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A APPENDIX A: THE EXPRESSION FOR THE JACOBIAN IN THE STRAPP

In general, the transformation implied by

I1∕20 (�)� = I1∕21 (�)�, (1)

cannot be calculated algebraically. However, the Jacobian matrix can be calculated via implicit derivation as shown below.
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The matrix
{

dI1∕21 (�)∕d�
}

� can be written as ({dI1∕21 (�)∕d�0}�,… , {dI1∕21 (�)∕d�p−1}�). The derivative can be decomposed

using a direct application of the product rule, for j = 0,… , p − 1, as

dI1(�)∕d�j = I1∕21 (�){dI1∕21 (�)∕d�j} + {dI
1∕2
1 (�)∕d�j}I

1∕2
1 (�). (2)

Equation (2) can be expressed in the form of the Sylvester equation1 which allows for vectorized representations of the needed

derivatives2. Let Ip denote the p × p identity matrix. Then the required derivatives may be represented as

vec
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}−1
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, (3)

where vec(⋅) denotes the vectorization of a matrix in which columns are stacked to convert a n × p matrix into a np × 1 vector.

The derivative of I1∕20 (�) is calculated analogously.
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B APPENDIX B: THE LOCALLY ONE-TO-ONE TRANSFORMATION PROPERTY

To understand the implications of the local one-to-one property of the straPP transformation, we consider a single parameter

logistic model with parameter � (success probability �(�) = e�∕(1 + e�)). For a random sample of size n, it follows that the

Fisher information has a simple closed form given by

I(�) = n�(�) (1 − �(�)) ,

where �(�) = e�∕(1 + e�). Thus,

I(�)1∕2� =
√

n�(�) (1 − �(�))�.

A plot of � by I(�)1∕2� is given in Figure 1 for the case where, without loss of generality, we take n = 1 (equivalently, the average

information in the non-iid setting). Thus, for � ∈ [−2.4, 2.4], the function is one-to-one. This corresponds to probabilities �(�) ∈

FIGURE 1 Plot of � (x-axis) by I(�)1∕2� (y-axis).

[0.084, 0.916]. Thus, we only recommend considering the straPP transformation in such cases where response probabilities are

not too extreme. Practitioners should chose initial priors that are informative enough to ensure the prior for � is consistent with

the region where the straPP transformation is one-to-one.
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C APPENDIX C: PERFORMING MCMCWHEN USING A STRAPP

In many cases, one will not be able to solve for � in (1). When the Fisher information matrix for the historical data model does

not depend on the regression parameters, such as when the historical data model is a linear model, one can solve algebraically for

� = I−1∕20 I1∕21 (�)� = g(�)

and derive the straPP as a transformed power prior. In that case, MCMC proceeds in the obvious way. When the Fisher informa-

tion matrix for the historical data depends on the regression parameters but the Fisher information matrix for the current data

model does not, one can solve for

� = I−1∕21 I1∕20 (�)� = g−1(�)

and perform the analysis using complementary sampling. To understand this strategy, consider the (intractable) posterior

distribution based on an analysis with the straPP, which is given by

�s(� ∣ D1, D0) ∝ (�|D1)(g(�)|D0)a0�0(g(�))
|

|

|

|

dg(�)
d�

|

|

|

|

,

where we now use D1 to represent a current data set. Consider the transformation � = g(�). It is straightforward to show that

applying the transformation leads to

�s(� ∣ D1, D0) ∝ (g−1(�)|D1)(�)|D0)a0�0(�), (4)

which does not include a determinant term and is equivalent to parameterizing the current data model in terms of � and fitting the

model using a power prior. Note that in this case, the function g−1(�) is readily available and so fitting this model with MCMC

is again straightforward. Samples for � can be obtained from the posterior in (4) and transformed according to � = g−1(�) in

order to obtain the required samples for the parameters in the current data model.

The most challenging case occurs when the straPP equation cannot be solved for either parameter. In this case, MCMC

using Hamiltonian Monte Carlo is straightforward but requires a non-linear equation solver. For example, a value of � might be

proposed at a givenMCMC iteration and then, using a non-linear equation solver, the algorithmmust compute the corresponding

proposed value of � in order to evaluate the posterior kernel to construct the rejection ratio. Such a feature is readily available

in rstan3 but can require substantial computation time.

D APPENDIX D: THE STRAPP FOR MULTIPLE HISTORICAL DATA SETS

Similar to the power prior, the straPP can be extended for use with multiple historical data sets. Suppose there are K historical

data sets available, denoted D0k for k = 1,… , K , all with the same outcome distribution. Let D0 = (D01,… , D0K ) and a0 =
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(a01,… , a0K ), where a0k is the weight associated with the ktℎ historical data set. Then, the straPP for multiple historical data

sets can be written as

�ms(� ∣ D0) ∝
{ K

∏

k=1
(g(�)|D0k)a0k�0(g(�))

}

|

|

|

|

dg(�)
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|

|

|

|

,

where g(�) is the function induced by the transformation I1∕20 (�)� = I1∕21 (�)� and the covariate matrix used to formulate I0(�)

and I1(�) is the stacked covariate matrix obtained by vertical concatenation of the covariate matrices from the K data sets.

