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Supplementary Appendix A: Methods compared in simula-
tion study

Matching-adjusted indirect comparison

Matching-adjusted indirect comparison (MAIC) is implemented using the original method
of moments formulation presented by Signorovitch et al.1–4 To avoid further reductions in
effective sample size and precision, only the effect modifiers are included in the weighting
model. A weighted logistic regression is fitted to the AC IPD and standard errors for
the A vs. C marginal treatment effect are computed by resampling via the ordinary non-
parametric bootstrap with replacement,5 with 1,000 resamples of each simulated dataset.
Note that the standard version of MAIC1–4 uses a robust sandwich estimator for variance
estimation6 that accounts for the heteroskedasticity or correlation induced by the weight-
ing. Nevertheless, this has understated variability under small effective sample sizes in
previous simulation studies,3,7 and most software implementations of the estimator treat
the weights as fixed quantities. The bootstrap approach should account for the uncer-
tainty in estimating the weights from the data. The average marginal log-odds ratio for
A vs. C is calculated as the mean across the 1,000 bootstrap resamples. Its corresponding
standard error is the sample standard deviation across the resamples.

In our implementation of MAIC, we only balance the covariate means and balance these
for active treatment and control arms combined. Other approaches have been proposed,
such as balancing the covariates separately for active treatment and common comparator
arms,8,9 or balancing terms of higher order than means, e.g. by including squared covari-
ates in the weight estimation to balance variances. The former approach is discouraged
because it may break randomization in the IPD, distorting the balance between treatment
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arms A and C on covariates that are not accounted for in the weighting, and potentially
compromising the internal validity of the within-study estimate. The latter approach may
increase finite-sample bias10 and has performed poorly in recent simulation studies, in
terms of both bias and precision, where covariate variances differ across studies.8,11–13

Given the often arbitrary factors driving selection into different trials, the mechanism
for generating the simulation study data in subsection 4.2 of the main text does not specify
a trial assignment model. Nevertheless, the logistic regression model for estimating the
weights is the “best-case” model because it selects the “right” subset of covariates as effect
modifiers. The estimated weights are adequate for bias removal because the balancing
property14,15 holds with respect to the effect modifier means. Namely, conditional on
the weights, all effect modifier means are balanced between the two trials, and one can
achieve unbiased estimation of treatment effects in the BC population due to conditional
exchangeability over trial assignment.

In a test simulation scenario with N = 200, bootstrapped MAIC has a running time
of approximately 2.7 seconds per simulated dataset, using an Intel Core i7-8650 CPU
(1.90 GHz) processor. Computation time increases linearly with the number of bootstrap
resamples.

Conventional simulated treatment comparison

The conventional version of simulated treatment comparison (STC), as described by HTA
guidance and recommendations,2 is implemented. A covariate-adjusted logistic regression
is fitted to the IPD using maximum-likelihood estimation. The outcome regression is cor-
rectly specified.a All covariates are accounted for in the regression but only the treatment
effect modifiers are centered at their mean BC values, and interaction terms are only
included for the effect modifiers. The log-odds ratio estimate for A vs. C is the treatment
coefficient of the centered multivariable regression, with its standard error quantifying the
standard deviation of the treatment effect.

In a test simulation scenario with N = 200, the conventional STC has a running time
of 0.02 seconds per simulated dataset.

Maximum-likelihood parametric G-computation

We consider two implementations of parametric G-computation. In the first implementa-
tion, we use maximum-likelihood estimation to fit the multivariable outcome regression.
The Q-model is correctly specified. We construct the joint distribution of the four BC

aIt is more burdensome to specify an outcome regression model than a propensity score model (for
the MAIC weights). The former requires specifying both prognostic and interaction terms, whereas the
latter only requires the specification of effect modifiers. In practice, one cannot typically ascertain which
covariates are purely prognostic variables and which covariates are effect modifiers. Exploratory simulations
show that the relative precision and accuracy of MAIC deteriorate, with respect to outcome regression,
if we treat all four covariates as effect modifiers. On the other hand, the relative precision and accuracy
of outcome regression deteriorate if the terms corresponding to the purely prognostic covariates are not
included in the outcome model. Nevertheless, the other terms in the regression already account for a
considerable portion of the variability of the outcome, and relative effects are accurately estimated in any
case. These alternative setups do not alter the conclusions of the simulation study.
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covariates by simulating these from a multivariate Gaussian copula. This uses normally-
distributed marginals with the BC means and standard deviations, and the pairwise linear
correlations of the AC IPD. N∗ = 1000 subject profiles are simulated for the BC pseudo-
population, a value high enough to minimize sampling variability and provide an adequate
degree of precision. Outcomes in the BC population are predicted by plugging the sim-
ulated covariates into the maximum-likelihood fit. The procedure is resampled using the
ordinary non-parametric bootstrap with replacement, with 1,000 resamples of each sim-
ulated dataset. Increasing further the number of resamples produces minimal gains in
estimation precision and accuracy, with the Monte Carlo error across different random
seeds remaining relatively insensitive to these increases. The average marginal log-odds
ratio for A vs. C is calculated as the mean across the 1,000 bootstrap resamples. Its
corresponding standard error is the sample standard deviation across the resamples.

In a test simulation scenario withN = 200, parametric G-computation using maximum-
likelihood estimation has a running time of approximately 3.5 seconds per replicate. Com-
putation time increases linearly with the number of bootstrap resamples.

