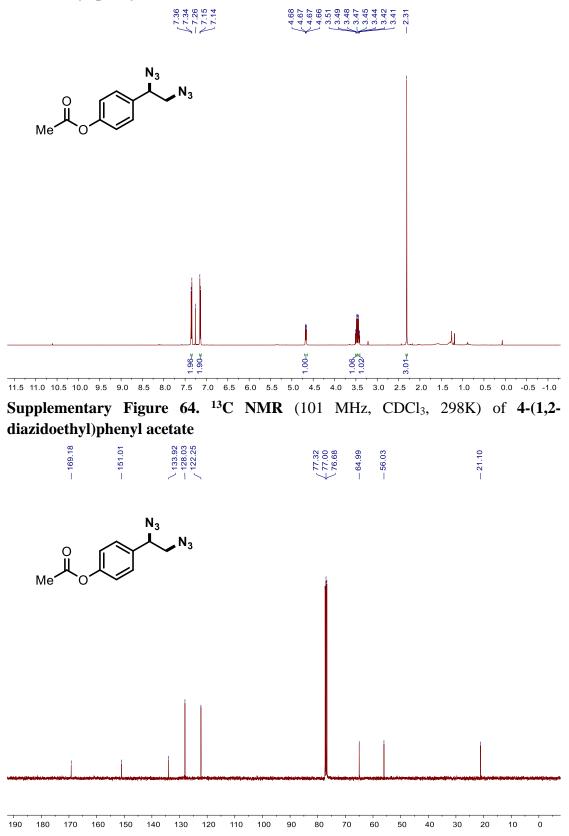

. 170 . 140 . 120 -1 Supplementary Figure 55. ¹H NMR (500 MHz, CDCl₃, 298K) of 1,2diazidocyclooctane

7.7.26 3.3.51 3.3.51 3.3.55 3.3.51 3.3.55 3.3.51 3.3.55 3.3.51 3.3.55 3.55

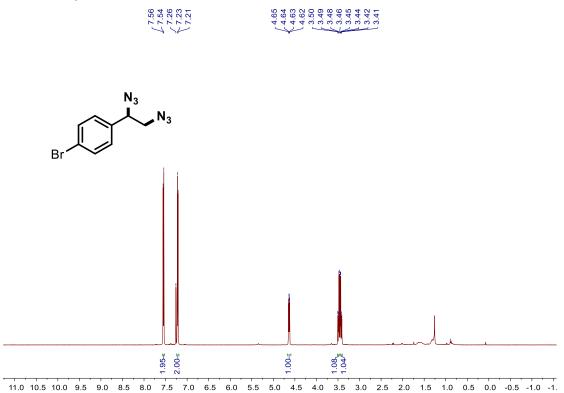


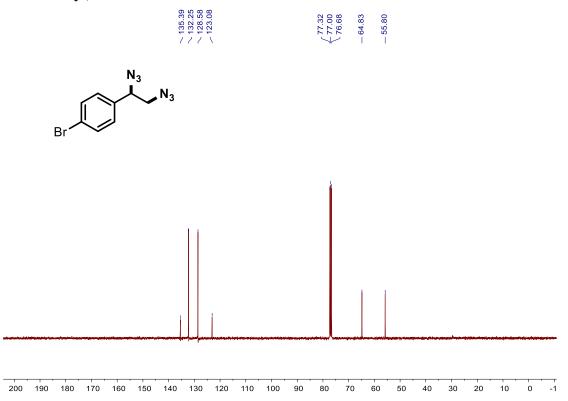


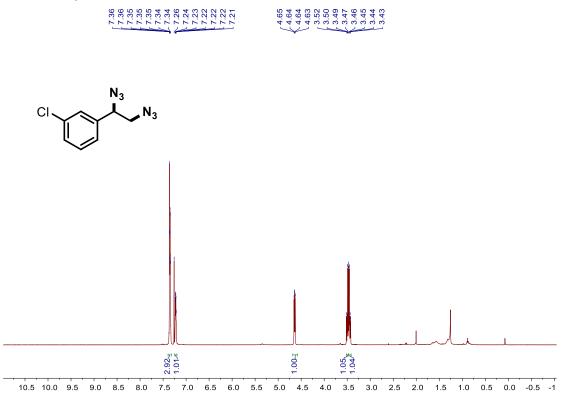
Supplementary Figure 57. ¹H NMR (500 MHz, CDCl₃, 298K) of 3,4-diazido-4-methylpentyl)benzene

