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1 Performance comparison of various machine learning surrogate models

in predicting properties

Figure S1. Performance comparison of several machine learning models in terms of mean squared
error (MSE) and coefficient of determination, Related to STAR Methods.
For the kernel ridge regression (KRR) model, we used the hyperparameters summarized in Table S2. For multilayer
perceptron (MLP) and support vector regression (SVR) models, we optimized hyperparameters based on a 5-fold
cross-validation.



2 Specification of the optimized machine learning surrogate models of

the HTVS pipeline

Surrogate Descriptors Predicting property

g1 Primitive features (PFs): #C, #B, #O, #Li, #H, # of aromatic rings RP
g2 PFs, HOMO (pred.), LUMO (pred.), HOMO-LUMO gap (pred.)
g3 PFs, HOMO, LUMO, HOMO-LUMO gap
g4 PFs, HOMO, LUMO, HOMO-LUMO gap, EA (pred.)
g5 PFs, HOMO, LUMO, HOMO-LUMO gap, EA

g2,1 PFs HOMO
g2,2 LUMO
g2,3 HOMO-LUMO gap
g4,1 PFs, HOMO, LUMO, HOMO-LUMO gap EA

Table S1. Specifications of the surrogate models (1 to 5) and sub-surrogate models (2.1 to 2.3 and 4.1),
Related to STAR Methods.
Sub-surrogates predict intermediate properties used as virtual descriptors for the surrogate models to improve
predictive capacity. A kernel ridge regressor with a radial basis function (RBF) kernel was used.

Surrogate Machine learning model Kernel Hyperparameter (α) Mean squared error R2

g1 Kernel ridge regression Radial basis function 0.1 0.5046 0.7346
g2 0.1 0.4907 0.7419
g3 0.1 0.3408 0.8208
g4 0.1 0.2781 0.8538
g5 0.1 0.0256 0.9865

g2,1 Kernel ridge regression Radial basis function 0.1 0.0595 0.9307
g2,2 0.1 0.2870 0.7351
g2,3 0.1 0.3808 0.6616
g4,1 0.1 0.3194 0.7212

Table S2. Performance analysis of the optimized machine learning surrogate models utilized to
construct the HTVS pipeline, Related to STAR Methods.
The hyperparameters–kernel function and α–were optimized via 5-fold cross-validation.



3 Performance evaluation at each stage of the optimized high-throughput

virtual screening (HTVS) pipeline with structure [S1, S2, S3, S4, S5, S6]

3.1 Optimal computational campaign for selecting potential organic electrode materials

with minimum target redox potential (RP) 2.5 V

Figure S2. Performance evaluation of the individual stages constituting the HTVS pipeline based on
a 5-fold cross-validation, Related to Figs. 3 and 4.
In general, sensitivity tended to increase as the allocated computational budget increased. On the other hand, the
specificity of the stages (except for the last stage) tended to decrease as the allocated resource increased. This was
because the earlier stages were designed to pass a larger number of candidates to later stages as the available budget
grew, in order to evaluate and screen the materials with higher accuracy. For the same reason, the F1 score and the
accuracy generally increased as the computational budget grew, but they eventually decreased due to the increasing
false-positive rates as a result of passing too many candidates to subsequent stages.



3.2 Optimal computational campaign for selecting potential organic electrode materials

with target RP screening range [2.5 V, 3.2 V]

Figure S3. Performance evaluation of the screening stages in the optimized HTVS pipeline designed
to detect the organic electrode materials according to target RP range [2.5 V, 3.2 V] based on a 5-fold
cross-validation, Related to Figs. 5 and 6.
As before, the sensitivity of the screening stages tended to increase as the computational budget (x-axis) grew. In
general, the specificity decreased as the available resource rose (except for the last stage). The F1 score and accuracy
improved as the available budget got larger, but they eventually decreased due to the increasing false-positive rates
due to passing too many materials to the later stages.



4 Performance evaluation of the optimized HTVS pipeline with structure

[S2, S4, S5, S6]

4.1 Optimal computational campaign for selecting potential organic electrode materials

with minimum target RP 2.5 V

Figure S4. Performance evaluation of the optimized high-throughput virtual screening (HTVS)
pipeline [S2, S4, S5, S6] with minimum target RP 2.5 V under a computational resource budget
constraint (x-axis) based on a 5-fold cross-validation, Related to Figs. 3 and 4.