Bayesian parametric G-computation

In the second implementation of parametric G-computation, we use MCMC simulation
to fit the outcome regression. This is implemented using the package rstanarm,16 a
high-level appendage to the rstan package,17 the R interface for Stan.18 Again, the Q-
model is correctly specified. The joint distribution of the BC covariates is constructed
by simulating N∗ = 1000 subjects from a multivariate Gaussian copula, with normally-
distributed marginals with the BC means and standard deviations, and the pairwise linear
correlations of the AC IPD. Predicted outcomes for the simulated covariates are drawn
from their posterior predictive distribution.

We use the default independent “weakly informative” priors for the logistic regression
intercept and predictor coefficients, i.e., the likelihood dominates under a reasonably large
amount of data and the prior strongly influences the posterior if the data are weak.19

These are normally-distributed priors centered at mean 0. The scale of the normal prior
distribution for the intercept is 1. The scale parameter of the normal priors for the other
coefficients is 2.5, rescaled in terms of the standard deviation of the predictor in question.
This places most of the prior mass in the range of plausible effects, discarding coefficient
values that are implausibly strong, e.g. log-odds ratios over 3 (corresponding, approxi-
mately, to odds ratios over 20). This provides some regularization and helps stabilize
computation. Alternative prior specifications are considered to check that we are not in-
corporating any unintended information into the models through the priors. Results are
robust to the definitions of the prior distributions.

We run two Markov chains with 4,000 total iterations per chain. These include 2,000
warmup/burn-in iterations for each chain that are not used for posterior inference. This
gives a total of 4,000 iterations for performing the analysis. Approximate mixing of the
chains was attained, with all within-chain relative to between-chain statistics (R-hat) be-
low 1.1.20 Satisfactory convergence was confirmed by the inspection of trace plots and
the assessment of diagnostics such as the effective sample size and the Gelman-Rubin con-
vergence diagnostic (potential scale reduction factor).20 The average marginal treatment
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effect for A vs. C is estimated taking the sample mean of the marginal log-odds ratio
across the 4,000 MCMC iterations. The corresponding standard error is estimated using
the sample standard deviation of the posterior draws of the marginal log-odds ratio.

In a test simulation scenario with N = 200, Bayesian parametric G-computation has
a running time of approximately 4.2 seconds per replicate. Computation time increases
linearly with the total number of MCMC iterations.

Indirect treatment comparison

For all methods, the marginal log-odds ratio for B vs. C is estimated directly from the
event counts, and its standard error is computed using the delta method.21 The marginal
log-odds ratio estimate for A vs. B and its standard error are obtained by combining the
within-study point estimates, as per subsection 3.6 of the main text (using Equation 1 of
the main text to compare point estimates and Equation 14 of the main text to sum the
point estimates of the variance). Wald-type 95% interval estimates are constructed for
the marginal A vs. B treatment effect using normal distributions.

In Bayesian G-computation, we have used a two-step approach for: (1) the population-
adjusted analysis of the AC trial (estimation of the marginal effect for A vs. C); and (2)
the indirect treatment comparison (estimation of the marginal effect for A vs. B). We also
consider integrating the two in one stage, using MCMC sampling. In this case, for estima-
tion of the marginal log-odds ratio for B vs. C, the true underlying event rates/proportions
for the treatments are given non-informative Jeffreys Beta(0.5, 0.5) priors. The number of
events in each arm is sampled from two independent Binomial likelihoods, parametrized
by the aforementioned event probabilities and the total number of subjects in each arm.
Means and variances for the marginal A vs. B treatment effect are obtained empirically
from the posterior samples, with interval estimates calculated from the quantiles of the
posterior distribution.

While a Bayesian inferential framework might be convenient in the context of proba-
bilistic sensitivity analysis, the selected inferential framework has little bearing on com-
putation time and on the results of the simulation study, both in terms of a single case
study and of the long-run frequentist statistical properties of parametric G-computation.
Integrating the indirect treatment comparison step within a Bayesian module leads to
virtually identical performance measures than the two-step approach. Therefore, results
are not reported.

Supplementary Appendix B: Extended discussion

Method assumptions

Population-adjusted indirect comparisons mostly depend on the same assumptions, in-
cluding: (i) internal validity of the AC and BC trials, (ii) consistency under parallel
studies, (iii) accounting for all effect modifiers of treatment A vs. C in the adjustment
(i.e., the conditional constancy of the A vs. C marginal treatment effect or the conditional
ignorability, unconfoundedness or exchangeability of trial assignment/selection for such
treatment effect), (iv) that there is overlap between the covariate distributions in AC and
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BC (more specifically, that the ranges of the selected covariates in the AC trial cover their
respective moments in the BC population), (v) that the joint covariate distribution of the
BC population has been correctly specified, (vi) and parametric modeling assumptions.

Assumptions (i) and (ii) are made by any indirect treatment comparison or meta-
analysis. The other, largely untestable, assumptions are unique to population-adjusted
analyses and their violation may lead to bias. The most crucial assumptions underlying
population-adjusted indirect comparisons relate to the correct specification of the trial
assignment logistic regression (in the case of MAIC), and of the covariate-adjusted outcome
regression (in the case of conventional STC and parametric G-computation).