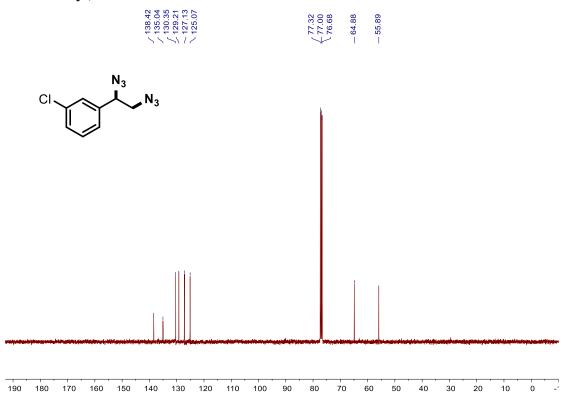


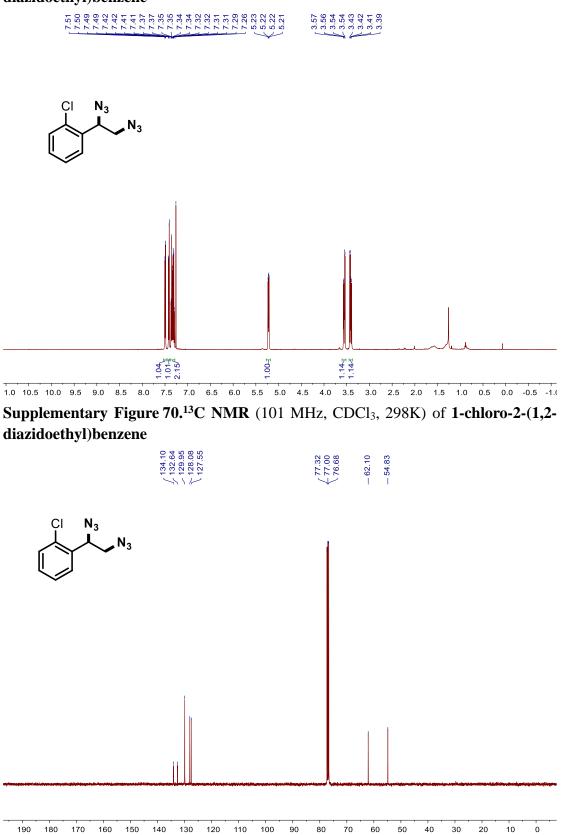
Supplementary Figure 59. ¹H NMR (500 MHz, CDCl₃, 298K) of 1,2diazidoethyl)benzene

