SUPPLEMENTAL INFORMATION

Table S1. Comparison of ENTER with other platforms. Related to Figures 4, 6, and7.

	DNA Cell		Display	Engineered viral platform		
	barcoded tetramer (TetTCR- seqHD) ⁵⁷	reporter screen (T-scan ⁴ , SABR ³ etc)	techniques (Yeast, phage etc) ⁷	RAPTR ⁵⁶	v- CARMA ¹¹	ENTER
Antigen- TCR pairing	~	✓	~	✓	n.d.	✓
# of antigens	10 ² -10 ³ known	10⁵ known	10 ⁸ unknown	10 ² known	n.a.	10 ¹ -10 ² known
# of TCRs	10 ¹⁶ unknown	1-10 known	1-10 known	10⁵ known	n.a.	10 ¹⁶ unknown
Gene expression	✓ 500 genes/cell	X	X	X	X	✓ 20,000 genes/cell
Apply to primary sample	*	✓	X	n.a.	✓	*
Antigen- specific cargo delivery	x	x	X	X	✓ T cell	✓ T cell and B cell
Cell type- specific cargo delivery	x	x	X	X	x	*

n.d.: not done

n.a.: not available

Table S2. Comparison of ENTER pMHC virus and pMHC tetramer. Related to Figures 2, 6, and 7.

	ENTER pMHC virus	DNA barcoded pMHC tetramer	
MHC expression system	Mammalian cell line: natural MHC glycosylation and proper folding in human cells	E. coli bacteria system: eukaryotic MHC post-translational modification and folding not possible	
Sensitivity	More sensitive than pMHC tetramer on a molar basis per reagent	Sensitive under a high concentration	
Throughput	12 pMHC ENTER viruses for single cell multi-omics profiling of antigen specificity, TCR clonality, and global transcriptomics.	1000 pMHC tetramers for only antigen specificity in bulk samples 58.	
		100-250 pMHC tetramers for single cell multi-omics profiling of antigen specificity, TCR clonality, and targeted gene expression ⁵⁷ .	
Barcode	2 copy of barcoded viral RNA naturally assembled per viral particle.	Individual DNA barcode conjugation reaction may lead to uneven barcodes conjugated for tetramers.	
	ENTER-seq infer TCR affinity by analysis of pMHC binding per cell	No analysis of pMHC binding per cell has been done using DNA barcoded pMHC tetramers.	
Cost	\$10 for 10 tests (directly apply to 10x genomics platform)	\$1400 for 50 tests of commercial pMHC tetramer (not DNA barcoded)	
		>\$2000 for 50 tests of DNA barcoded pMHC tetramer/multimer	
Procedure	1.One-step Gibson assembly cloning to insert DNA oligo sequence (encoding 9aa peptide) into pMHC plasmid vector.	Option 1 (Purchase and mix reagents in a convenient but high- cost manner): Purchase peptides (GenScript),	
		DNA barcoded and fluorophore conjugated Klickmer (Immudex).	

	 2.Transfection of pMHC vector along with other ENTER vectors in HEK293T cells. 3.Collect supernatant containing viruses after 48h and 72h after transfection. 4.Viral concentration: add 1mL Lenti-X concentrator per 2mL supernatant, mix well and incubate at 4°C overnight, 2000Xg spin down for 45 min resuspond pollet 	 and MHC-I monomers (immuneAware) (Total >\$2000 for 50 tests). Mix peptides to MHC-I and Klickmer at specific ratios individually. Option 2 (Generate most reagents in house in a relatively low-cost but more complicated manner) ⁵⁹ 1. Generation of biotinylated MHC-I monomers: 		
	in 150uL DMEM medium (20X concentration)	 (1) Expression and purification of MHC-I light chain B2M and heavy chain using bacteria system (25 steps). (2) MHC in vitro refolding, biotinylation and purification (25 steps) 		
		2. Generation of peptides by in vitro transcription and translation.		
		 3. Generation of DNA barcoded fluorescent streptavidin. (1) Conjugation of DNA linker to commercial fluorescent labeled streptavidin (\$500). (2) Annealing and overlap extension to conjugate DNA barcodes to complementary DNA linker 		
		4. pMHC UV exchange of peptides, tetramerization, and purification (8-10 steps).		
Specialized equipment	None	Size exclusion chromatography (HPLC) system with a gel-filtration column is required for purification of pMHC monomers.		

gene	transmembrane domain	cytoplasm domain
CD162(PSGL1)	LLAILILALVATIFFVCTVVL	AVRLSRKGHMYPVRN
LFA-1	YLYVLSGIGGLLLLLIFIVL	YKVGFFKRNLK
CD62L	PLFIPVAVMVTAFSGLAFIIWLA	RRLKKGKKSKR
CD49d	IVIISSSLLLGLIVLLLISYVMWK	AGFFKRQYKS
CD43	GMLPVAVLVALLAVIVLVALLLL	WRRRQKRRT
HLA-A2	IVGIIAGLVLFGAVITGAVVAAVMW	RRKSSDRKG
VSV-G	FFFIIGLIIGLFLVLRVGIHLCI	KLKHTKKRQI
ICAM1	IVIITVVAAAVIMGTAGLSTYLY	NRQRKIKKYRL
HLA-Dra1	NVVCALGLTVGLVGIIIGTIFII	KGLRKSNAAERRGPL
PDGFR	GTVVVISAILALVVLTIISLIILIML	WQKKPR