In practice, there will be model misspecification if there is incomplete information on
effect modifiers for one or both of the trials. Conditional exchangeability (“no omitted
effect modifiers”) is a fundamental assumption for all methods. However, it is not directly
testable with the available data due to the lack of additional individual-level outcome
information for the BC study.22 In collaboration with clinical experts, the most plausible
effect modifiers should be selected for the base-case analysis. Nevertheless, the effect
modifier status of covariates is difficult to ascertain, particularly for novel treatments with
limited prior empirical evidence and clinical domain knowledge.23 Therefore, we will never
be completely certain that all effect modifiers have been accounted for, or of the validity
of the population adjustment.

Consequently, sensitivity analyses are warranted under alternative model specifications
to explore the dependence of inferences on the model and the robustness of results.24,25

In the context of “generalizability”, Nguyen et al.24 have recently developed an approach
for sensitivity analysis. This is applicable where potential effect modifiers are measured
only in the AC trial but not in the BC study, given some assumptions about the missing
effect modifiers. Dahabreh26 proposes a bias function strategy for sensitivity analyses,
which does not require individual-level information on unobserved effect modifiers. Further
research should adapt this recent work to our “limited patient-level data” setup.

Parametric modeling assumptions will not hold under incorrect model specification,
e.g. in the outcome regression methods, if only linear relationships are considered and
the selected covariates have non-linear interactions with treatment on the linear predictor
scale. The simulation study only considers a best-case scenario with correct parametric
model specification. To predict the outcomes, we use the logistic regression model implied
by the data-generating mechanism. Similarly, the model for estimating the weights is
the best-case model in MAIC because the right subset of covariates has been selected
as effect modifiers and the balancing property holds for the weights with respect to the
effect modifier means, as mentioned in Appendix A of the Supplementary Material. Also,
effect modification has been correctly specified as linear, but scale conflicts would arise if
effect modification status, which is scale-specific, had been justified on the wrong scale,
e.g. if the true treatment effect modification were non-linear or multiplicative, e.g. age in
cardiovascular disease treatments.

In real applications, these modeling assumptions are difficult to hold because, unlike
in simulations, the correct specification is unknown, particularly where there are a large
number of covariates and complex relationships exist between them. The simulation study
presented in this article demonstrates proof-of-concept for the outcome regression meth-
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ods and for MAIC, but does not investigate how robust the methods are to failures in
assumptions. Future simulation studies should explore performance in scenarios where
assumptions are violated, in order to draw more accurate conclusions with respect to
practical applications and limitations.

The general-purpose nature of the G-computation methods presented in this arti-
cle may provide some degree of robustness against model misspecification because the
covariate-adjusted outcome model does not necessarily need to be parametric. We have
considered the nuisance model in Equation 3 of the main text to be a parametric regression.
Alternatively, non-parametric regression techniques or other data-adaptive estimation ap-
proaches can be used to detect (higher-order) interactions, product terms and non-linear
relationships, offering more flexible functions to predict the conditional outcome expec-
tations. These may enhance the likelihood of correct model specification with respect to
parametric regressions, but are susceptible to overfitting, particularly with small sample
sizes. They can also minimize “data snooping” problems (e.g. the analyst selecting the
model specification or the effect modifiers on the basis of statistically significant treatment
effects), especially when there are no clear hypotheses about effect modification ex ante.

In the main text, we have postulated a single outcome model for all subjects in the
AC IPD, which includes the necessary treatment-covariate interaction terms to capture
effect modification over the covariates. Nevertheless, another possible strategy is to fit
two outcome models separately for each treatment group in the randomized trial, i.e., to
fit one regression to the patients under treatment A and then another regression among
the patients under C, then predicting the conditional outcome expectations and averaging
these out on the entire simulated pseudo-population. In this approach, the model-fitting is
performed independently of reference to a conditional treatment effect (the fitted regres-
sions do not have a treatment coefficient), and the estimation of treatment-by-covariate
interactions is obviated.27

Specification of the BC population Ideally, the BC population should be charac-
terized by the full joint distribution of covariates. However, the restriction of limited IPD
makes it unlikely that the joint distribution of the BC covariates is available. Where
there are not many covariates and these are binary, this is sometimes available as a cross-
tabulation. However, most of the time we need to approximate the joint distribution
appropriately. This is important to avoid bias arising from the incomplete specification of
the BC population.

Population-adjusted indirect comparisons make certain assumptions to approximate
the joint distribution of covariates in the BC trial, but these assumptions differ slightly.
In MAIC, as stated in the NICE Decision Support Unit technical support document,2

“when covariate correlations are not available from the (BC) population, and therefore
cannot be balanced by inclusion in the weighting model, they are assumed to be equal
to the correlations amongst covariates in the pseudo-population formed by weighting the
(AC) population.” In the conventional version of STC, the correlations between the BC
covariates are assumed to be equal to the correlations between covariates in the AC trial.

In the marginalization methods proposed in this article, more explicit and stringent
distributional assumptions are made in the “covariate simulation” step. The published
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summary values θ and the correlation structure ρ are combined, making certain paramet-
ric assumptions about the marginal distributional forms, to infer the joint distribution of
the BC covariates and construct an appropriate pseudo-population for inferences. The
methods assume the joint distribution of the BC covariates is specified correctly, by the
combination of the specified marginal distributions and correlation structure. In the sim-
ulation study, we have assumed that the pairwise correlations of the covariates and the
parametric forms of their marginal distributions are identical across trials. It is important
to assess the robustness of the methods to failures in these distributional assumptions.