E APPENDIX E: EXPRESSION FOR THE JACOBIAN FOR GENERALIZED LINEAR

MODELS WITH THE CANONICAL LINK

In this section, we assume that outcomes for the historical and current data arise from the class of generalized linear models

(GLMs), as described in Section 4.4 of the paper. Further, we specify the canonical link for the historical and current data

models. Then the Fisher information information matrix from the historical data model for the regression parameter can be

written as I0(�0) = �0XT
0 V0(�0)X0 and the Fisher information information matrix from the current data model can be written

as I1(�1 ∣ X0) = �1XT
0 V1(�1)X0, where for k = 0, 1, Vk(�k) = diag(vki(�k)), as stated in Section 4.4 of the paper. Then

following Section 4.1 of the paper, we can write the derivatives as
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.

Using the results from Section 4.1, for a given j = 0,… , p − 1, we find
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)
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(
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,
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F APPENDIX F: PROOF OF THEOREM 1

Let Y0 ∼ Nn0(X0g(�1), �20In0) be the n0 × 1 vector of responses for the historical data and Y1 ∼ Nn1(X1�1, �21In1) be the

n1 × 1 vector of responses for the current data, with known historical and current data variance. Then, the posterior distribution
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associated with an analysis based on the straPP and power prior are given by (5) and (6), respectively.

�1 ∣ Y1, Y0
straPP∼ Np(�̂s, �s) (5)

�1 ∣ Y1, Y0
PP∼ Np(�̂p, �p), (6)

where �̂s = �s
{

(1∕�21)X
T
1 Y1 + a0∕(�0�1)X

T
0 Y0

}

, �s = �21(X
T
1 X1 + a0XT

0 X0)−1, �̂p = �p
{

(1∕�21)X
T
1 Y1 + (a0∕�

2
0)X

T
0 Y0

}

,

and �p = {(1∕�21 )X
T
1 X1 + (a0∕�20)X

T
0 X0}−1.

Now let �̂s,1j and �̂p,1j denote the straPP and power prior estimator for �1j , respectively, where �1j is the (j + 1)th element of

�1 (j = 0,… , p−1). We wish to find the smallest �1j such that MSE(�̂s,1j) ≤MSE(�̂p,1j). Note that the MSE can be decomposed

into the sum of the point estimator’s variance and squared bias (i.e., MSE = Var + [Bias]2).

First, we show that Bias(�̂s) = 0, and thus Bias(�̂s,1j) = 0. For the normal-normal case, the assumed relationship between the

historical and current data model parameters is �0 = g(�1) = (�0∕�1)�1. Then E(Y0)∕(�0�1) = X0�0∕(�0�1) = X0�1∕�21 . We

can calculate the bias of the straPP estimator as

Bias(�̂s) = E(�̂s) − �1 = �s

{

1
�21
XT
1 E(Y1) +

a0
�0�1

XT
0 E(Y0)

}

− �1

= �s

{

1
�21

(

XT
1 X1 + a0XT

0 X0
)

}

�1 − �1

= �s
(

�s
)−1 �1 − �1 = 0.

For non-zero �1j , it follows that

Var(�̂s,1j) ≤ Var(�̂p,1j) +
{

Bias(�̂p,1j)
}2

⇔ Var(�̂s,1j) ≤ Var(�̂p,1j) + �21j
{

Percent Bias(�̂p,1j)
}2

⇔
Var(�̂s,1j) − Var(�̂p,1j)
{

Percent Bias(�̂p,1j)
}2

≤ �21j .

G APPENDIX G: BINARY-NORMAL CASE – STRAPP TRANSFORMATION VIOLATED

We consider the binary-normal case where the parameters in the historical and current data models do not satisfy the assumption

of the straPP transformation. The purpose of these simulations is to explore the robustness of the Gen-straPP to account for such

violations. To operationalize this investigation, we assumed

�1 = I
−1∕2
1 I1∕20 (�0)�0 − I

−1∕2
1 c0, (7)

where cT0 = (0, c01) and c01 was varied. We considered the following inputs: n0 = 100, n1 = 100, a0 = 0.5, �00 = −0.5,

�01 = 0.25, �1 = 2, and c01 ∈ {−1.5,−1.4… , 1.4, 1.5}. The values of the current data model parameters were then identified
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by solving (7). Figure 1 panels (a)-(d) present results comparing performance characteristics of the straPP, the Gen-straPP, and

the commensurate prior.

straPP Gen-straPP Commensurate

Av
g
Lo

g
�̂ 1
1
Va

ria
nc
e

c01
(a)

�̂ 1
1
Bi
as

c01
(b)

Av
g
Lo

g
�̂ 1
1
M
SE

c01
(c)

Co
ve
ra
ge

Pr
ob
ab
ili
ty

c01
(d)

FIGURE 1 Panels (a)-(d) present the average log variance, bias, log MSE, and coverage probability for the posterior mean of
�11, respectively, as a function of c01 plotted on the x-axis for the straPP, Gen-straPP, and commensurate prior. straPP, scale
transformed power prior.