Figure S5. Performance evaluation at each stage in the optimized HTVS pipeline [S2, S4, S5, S6] with
minimum target RP 2.5 V under a computational resource budget constraint (x-axis) based on a
5-fold cross-validation, Related to Figs. 3 and 4.

Figure S6. The number of samples discarded (left) or passed to the next stage (right) at each stage in
the HTVS pipeline [S2, S4, S5, S6] with minimum target RP 2.5 V under a computational resource
budget constraint (x-axis) based on a 5-fold cross-validation, Related to Figs. 3 and 4.



α Selected materials Total cost (seconds) Effective cost (seconds) Sensitivity Specificity F1 score Accuracy

0.25 21.2 1, 697, 310.6 80, 061.8 0.4077 1 0.5562 0.6333
0.5 46.6 4, 211, 703.2 90, 379.9 0.8962 1 0.9443 0.9357
0.75 48.2 4, 540, 007.4 9, 419.2 0.9269 1 0.9616 0.9548

Table S3. Performance evaluation of the jointly optimized HTVS pipeline [S2, S4, S5, S6] with minimum
target RP 2.5 V based on a 5-fold cross-validation, Related to Figs. 3 and 4.



4.2 Optimal computational campaign for selecting potential organic electrode materials

with target RP screening range [2.5 V, 3.2 V]

Figure S7. Performance evaluation of the jointly optimized HTVS pipeline [S2, S4, S5, S6] with target
RP range [2.5 V, 3.2 V] under a computational resource budget constraint (x-axis) based on a 5-fold
cross-validation, Related to Figs. 5 and 6.



Figure S8. Performance evaluation at each stage in the optimized HTVS pipeline [S2, S4, S5, S6] with
target RP range [2.5 V, 3.2 V] under a computational resource budget constraint (x-axis) based on a
5-fold cross-validation, Related to Figs. 5 and 6.

Figure S9. The number of samples discarded (left) or passed to the next stage (right) at each stage in
the HTVS pipeline [S2, S4, S5, S6] with target RP range [2.5 V, 3.2 V] under a computational resource
budget constraint (x-axis) based on a 5-fold cross-validation, Related to Figs. 5 and 6.



α Selected materials Total cost (seconds) Effective cost (seconds) Sensitivity Specificity F1 Accuracy

0.25 12.2 1, 350, 211.2 110, 673 0.3389 1 0.4732 0.7167
0.5 30.6 3, 645, 767.6 119, 142.7 0.85 1 0.9054 0.9357
0.75 31.6 4, 307, 546.6 136, 314.8 0.8778 1 0.9303 0.9476

Table S4. Performance evaluation of the jointly optimized HTVS pipeline [S2, S4, S5, S6] with target
RP range [2.5 V, 3.2 V] based on a 5-fold cross-validation, Related to Figs. 5 and 6.



5 Performance evaluation of the optimized HTVS pipeline based on a

strict 5-fold cross-validation

5.1 Optimal computational campaign for selecting potential organic electrode materials

with minimum target RP 2.5 V

Figure S10. Performance evaluation of the optimized HTVS pipeline with minimum target redox
potential (RP) 2.5 V under a computational resource budget constraint (x-axis) based on a strict
5-fold cross-validation, Related to Figs. 3 and 4.



Figure S11. Performance evaluation at each stage in the optimized HTVS pipeline with minimum
target RP 2.5 V under a computational resource budget constraint (x-axis) based on a strict 5-fold
cross-validation, Related to Figs. 3 and 4.

Figure S12. The number of samples discarded (left) or passed to the next stage (right) at each stage
in the HTVS pipeline with minimum target RP 2.5 V under a computational resource budget
constraint (x-axis) based on a strict 5-fold cross-validation, Related to Figs. 3 and 4.