Note that the covariate distributional assumptions could be relaxed or verified empir-
ically if trial publications included more complete summary statistics, e.g. information on
the covariates’ correlation structure or their observed marginal distributions, as opposed
to simple summary tables of means/proportions and standard deviations. This informa-
tion would allow us to approximate the full joint distribution of the BC covariates more
accurately and reduce the risk of misspecifying the BC population. We have decided to
mimic the AC pairwise correlations as, in principle, the relationships between covariates
should be similar across trials.

Bayesian modularity The G-computation methods, particularly the Bayesian formu-
lation, can be readily adapted to address missing values in the AC IPD. Bayesian G-
computation follows very closely the principles of multiple imputation, which is also, ar-
guably, a fundamentally Bayesian operation. Missing covariates and outcomes in the IPD
could be imputed in each MCMC iteration, accounting naturally for the uncertainty in
the missing data. Addressing “missingness” in the BC study is not possible task without
access to the patient-level data.

Throughout the text, we have made certain assumptions about the covariate distribu-
tion in the BC population. We have treated the covariate moments θ and the correlation
information ρ as fixed. The Bayesian framework could be extended to account for this
additional layer of uncertainty, in the specification of θ and ρ and also in the selected
marginal distribution forms for BC. Bayesian regression approaches can also account for
other issues such as measurement error in the IPD.28 Bayesian model averaging can be in-
corporated to capture structural or model uncertainty.29 By drawing outcome predictions
under various models, complex relationships in the patient-level data may be reproduced
more accurately, offering some protection against parametric model misspecification.

In the Bayesian approach, both “hard” (e.g. the results of a meta-analysis) and “soft”
(e.g. clinical rationale from experts) evidence can be used to form the prior distributions
for the conditional prognostic and interaction effects. The specification of the parametric
outcome model requires “dichotomizing” whether a variable is an effect modifier or not,
i.e., in statistical terms, specifying whether interactions with treatment do or do not
exist. Bayesian shrinkage methods allow interactions to be “half in, half out” of the
model.30–32 For instance, one can specify skeptical or regularization prior distributions
for the interaction effects, over all potential candidate effect modifiers. In the words of
Simon and Freedman,32 this “encourages the quantification of prior belief about the size
of interactions that may exist. Rather than forcing the investigator to adopt one of two
extreme positions regarding interactions, it provides for the specification of intermediate
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positions”.

Supplementary Appendix C: Cox proportional hazards re-
gression

The most popular outcome types in applications of population-adjusted indirect compar-
isons are survival or time-to-event outcomes (e.g. overall or progression-free survival), and
the most prevalent measure of effect is the (log) hazard ratio.33 Therefore, developing
G-computation approaches where the nuisance model is a Cox proportional hazards re-

gression is important and useful to practitioners. In this setting, ∆̂
(2)
10 and ∆̂

(2)
20 should

target marginal log hazard ratios for indirect treatment comparisons in the linear pre-
dictor scale. Something to bear in mind is that, even if Cox models are very frequently
used in evidence synthesis for time-to-event data, health economic modelers typically use
parametric survival models for extrapolation purposes.

The G-computation formulae for the Cox regression are provided by Stitelman et al.34

Consider that a Cox proportional hazards model has first been fitted, conditional on
covariates which follow the functional form in the linear predictor of Equation 3 in the
main text. For the generalized linear model, we were interested in the average outcome
predictions in the natural scale. With Cox regression, the average survival probabilities
are of interest.

We proceed similarly as in Equations 4-8 of the main text. Leaving the simulated
covariates x∗ at their set values, we fix the value of treatment at z∗i for all i = 1, . . . , N∗.
By plugging treatment A into the Cox regression fit for each simulated unit, we compute
the expected marginal survival probability when all subjects are under treatment A:

P̂ (T1 > t) =
1

N∗

N∗∑
i=1

Ŝ
(1)
i (t | x∗

i ) (1)

=
1

N∗

N∗∑
i=1

exp[−Ĥ0(t))]
exp(β̂0+x∗

i β̂1+β̂z+x
∗(EM)
i β̂2). (2)

Above, t denotes a particular time point and T1 denotes a potential event time under
treatment A, such that P̂ (T1 > t) is the mean treatment-specific probability of surviving

beyond t. In Equation 1, Ŝ
(1)
i (t | x∗

i ) denotes an estimate of the survival probability under
treatment A at time t for simulated subject i with covariates x∗

i . Equation 2 follows from
expressing the survival function in terms of Ĥ0(t), an estimate of the baseline cumulative
hazard function at time t, exponentiated and raised to the power of the exponentiated
linear predictor term. Estimates of the baseline cumulative hazard are easily obtained
from Cox regressions fitted with the standard survival analysis software packages.

Similarly, the expected marginal survival probability when all simulated subjects are
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under treatment C is given by:

P̂ (T0 > t) =
1

N∗

N∗∑
i=1

Ŝ
(0)
i (t | x∗

i ) (3)

=
1

N∗

N∗∑
i=1

exp[−Ĥ0(t)]
exp(β̂0+x∗

i β̂1), (4)

where T0 denotes a potential event time under treatment C, and Ŝ
(0)
i (t | x∗

i ) denotes the
estimated survival probability under treatment C at time t for subject i with simulated
covariates x∗

i . The marginal hazard at time t for treatment z∗ ∈ {0, 1} can be expressed
as the negative logarithm of the survival probability, − ln[P̂ (Tz∗ > t)]. Therefore, the
estimate for the marginal log hazard ratio for A vs. C in the BC population at time t is:

∆̂
(2)
10,t = ln{− ln[P̂ (T1 > t)]} − ln{− ln[P̂ (T0 > t)]}, (5)

where P̂ (T1 > t) and P̂ (T0 > t) are obtained using Equations 1-2 and Equations 3-4,
respectively.