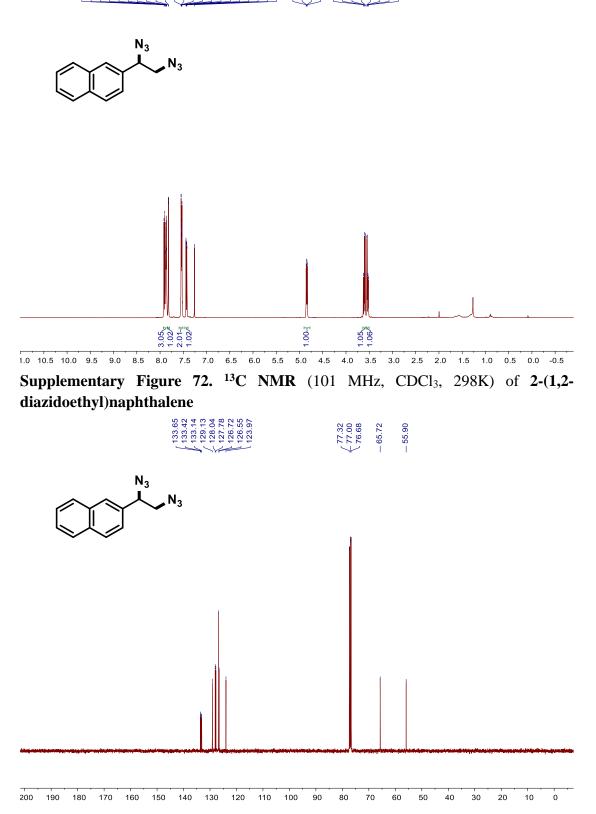


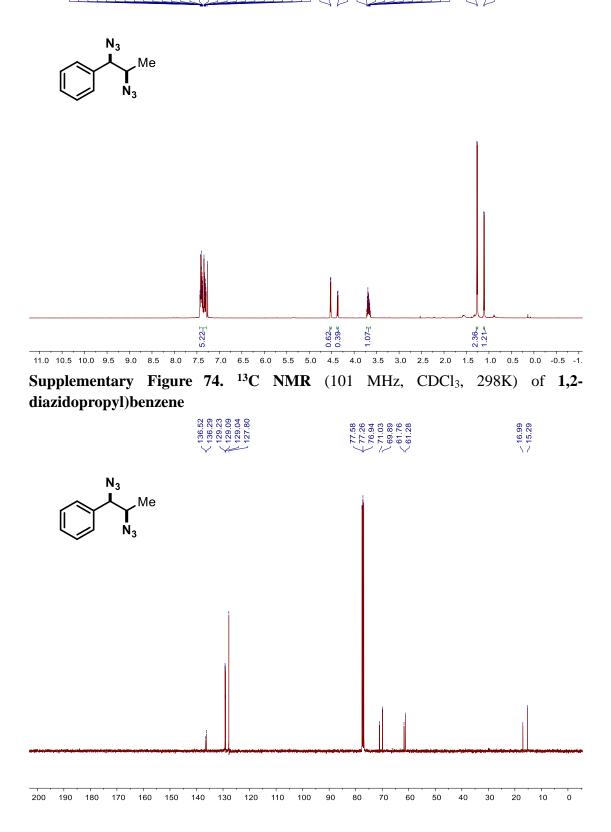

Supplementary Figure 63. ¹H NMR (500 MHz, CDCl₃, 298K) of 4-(1,2-diazidoethyl)phenyl acetate

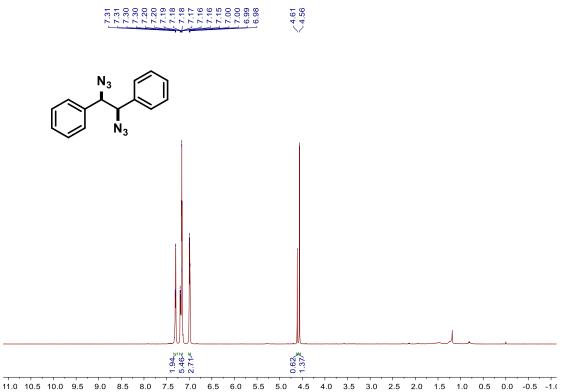

Supplementary Figure 65. ¹H NMR (500 MHz, CDCl₃, 298K) of 1-bromo-4-(1,2-diazidoethyl)benzene

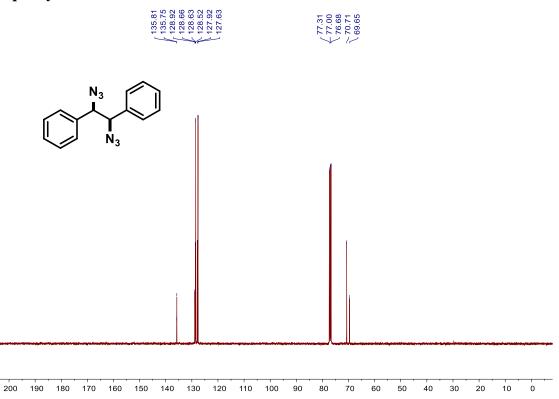

Supplementary Figure 66. ¹³C NMR (101 MHz, CDCl₃, 298K) of 1-bromo-4-(1,2-diazidoethyl)benzene