The average log variance of the posterior mean based on the straPP is smaller than the Gen-straPP and commensurate prior,

as seen in Figure 1(a). Figure 1(b) illustrates that the magnitude of the posterior mean estimator bias increases as c01 increases

and is greater for the straPP compared to the Gen-straPP and commensurate priors. This illustrates the robustification provided

by the Gen-straPP in terms of bias reduction when the assumption of the straPP does not hold. In Figure 1(c), the MSE for

posterior mean based on the straPP is lower when the value of c01 is near zero but exceeds the MSE for the posterior mean

based on the Gen-straPP when the quantity becomes sufficiently large in absolute value. The coverage probabilities based on

an analysis with the Gen-straPP and commensurate prior are near or above 95% with the straPP-based coverage probabilities

dipping to near 90% in the extreme cases.

H APPENDIX H: BINARY-NORMAL SIMULATION SETUP

We generated B = 5, 000 data sets. For each sampler, we used a burn-in of 5, 000 samples and took 25, 000 samples without

thinning. All samplers were coded in the Stan programming language. The sample sizes were n = 100 and n0 = 100.

For the historical data set, we generated y0i ∼ Ber
(

�0i
)

, where

log
(

�0i
1 − �0i

)

= −0.5 + �01x0i,

where �01 ∈ {0, 0.1, 0.2,… , 2.0}, and x0i is a binary covariate.
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The regression coefficients were obtained by solving the straPP transformation, i.e.,

�1 =
(

X′
0X0

)−1∕2 [X′
0W0(�0)X0

]1∕2 �0.

For the current data set, we generated yi ∼ N
(

�1i, �21
)

, where �1i = �10 + �11xi, where xi is a binary covariate, and �1 = 2.

The initial prior for the historical data was

�0(�0) = �
(

�00|0, 1.6452
)

× �
(

�01|0, 102
)

The prior for the precision parameter � = �−2 was

�(�) = fΓ (�|0.001, 0.001) ,

where fΓ(⋅|a, b) is the gamma density function with shape a and rate (inverse scale) parameter b.

For the Gen-StraPP, we elicited

c0|�2c0 ∼ N(0, �
2
c0
),

�2c0 ∼ N
+(0, 1),

whereN+(�, �2) is a normal distribution with mean 0 and variance �2 truncated from below at zero.

For the Commensurate Prior, we elicited

�−1∕2 ∼ N+(0, 1).

For the normalized version of the power prior and straPP, we elicited

�(�|D0) ∝ N(�̂0, I(�̂0)−1∕a0),

with

�(a0) ∝ 1{0.005 ≤ a0 ≤ 1},

for which the lower bound was chosen to facilitate computation.

I APPENDIX I: POSTERIOR ESTIMATES FOR INTERCEPTS AND VARIANCE
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TABLE 1 Posterior Estimates for Intercepts and Current Linear Regression Variance

Historical Intercept Current Intercept Current Variance

Model a0 DIC Mean (SD) 95%HPD Mean (SD) 95%HPD Mean (SD) 95%HPD

Gen-straPP 0.10 2815.38 -1.12 (0.57) (-2.35, -0.12) 47.09 (1.01) (45.11, 49.07) 86.40 (6.26) (75.17, 99.58)
straPP 0.25 2815.37 -1.11 (0.38) (-1.93, -0.41) 46.93 (0.95) (45.09, 48.81) 86.98 (6.34) (75.44, 100.26)
RP – 2816.65 ———— ———— 47.07 (1.09) (44.96, 49.24) 86.78 (6.39) (75.13, 100.24)
PP 0.10 2816.44 -1.40 (0.89) (-3.24, 0.27) 46.66 (0.87) (44.97, 48.39) 87.07 (6.40) (75.48, 100.54)
COM – 2818.47 -1.38 (0.34) (-2.07, -0.74) 46.29 (0.89) (44.59, 48.08) 87.57 (6.48) (75.81, 100.92)

Gen-straPP, generalized scale transformed power prior; straPP, scale transformed power prior; RP, reference prior; PP, power
prior; COM, commensurate prior.
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