The Cox regression assumes that the true marginal log hazard ratio is independent of
time due to the proportional hazards assumption. However, as pointed out by Varadhan

et al.,35 the estimate ∆̂
(2)
10,t in Equation 5 may vary across different values of t. We have

to set t to a specific time point, or alternatively, to estimate the marginal hazard ratio
over a set of time points and display the estimates graphically. When selecting a value of
t, bear in mind that, in Equation 5, the marginal log hazard ratio estimate is undefined
at t for which P̂ (Tz∗ > t) = 1 for treatment z∗ ∈ {0, 1}.34 A simulation procedure for
marginalizing estimates of conditional hazard ratios has recently been proposed by Daniel
et al.36 This approach should avoid these issues by averaging the marginal log hazard ratio
over a set time frame, but adapting the methodology to the current setting is beyond the
scope of this article.

One can manipulate the expected marginal survival probabilities differently than in
Equation 5 to produce estimates of the marginal risk difference (the additive difference in
survival probabilities) or the marginal log relative risk at a particular time point.34 These
effect measures are more easily interpreted. However, indirect treatment comparisons with
survival outcomes are typically performed in the log hazard ratio scale,37 and this linear
predictor scale is used to define effect modification, which is scale-specific.2 Therefore, the
marginal log hazard ratio is the relative effect measure of interest.

Example R code implementing the method using maximum-likelihood estimation on a
simulated example is provided in Appendix D of the Supplementary Material. Bayesian
parametric G-computation would follow a similar approach, and would involve drawing
the marginal survival probabilities under each treatment from their posterior predictive
distribution. Implementing Bayesian parametric G-computation in the Cox regression
scenario is a research priority.

9



Supplementary Appendix D: Example code

Example R code implementing MAIC, the conventional STC, maximum-likelihood para-
metric G-computation and Bayesian parametric G-computation on a simulated dataset is
provided below. The code and data are available at https://github.com/remiroazocar/
Gcomp_indirect_comparisons_simstudy in the Example subdirectory. Full code for im-
plementing the simulation study is available in the online repository.

The simulation study uses binary outcomes and a logistic regression outcome model.
Nevertheless, all methods are general-purpose frameworks that, under a generalized linear
modeling formulation, can be easily adapted to different outcome models, outcome types,
and scalar measures of treatment effect. The code below can be altered by changing the
link function in the outcome model. For instance: (1) for a normal linear regression, by
setting family=gaussian in the arguments to the glm (or stanglm) function, such that
the link is the identity function (for the weighted outcome model, in the case of MAIC);
(2) for a Gamma regression, set family=Gamma, and, for parametric G-computation, trans-
form the predicted marginal outcome means to the linear predictor scale using the “neg-
ative inverse” link (g(µ) = −µ−1, for outcome mean µ); (3) for a Poisson regression, set
family=poisson, and, for parametric G-computation, transform the marginal outcome
means to the linear predictor scale using the log link (g(µ) = ln(µ)); and (4) for an inverse
Gaussian regression, set family=inverse.gaussian, and, for parametric G-computation,
transform the marginal outcome means to the linear predictor scale using the “inverse
squared” link (g(µ) = µ−2).

MAIC

library ("boot") # for non -parametric bootstrap

AC.IPD <- read.csv(" Example/AC_IPD.csv") # load AC patient -level data

BC.ALD <- read.csv(" Example/BC_ALD.csv") # load BC aggregate -level data

set.seed (555) # set seed for reproducibility

# objective function to be minimized for standard method of moments

Q <- function(alpha , X.EM) {

return(sum(exp(X.EM %*% alpha)))

}

# function to be bootstrapped

maic.boot <- function(data , indices) {

dat <- data[indices ,] # AC bootstrap sample

N <- nrow(dat) # number of subjects in sample

x.EM <- dat[,c("X1","X2")] # AC effect modifiers

# BC effect modifier means , assumed fixed

theta <- BC.ALD[c("mean.X1", "mean.X2")]

K.EM <- ncol(x.EM) # number of effect modifiers

# center the AC effect modifiers on the BC means

x.EM$X1 <- x.EM$X1 - theta$mean.X1
x.EM$X2 <- x.EM$X2 - theta$mean.X2
# MAIC weight estimation using method of moments
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alpha <- rep(1,K.EM) # arbitrary starting point for the optimizer

# objective function minimized using BFGS

Q.min <- optim(fn=Q, X.EM=as.matrix(x.EM), par=alpha , method ="BFGS")

# finite solution is the logistic regression parameters

hat.alpha <- Q.min$par
log.hat.w <- rep(0, N)

for (k in 1:K.EM) {

log.hat.w <- log.hat.w + hat.alpha[k]*x.EM[,k]

}

hat.w <- exp(log.hat.w) # estimated weights

# fit weighted logistic regression model using glm

outcome.fit <- glm(y~trt , family =" quasibinomial", weights=hat.w,

data=dat)

# fitted treatment coefficient is marginal effect for A vs. C

hat.Delta.AC <- coef(outcome.fit)["trt"]

return(hat.Delta.AC)