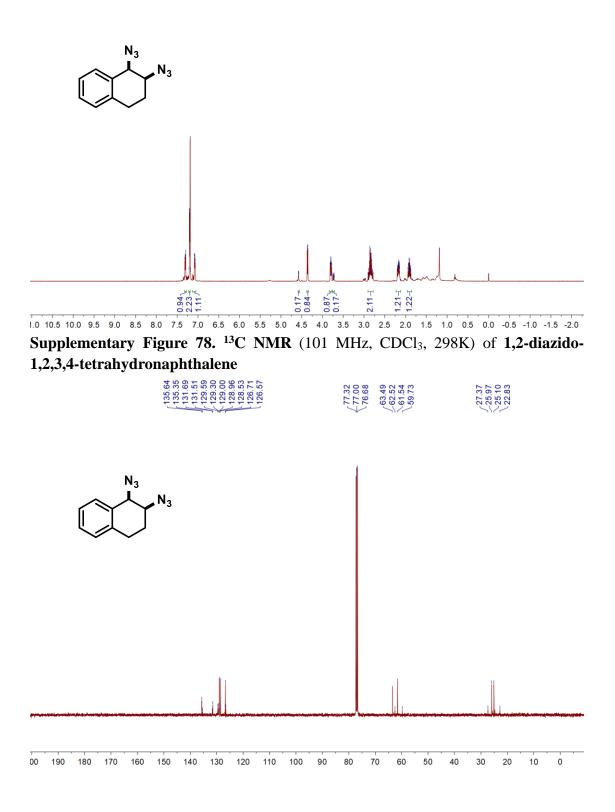

Supplementary Figure 67. ¹H NMR (500 MHz, CDCl₃, 298K) of 1-chloro-3-(1,2-diazidoethyl)benzene

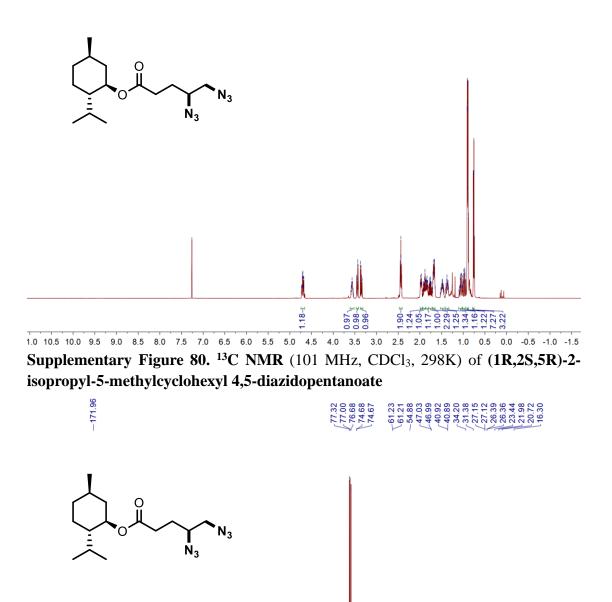

Supplementary Figure 68. ¹³C NMR (101 MHz, CDCl₃, 298K) of 1-chloro-3-(1,2-diazidoethyl)benzene


Supplementary Figure 69. ¹H NMR (500 MHz, CDCl₃, 298K) of 1-chloro-2-(1,2-diazidoethyl)benzene