Table S3. List of TM domain sequence. Related to Figure 3 and STAR Methods

name	peptide	HLA allele	antigen
NY-ESO-1 ₁₅₇₋₁₆₅	SLLMWITQC	A0201	NY-ESO-1 (157-165)
NY-ESO-1 ₁₅₇₋₁₆₅ L3A	SLAMWITQC	A0201	NY-ESO-1 mutant peptide
NY-ESO-1 ₁₅₇₋₁₆₅	SLLMWIAQC	A0201	NY-ESO-1 mutant peptide
Т7А			
pp65 ₄₉₅₋₅₀₃	NLVPMVATV	A0201	CMV pp65 (495-503)
pp65 ₃₆₃₋₃₇₃	YSEHPTFTSQY	A0101	CMV pp65 (363-373)
M1 ₅₈₋₆₆	GILGFVFTL	A0201	Influenza M1 (58-66)
IE1 ₃₁₆₋₃₂₄	VLEETSVML	A0201	CMV IE1 (316-324)
IE1 ₈₁₋₈₉	VLAELVKQI	A0201	CMV IE1 (81-89)
pp65 ₁₄₋₂₂	VLGPISGHV	A0201	CMV pp65 (14-22)
pp65 ₁₂₀₋₁₂₈	MLNIPSINV	A0201	CMV pp65 (120-128)
pp65 ₁₈₈₋₁₉₆	FPTKDVALR	A0201	CMV pp65 (188-196)
pp65 ₃₂₅₋₃₃₃	QIFLEVQAI	A0201	CMV pp65 (325-333)
pp65 ₄₁₇₋₄₂₅	TPRVTGGGA	A0201	CMV pp65 (417-425)
UL46100-108	CLLESVYTA	A0201	CMV UL46 (100-108)
UL100 ₂₀₀₋₂₀₈	TLIVNLVEV	A0201	CMV UL100 (200-208)
US8 ₇₄₋₈₂	GVLDAVWRV	A0201	CMV US8 (74-82)
US150A ₁₅₂₋₁₆₁	ALWDVALLEV	A0201	CMV US150A (152-161)

Table S4. List of HLA peptide sequence. Related to Figure 2, 4, 5, 6, and 7

Table S5. DNA	Oligo sequences	. Related to	STAR Methods
---------------	-----------------	--------------	---------------------

name	Sequence	note
hs_TRAc_RT	gttgaaggcgtttgca	Reverse transcription (RT) primer for TCR alpha
nyeso_TRAc_RT	TCTTCTCAACGAGTTTAACGT	RT primer for NYESO-1 TCR alpha
HLA_nested_fw	ccaccatggcgacgggttca	For nested PCR to enrich HLA peptides
10x_5pRNA_Fw	ACACTCTTTCCctacacgacgctcttccg atct	For nested PCR to enrich HLA peptides
P7_Tru_HLA_fw	GTGACTGGAGTTCAGACGTGTG CTCTTCCGATCTggttacaggagggctc ggca	PCR to add Illumina adapters for HLA peptide library
P5_adapter	ACACTCTTTCCCTACACGACGCT CT	
nyeso_TRAc_rev	AACGTCACAGGAGCTTTCGGGA	PCR to enrich TCR alpha fragments for mixed cell lines
hs_TRAc_rev	TGAAGGCGTTTGCACATGCA	PCR to enrich TCR alpha fragments for mixed cell lines
P7_TRAc_nyeso_Rev	GTGACTGGAGTTCAGACGTGTG CTCTTCCGATCTgggttttggatgtacgg atgaac	Adding Illumina adapters for TCR library of mixed cell lines
P7_TRAc_hs_Rev	GTGACTGGAGTTCAGACGTGTG CTCTTCCGATCTcagctggtacacggc agg	Adding Illumina adapters for TCR library of mixed cell lines
10xTSO_oligo	tCCCATATAAGAAAc	in Enter pHLA display vector

10xPCR_handle	AAGCAGTGGTATCAACGCAGAG TAC	in Enter vector; for cDNA amplification
Fas shRNA-1 sequence under U6	CCCTTGTGTTTGGAATTATAACT CGAGTTATAATTCCAAACACAAG GG	
Fas shRNA-2 sequence under U6	GCGTATGACACATTGATTAAACT CGAGTTTAATCAATGTGTCATAC GC	
Fas shRNA-3 sequence under U6	CCTGAAACAGTGGCAATAAATCT CGAGATTTATTGCCACTGTTTCA GG	
Control shRNA sequence under U6	CCTAAGGTTAAGTCGCCCTCGCT CGAGCGAGGGGCGACTTAACCTT AGG	
CRISPR guide target HLA-1	CGGCTACTACAACCAGAGCG	
CRISPR guide target HLA-2	AGATCACACTGACCTGGCAG	
CRISPR guide target HLA-3	AGGTCAGTGTGATCTCCGCA	