}

# non -parametric bootstrap with 1000 resamples

boot.object <- boot::boot(data=AC.IPD , statistic=maic.boot , R=1000)

# bootstrap mean of marginal A vs. C treatment effect estimate

hat.Delta.AC <- mean(boot.object$t)
# bootstrap variance of A vs. C treatment effect estimate

hat.var.Delta.AC <- var(boot.object$t)
# B vs. C marginal treatment effect from reported event counts

hat.Delta.BC <- with(BC.ALD , log(y.B.sum*(N.C-y.C.sum)/

(y.C.sum*(N.B-y.B.sum))))

# B vs. C marginal effect variance using the delta method

hat.var.Delta.BC <- with(BC.ALD , 1/y.C.sum +1/(N.C-y.C.sum)+

1/y.B.sum +1/(N.B-y.B.sum))

hat.Delta.AB <- hat.Delta.AC - hat.Delta.BC # A vs. B

hat.var.Delta.AB <- hat.var.Delta.AC + hat.var.Delta.BC

# construct Wald -type normal distribution -based confidence interval

uci.Delta.AB <- hat.Delta.AB + qnorm (0.975)*sqrt(hat.var.Delta.AB)

lci.Delta.AB <- hat.Delta.AB + qnorm (0.025)*sqrt(hat.var.Delta.AB)

Conventional STC

AC.IPD <- read.csv(" Example/AC_IPD.csv") # load AC patient -level data

BC.ALD <- read.csv(" Example/BC_ALD.csv") # load BC aggregate -level data

# fit regression model of outcome on treatment and covariates

# IPD effect modifiers centered at the mean BC values

# purely prognostic variables are included but not centered

outcome.model <- glm(y~X3+X4+trt*I(X1 -BC.ALD$mean.X1)+
trt*I(X2 -BC.ALD$mean.X2),

data=AC.IPD , family=binomial)

# fitted treatment coefficient is relative A vs. C conditional effect

hat.Delta.AC <- coef(outcome.model)["trt"]

# estimated variance for A vs. C from model fit

hat.var.Delta.AC <- vcov(outcome.model)["trt", "trt"]

# B vs. C marginal treatment effect estimated from reported event counts

hat.Delta.BC <- with(BC.ALD , log(y.B.sum*(N.C-y.C.sum)/

(y.C.sum*(N.B-y.B.sum))))
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# B vs. C marginal treatment effect variance using the delta method

hat.var.Delta.BC <- with(BC.ALD , 1/y.C.sum +1/(N.C-y.C.sum)+

1/y.B.sum +1/(N.B-y.B.sum))

hat.Delta.AB <- hat.Delta.AC - hat.Delta.BC # A vs. B

hat.var.Delta.AB <- hat.var.Delta.AC + hat.var.Delta.BC

# construct Wald -type normal distribution -based confidence interval

uci.Delta.AB <- hat.Delta.AB + qnorm (0.975)*sqrt(hat.var.Delta.AB)

lci.Delta.AB <- hat.Delta.AB + qnorm (0.025)*sqrt(hat.var.Delta.AB)

Maximum-likelihood parametric G-computation

library (" copula ") # for simulating BC covariates from Gaussian copula

library ("boot") # for non -parametric bootstrap

AC.IPD <- read.csv(" Example/AC_IPD.csv") # load AC patient -level data

BC.ALD <- read.csv(" Example/BC_ALD.csv") # load BC aggregate -level data

set.seed (555) # set seed for reproducibility

# matrix of pairwise correlations between IPD covariates

rho <- cor(AC.IPD[,c("X1","X2","X3","X4")])

# covariate simulation for BC trial using copula package

cop <- normalCopula(param=c(rho[1,2],rho[1,3],rho[1,4],rho[2,3],

rho[2,4],rho [3,4]),

dim=4, dispstr ="un") # AC IPD pairwise correlations

# sample covariates from approximate joint distribution using copula

mvd <- mvdc(copula=cop , margins=c("norm", "norm", # Gaussian marginals

"norm", "norm"),

# BC covariate means and standard deviations

paramMargins=list(list(mean=BC.ALD$mean.X1 , sd=BC.ALD$sd.X1),
list(mean=BC.ALD$mean.X2 , sd=BC.ALD$sd.X2),
list(mean=BC.ALD$mean.X3 , sd=BC.ALD$sd.X3),
list(mean=BC.ALD$mean.X4 , sd=BC.ALD$sd.X4)))

# simulated BC pseudo -population of size 1000

x_star <- as.data.frame(rMvdc (1000, mvd))

colnames(x_star) <- c("X1", "X2", "X3", "X4")

# this function will be bootstrapped

gcomp.ml <- function(data , indices) {

dat = data[indices ,]

# outcome logistic regression fitted to IPD using maximum likelihood

outcome.model <- glm(y~X3+X4+trt*X1+trt*X2, data=dat , family=binomial)

# counterfactual datasets

data.trtA <- data.trtC <- x_star

# intervene on treatment while keeping set covariates fixed

data.trtA$trt <- 1 # dataset where everyone receives treatment A

data.trtC$trt <- 0 # dataset where all observations receive C

# predict counterfactual event probs , conditional on treatment/covariates

hat.mu.A.i <- predict(outcome.model , type=" response", newdata=data.trtA)

hat.mu.C.i <- predict(outcome.model , type=" response", newdata=data.trtC)

hat.mu.A <- mean(hat.mu.A.i) # (marginal) mean probability prediction

under A

hat.mu.C <- mean(hat.mu.C.i) # (marginal) mean probability prediction

under C

# marginal A vs. C log -odds ratio (mean difference in expected log -odds)
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# estimated by transforming from probability to linear predictor scale

hat.Delta.AC <- log(hat.mu.A/(1-hat.mu.A)) - log(hat.mu.C/(1-hat.mu.C))