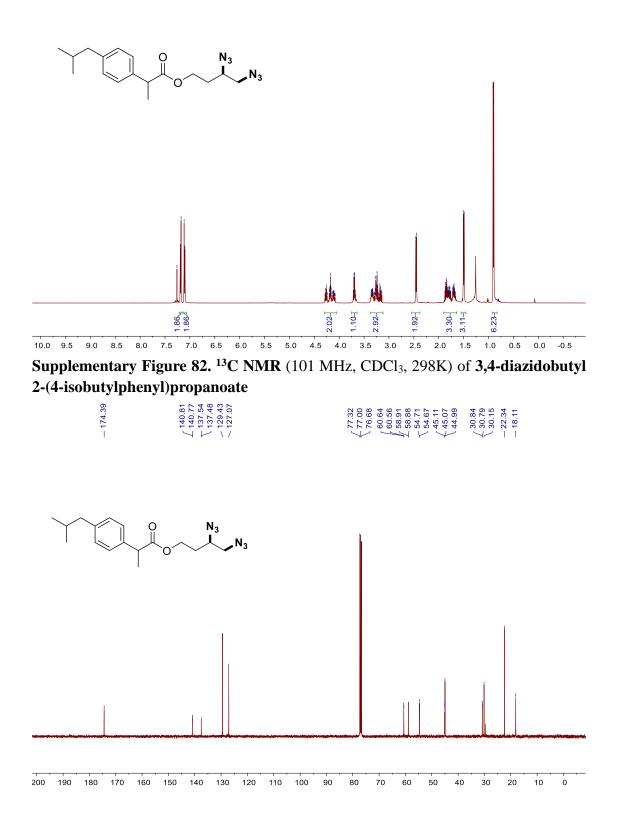

Supplementary Figure 71. ¹H NMR (500 MHz, CDCl₃, 298K) of 2-(1,2-diazidoethyl)naphthalene


Supplementary Figure 73. ¹H NMR (500 MHz, CDCl₃, 298K) of 1,2diazidopropyl)benzene

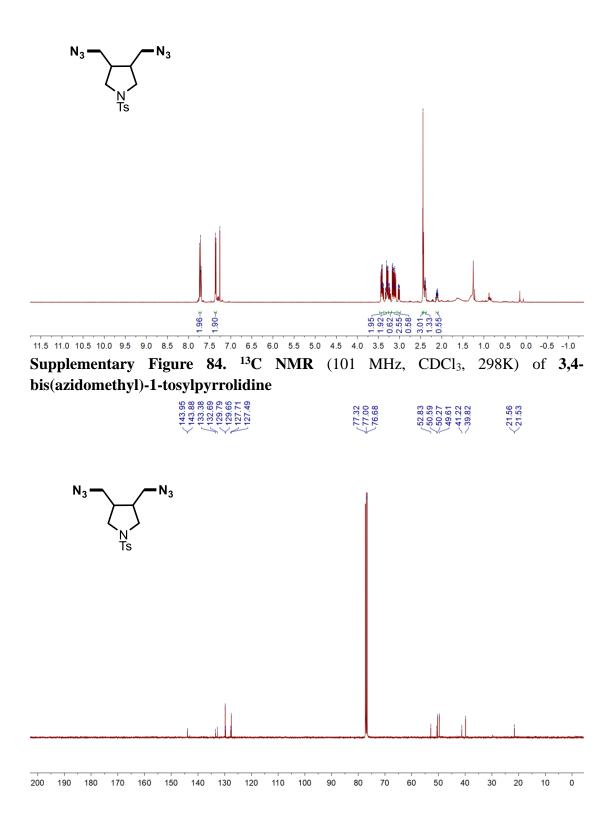

Supplementary Figure 75. ¹H NMR (500 MHz, CDCl₃, 298K) of 1,2-diazido-1,2-diphenylethane


Supplementary Figure 76. ¹³C NMR (101 MHz, CDCl₃, 298K) of 1,2-diazido-1,2-diphenylethane

Supplementary Figure 77. ¹H NMR (500 MHz, CDCl₃, 298K) of **1,2-diazido-1,2,3,4-tetrahydronaphthalene**



Supplementary Figure 79. ¹H NMR (500 MHz, CDCl₃, 298K) of (1R,2S,5R)-2isopropyl-5-methylcyclohexyl 4,5-diazidopentanoate



Supplementary Figure 81. ¹**H NMR** (500 MHz, CDCl₃, 298K) of **3,4-diazidobutyl 2-(4-isobutylphenyl)propanoate**

Supplementary Figure 83. ¹H NMR (500 MHz, CDCl₃, 298K) of **3,4**bis(azidomethyl)-1-tosylpyrrolidine

