## Supplementary Tables:

**Supplementary Table 1.** Strains and plasmids used in this study. Antibiotic resistance is indicated by Gm (gentamycin), Cb (carbenicillin), and Kn (kanamycin).

| Strain name                                                                                       | Source    | Antibiotic |
|---------------------------------------------------------------------------------------------------|-----------|------------|
| PAO1 (Parsek)                                                                                     | (53)      | resistance |
| $PAO1 A sia \Delta$                                                                               | (48)      |            |
| PAO1 A siaB                                                                                       | This work |            |
|                                                                                                   | This work |            |
|                                                                                                   | (48)      |            |
| PAO1 Ans/D                                                                                        | (13)      |            |
| PAO1 p.IN105                                                                                      | This work | Gm         |
| PAO1 AsiaA p.IN105                                                                                | This work | Gm         |
| PAO1 AsiaB p.IN105                                                                                | This work | Gm         |
| PAO1 AsiaC pJN105                                                                                 | This work | Gm         |
| PAO1 AsiaD pJN105                                                                                 | This work | Gm         |
| PAO1 AsiaA pJN105::PBAD-siaA                                                                      | This work | Gm         |
| PAO1 <i>AsiaB</i> pJN105::PBAD-siaB                                                               | This work | Gm         |
| PAO1 <i>AsiaC</i> pJN105::P <sub>BAD</sub> -siaC                                                  | This work | Gm         |
| PAO1 ΔsiaD pJN105::P <sub>BAD</sub> -siaD                                                         | This work | Gm         |
| PAO1 ΔpelA                                                                                        | (54)      |            |
| PAO1 AcdrA                                                                                        | (11)      |            |
| PAO1 miniTn7T2-PA1/04/03-GFP                                                                      | This work |            |
| PAO1 Δ <i>siaA</i> miniTn7T2-PA1/04/03-GFP                                                        | This work |            |
| PAO1 Δ <i>siaB</i> miniTn7T2-PA1/04/03-GFP                                                        | This work |            |
| PAO1 Δ <i>sia</i> C miniTn7T2-PA1/04/03-GFP                                                       | This work |            |
| PAO1 Δ <i>siaD</i> miniTn7T2-PA1/04/03-GFP                                                        | This work |            |
| PAO1 miniTn7T2-PA1/04/03-GFP, pJN105                                                              | This work | Gm         |
| PAO1 Δ <i>siaA</i> miniTn7T2-PA1/04/03-GFP, pJN105                                                | This work | Gm         |
| PAO1 ΔsiaB miniTn7T2-PA1/04/03-GFP, pJN105                                                        | This work | Gm         |
| PAO1 ΔsiaC miniTn7T2-PA1/04/03-GFP, pJN105                                                        | This work | Gm         |
| PAO1 Δ <i>siaD</i> miniTn7T2-PA1/04/03-GFP, pJN105                                                | This work | Gm         |
| PAO1 Δ <i>siaA</i> miniTn7T2-PA1/04/03-GFP, pJN105::P <sub>BAD</sub> - <i>siaA</i>                | This work | Gm         |
| PAO1 Δ <i>siaB</i> miniTn7T2-PA1/04/03-GFP, pJN105::P <sub>BAD</sub> - <i>siaB</i>                | This work | Gm         |
| PAO1 Δ <i>siaC</i> miniTn7T2-PA1/04/03-GFP, pJN105::P <sub>BAD</sub> - <i>siaC</i>                | This work | Gm         |
| PAO1 Δ <i>siaD</i> miniTn7T2-PA1/04/03-GFP, pJN105::P <sub>BAD</sub> - <i>siaD</i>                | This work | Gm         |
| PAO1 Δ <i>pslD</i> miniTn7T2-PA1/04/03-GFP                                                        | This work |            |
| PAO1 Δ <i>pelA</i> miniTn7T2-PA1/04/03-GFP                                                        | This work |            |
| PAO1 Δ <i>cdrA</i> miniTn7T2-PA1/04/03-GFP                                                        | This work |            |
| PAO1 Δ <i>pslD</i> pJN105                                                                         | This work | Gm         |
| PAO1 Δ <i>pslD</i> pJN105::P <sub>BAD</sub> - <i>pslD</i>                                         | This work | Gm         |
| PAO1 Δ <i>pslD</i> miniTn7T2-PA1/04/03-GFP, pJN105                                                | This work | Gm         |
| PAO1 Δ <i>pslD</i> miniTn7T2-PA1/04/03-GFP, pJN105::P <sub>BAD</sub> - <i>pslD</i>                | This work | Gm         |
| PAO1 ΔwspR                                                                                        | (25)      |            |
| PAO1 ΔsadC                                                                                        | (48)      |            |
| PAO1 siaD <sup>E142A</sup>                                                                        | This work |            |
| PAO1 siaD <sup>E142A</sup> pJN105                                                                 | This work | Gm         |
| PAO1 siaD <sup>E142A</sup> pJN105::P <sub>BAD</sub> -siaD                                         | This work | Gm         |
| PAO1 siaD <sup>E142A</sup> miniTn7T2-PA1/04/03-GFP                                                | This work |            |
| PAO1 siaD <sup>E142A</sup> miniTn7T2-PA1/04/03-GFP, pJN105                                        | This work | Gm         |
| PAO1 <i>siaD</i> <sup>E142A</sup> miniTn7T2-PA1/04/03-GFP, pJN105::P <sub>BAD</sub> - <i>siaD</i> | This work | Gm         |