# hat.Delta.AC <- qlogis(hat.mu.A) - qlogis(hat.mu.C)

return(hat.Delta.AC)

}

# non -parametric bootstrap with 1000 resamples

boot.object <- boot::boot(data=AC.IPD , statistic=gcomp.ml, R=1000)

# bootstrap mean of marginal A vs. C treatment effect estimate

hat.Delta.AC <- mean(boot.object$t)
# bootstrap variance of A vs. C treatment effect estimate

hat.var.Delta.AC <- var(boot.object$t)
# marginal log -odds ratio for B vs. C from reported event counts

hat.Delta.BC <- with(BC.ALD ,log(y.B.sum*(N.C-y.C.sum)/

(y.C.sum*(N.B-y.B.sum))))

# variance of B vs. C using delta method

hat.var.Delta.BC <- with(BC.ALD ,1/y.C.sum +1/(N.C-y.C.sum)+

1/y.B.sum +1/(N.B-y.B.sum))

# marginal treatment effect for A vs. B

hat.Delta.AB <- hat.Delta.AC - hat.Delta.BC

# variance for A vs. B

hat.var.Delta.AB <- hat.var.Delta.AC + hat.var.Delta.BC

# construct Wald -type normal distribution -based confidence interval

uci.Delta.AB <- hat.Delta.AB + qnorm (0.975)*sqrt(hat.var.Delta.AB)

lci.Delta.AB <- hat.Delta.AB + qnorm (0.025)*sqrt(hat.var.Delta.AB)

Bayesian parametric G-computation

library (" copula ") # for simulating BC covariates from Gaussian copula

# for outcome regression and drawing outcomes from posterior predictive

dist.

library (" rstanarm ")

AC.IPD <- read.csv(" Example/AC_IPD.csv") # load AC patient -level data

BC.ALD <- read.csv(" Example/BC_ALD.csv") # load BC aggregate -level data

set.seed (555) # set seed for reproducibility

# matrix of pairwise correlations between IPD covariates

rho <- cor(AC.IPD[,c("X1","X2","X3","X4")])

# covariate simulation for BC trial using copula package

cop <- normalCopula(param=c(rho[1,2],rho[1,3],rho[1,4],rho[2,3],

rho[2,4],rho [3,4]),

dim=4, dispstr ="un") # AC IPD pairwise correlations

# sample covariates from approximate joint distribution using copula

mvd <- mvdc(copula=cop , margins=c("norm", "norm", # Gaussian marginals

"norm", "norm"),

# BC covariate means and standard deviations

paramMargins=list(list(mean=BC.ALD$mean.X1 , sd=BC.ALD$sd.X1),
list(mean=BC.ALD$mean.X2 , sd=BC.ALD$sd.X2),
list(mean=BC.ALD$mean.X3 , sd=BC.ALD$sd.X3),
list(mean=BC.ALD$mean.X4 , sd=BC.ALD$sd.X4)))

# simulated BC pseudo -population of size 1000

x_star <- as.data.frame(rMvdc (1000, mvd))

colnames(x_star) <- c("X1", "X2", "X3", "X4")
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# outcome logistic regression fitted to IPD using MCMC (Stan)

outcome.model <- stan_glm(y~X3+X4+trt*X1+trt*X2 , data=AC.IPD ,

family=binomial , algorithm =" sampling",

iter =4000, warmup =2000, chains =2)

# counterfactual datasets

data.trtA <- data.trtC <- x_star

# intervene on treatment while keeping set covariates fixed

data.trtA$trt <- 1 # dataset where everyone receives treatment A

data.trtC$trt <- 0 # dataset where all observations receive C

# draw binary responses from posterior predictive distribution

# matrix of posterior predictive draws under A

y.star.A <- posterior_predict(outcome.model , newdata=data.trtA)

# matrix of posterior predictive draws under C

y.star.C <- posterior_predict(outcome.model , newdata=data.trtC)

# compute marginal log -odds ratio for A vs. C for each MCMC sample

# by transforming from probability to linear predictor scale

hat.delta.AC <- qlogis(rowMeans(y.star.A)) - qlogis(rowMeans(y.star.C))

hat.Delta.AC <- mean(hat.delta.AC) # average over samples

hat.var.Delta.AC <- var(hat.delta.AC) # sample variance

# B vs. C from reported aggregate event counts in contingency table

hat.Delta.BC <- with(BC.ALD , log(y.B.sum*(N.C-y.C.sum)/

(y.C.sum*(N.B-y.B.sum))))

# B vs. C variance using the delta method

hat.var.Delta.BC <- with(BC.ALD , 1/y.C.sum +1/(N.C-y.C.sum)+

1/y.B.sum +1/(N.B-y.B.sum))

# marginal treatment effect for A vs. B

hat.Delta.AB <- hat.Delta.AC - hat.Delta.BC

# A vs. B variance

hat.var.Delta.AB <- hat.var.Delta.AC + hat.var.Delta.BC

# construct Wald -type normal distribution -based confidence interval

uci.Delta.AB <- hat.Delta.AB + qnorm (0.975)*sqrt(hat.var.Delta.AB)

lci.Delta.AB <- hat.Delta.AB + qnorm (0.025)*sqrt(hat.var.Delta.AB)