α Selected materials Total cost (seconds) Effective cost (seconds) Sensitivity Specificity F1 score Accuracy

0.25 36.6 3, 506, 408.8 95, 803.5 0.7038 1 0.8233 0.8167
0.5 43.8 4, 425, 191.2 101, 031.8 0.8423 1 0.9134 0.9024
0.75 45.4 4, 605, 138.8 101, 434.8 0.8731 1 0.9316 0.9214

Table S5. Performance evaluation of the jointly optimized HTVS pipeline with minimum target RP
2.5 V based on a strict 5-fold cross-validation, Related to Figs. 3 and 4.



5.2 Optimal computational campaign for selecting potential organic electrode materials

with target RP screening range [2.5 V, 3.2 V]

Figure S13. Performance evaluation of the optimized HTVS pipeline with target RP range
[2.5 V, 3.2 V] under a computational resource budget constraint (x-axis) based on a strict 5-fold
cross-validation, Related to Figs. 5 and 6.



Figure S14. Performance evaluation at each stage in the optimized HTVS pipeline with target RP
range [2.5 V, 3.2 V] under a computational resource budget constraint (x-axis) based on a strict 5-fold
cross-validation, Related to Figs. 5 and 6.

Figure S15. The number of samples discarded (left) or passed to the next stage (right) at each stage
in the HTVS pipeline with target RP range [2.5 V, 3.2 V] under a computational resource budget
constraint (x-axis) based on a strict 5-fold cross-validation, Related to Figs. 5 and 6.



α Selected materials Total cost (seconds) Effective cost (seconds) Sensitivity Specificity F1 Accuracy

0.25 25 3, 026, 165.6 121, 046.6 0.6944 1 0.8155 0.8690
0.5 31.6 4, 490, 452.4 142, 102.9 0.8778 1 0.9336 0.9476
0.75 33.2 5, 112, 623.8 153, 994.7 0.9222 1 0.9576 0.9667

Table S6. Performance evaluation of the jointly optimized HTVS pipeline with target RP range
[2.5 V, 3.2 V] based on a strict 5-fold cross-validation, Related to Figs. 5 and 6.



6 Performance evaluation of the optimized HTVS pipeline with minimum

target RP 4.3 V based on a strict 5-fold cross-validation

Figure S16. Performance evaluation of the optimized high-throughput virtual screening (HTVS)
pipeline with minimum target redox potential (RP) 4.3 V under a computational resource budget
constraint (x-axis) based on a strict 5-fold cross-validation, Related to Figs. 3 and 4.



Figure S17. Performance evaluation at each stage in the optimized HTVS pipeline with minimum
target RP 4.3 V under a computational resource budget constraint (x-axis) based on a strict 5-fold
cross-validation, Related to Figs. 3 and 4.

Figure S18. The number of samples discarded (left) or passed to the next stage (right) at each stage
in the HTVS pipeline with minimum target RP 4.3 V under a computational resource budget
constraint (x-axis) based on a strict 5-fold cross-validation, Related to Figs. 3 and 4.



7 Schematic illustration of families of organic moieties

Figure S19. Schematic illustration of some of the different families of organic moieties that compose
the dataset used in training the machine learning models in this study, Related to STAR Methods.



8 Thermodynamic cycle
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Figure S20. The thermodynamic cycle used to calculate the RP in the condensed phase in this study,
Related to STAR Methods.
The solvation-free energies ∆Gsol were evaluated using an implicit solvation model with dielectric constant ϵ
approximating the carbonate mixture commonly used in the experimentation.

9 Illustration of constructing the skeleton structure of the HTVS pipeline

High-fidelity model

Structural analysis

Geometry optimization

Energy/thermochemistry
calculation

Solvation-free energy
calculation

Neutral state

HOMO
LUMO
H-L gap

Gibbs 
free energy

Geometry optimization

Energy/thermochemistry
calculation

Solvation-free energy
calculation

Anionic state

Gibbs 
free energy

Electron
affinity

Redox potential

Solvation-free energy Solvation-free energy

Premitive descriptors

Geometry optimization

Energy/thermochemistry calculation

HOMO
LUMO
H-L gap

Geometry optimization

Energy/thermochemistry calculation

Solvation-free energy calculation

Solvation-free energy calculation

Structural analysis

Electron affinity

Redox potential

Premitive descriptors

Cascading the high-fidelity model

Figure S21. Illustration of constructing the skeleton structure of the HTVS pipeline based on the
high-fidelity DFT model, Related to STAR Methods.