Cox regression: Maximum-likelihood parametric G-computation

Below, we provide example R code implementing parametric G-computation with sur-
vival outcomes and Cox regression as the outcome model. We use maximum-likelihood
estimation to fit the multivariable Cox regression, then predicting the outcomes on the BC
population. Variance estimation for the marginal A vs. C treatment effect is performed
by resampling via the ordinary non-parametric bootstrap.

library (" survival ") # to fit Cox proportional hazards regression

library (" copula ") # for simulating BC covariates from Gaussian copula

library ("boot") # for non -parametric bootstrap

AC.IPD <- read.csv(" Example/Survival/AC_IPD_survival.csv") # load AC

patient -level data

BC.ALD <- read.csv(" Example/Survival/BC_ALD_survival.csv") # load BC

aggregate -level data

set.seed (555) # set seed for reproducibility

# matrix of pairwise correlations between IPD covariates
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rho <- cor(AC.IPD[,c("X1","X2","X3","X4")])

# covariate simulation for BC trial using copula package

cop <- normalCopula(param=c(rho[1,2],rho[1,3],rho[1,4],rho[2,3],

rho[2,4],rho [3,4]),

dim=4, dispstr ="un") # AC IPD pairwise correlations

# sample covariates from approximate joint distribution using copula

mvd <- mvdc(copula=cop , margins=c("norm", "norm", # Gaussian marginals

"norm", "norm"),

# BC covariate means and standard deviations

paramMargins=list(list(mean=BC.ALD$mean.X1 , sd=BC.ALD$sd.X1),
list(mean=BC.ALD$mean.X2 , sd=BC.ALD$sd.X2),
list(mean=BC.ALD$mean.X3 , sd=BC.ALD$sd.X3),
list(mean=BC.ALD$mean.X4 , sd=BC.ALD$sd.X4)))

# simulated BC pseudo -population of size 1000

x_star <- as.data.frame(rMvdc (1000, mvd))

colnames(x_star) <- c("X1", "X2", "X3", "X4")

# function to be resampled by non -parametric bootstrap

gcomp.ml <- function(data , indices) {

dat = data[indices ,]

# outcome Cox regression model fitted to IPD using maximum likelihood

outcome.model <- coxph(Surv(time , status)~trt*X1+trt*X2+X3+X4, data=dat)

# event time selected for unit 50 (random selection)

unit.time <- 50

# estimated cumulative baseline hazard

hat.H0 <- basehaz(outcome.model)[unit.time ,1]

# counterfactual datasets (two hypothetical worlds)

data.trtA <- data.trtC <- x_star

# intervene on treatment while keeping set covariates fixed

data.trtA$trt <- 1 # dataset where everyone receives treatment A

data.trtC$trt <- 0 # dataset where all observations receive C

# linear predictor where everyone receives treatment A

LP.A <- with(outcome.model , x_star$X1 *( coefficients ["X1"] + coefficients

["trt:X1"]) +

x_star$X2 *( coefficients ["X2"] + coefficients ["trt:X2"]) +

x_star$X3*coefficients ["X3"] + x_star$X4*coefficients ["X4
"] +

coefficients ["trt "])

# linear predictor where all observations receive treatment C

LP.C <- with(outcome.model , x_star$X1*coefficients ["X1"] + x_star$X2*
coefficients ["X2"] +

x_star$X3*coefficients ["X3"] + x_star$X4*coefficients ["X4
"])

# predict individual survival probabilities , conditional on treatment/

covariates

hat.S.A.i <- exp(-hat.H0)^exp(LP.A)

hat.S.C.i <- exp(-hat.H0)^exp(LP.C)

# mean survival probability prediction under each treatment

hat.P.A <- mean(hat.S.A.i)

hat.P.C <- mean(hat.S.C.i)

# estimate marginal A vs. B log hazard ratio (mean difference in expected

log hazard)

# by transforming from survival probability to linear predictor scale

hat.Delta.AC <- log(-log(hat.P.A)) - log(-log(hat.P.C))

return(hat.Delta.AC)
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}

# non -parametric bootstrap with 1000 resamples (ignore warnings)

boot.object <- boot::boot(data=AC.IPD , statistic=gcomp.ml, R=1000)

# bootstrap mean of marginal A vs. C treatment effect estimate

hat.Delta.AC <- mean(boot.object$t)
# bootstrap variance of A vs. C treatment effect estimate

hat.var.Delta.AC <- var(boot.object$t)
# marginal log hazard ratio for B vs. C reported in BC article

hat.Delta.BC <- BC.ALD$logHR_B
# variance of B vs. C in aggregate outcomes in published article

hat.var.Delta.BC <- BC.ALD$var_logHR_B
# marginal treatment effect for A vs. B

hat.Delta.AB <- hat.Delta.AC - hat.Delta.BC

# variance for A vs. B

hat.var.Delta.AB <- hat.var.Delta.AC + hat.var.Delta.BC

# construct Wald -type normal distribution -based confidence interval

uci.Delta.AB <- hat.Delta.AB + qnorm (0.975)*sqrt(hat.var.Delta.AB)

lci.Delta.AB <- hat.Delta.AB + qnorm (0.025)*sqrt(hat.var.Delta.AB)
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