| PAO1 Δ <i>siaD</i> pJN105::P <sub>BAD</sub> - <i>siaD</i> -his                       | This work  | Gm |
|--------------------------------------------------------------------------------------|------------|----|
| PAO1 Δ <i>siaD</i> pJN105::P <sub>BAD</sub> - <i>siaD</i> <sup>E142A</sup> -his      | This work  | Gm |
| MPAO1 (Manoil PAO1)                                                                  | (37, 38)   |    |
| MPAO1 (PW1288) siaD (PA0169)::ISphoA/hah                                             | (37, 38)   |    |
| MPAO1 (PW1289) siaD (PA0169)::ISphoA/hah                                             | (37, 38)   |    |
| MPAO1 (PW1627) PA0338::ISphoA/hah                                                    | (37, 38)   |    |
| MPAO1 (PW1626) PA0338::ISlacZ/hah                                                    | (37, 38)   |    |
| MPAO1 (PW2543) PA0847::ISphoA/hah                                                    | (37, 38)   |    |
| MPAO1 (PW2544) PA0847::ISphoA/hah                                                    | (37, 38)   |    |
| MPAO1 (PW2999) roeA (PA1107)::ISlacZ/hah                                             | (37, 38)   |    |
| MPAO1 (PW3000) roeA (PA1107)::ISphoA/hah                                             | (37, 38)   |    |
| MPAO1 (PW3023) tpbB (PA1120)::ISlacZ/hah                                             | (37, 38)   |    |
| MPAO1 (PW3024) tpbB (PA1120)::ISphoA/hah                                             | (37, 38)   |    |
| MPAO1 (PW4043) mucR (PA1727)::ISlacZ/hah                                             | (37, 38)   |    |
| MPAO1 (PW4045) mucR (PA1727)::ISphoA/hah                                             | (37, 38)   |    |
| MPAO1 (PW7263) wspR (PA3702)::ISlacZ/hah                                             | (37, 38)   |    |
| MPAO1 (PW7264) wspR (PA3702)::ISphoA/hah                                             | (37, 38)   |    |
| MPAO1 (PW8315) sadC (PA4332)::ISphoA/hah                                             | (37, 38)   |    |
| MPAO1 (PW8314) sadC (PA4332)::ISlacZ/hah                                             | (37, 38)   |    |
| MPAO1 (PW9146) gcbA (PA4843)::ISphoA/hah                                             | (37, 38)   |    |
| MPAO1 (PW9145) gcbA (PA4843)::ISlacZ/hah                                             | (37, 38)   |    |
| MPAO1 (PW9347) fimX (PA4959)::ISphoA/hah                                             | (37, 38)   |    |
| MPAO1 (PW9346) fimX (PA4959)::ISlacZ/hah                                             | (37, 38)   |    |
| MPAO1 (PW10280) dgcH (PA5487)::ISlacZ/hah                                            | (37, 38)   |    |
| MPAO1 (PW10281) dgcH (PA5487)::ISphoA/hah                                            | (37, 38)   |    |
| PAO1 ΔsiaD pJN105::P <sub>BAD</sub> -ml1419c                                         | This work  | Gm |
| PAO1 Δ <i>siaD</i> pJN105::P <sub>BAD</sub> - <i>ml1419c</i> miniTn7T2-PA1/04/03-GFP | This work  | Gm |
| PAO1 PBAD-psIABCDEFGHIJKL                                                            | (20)       |    |
| PAO1 ΔsiaD P <sub>BAD</sub> -psIABCDEFGHIJKL                                         | This work  |    |
| PAO1 PBAD-psIABCDEFGHIJKL miniTn7T2-PA1/04/03-GFP                                    | This work  |    |
| PAO1 Δ <i>siaD</i> P <sub>BAD</sub> - <i>pslABCDEFGHIJKL</i> miniTn7T2-PA1/04/03-GFP | This work  |    |
| DH5α pRK2013                                                                         | ATCC 37159 | Kn |
| DH5α pDONRPEX18Gm::Δ <i>siaB</i> <sub>26-128</sub>                                   | This work  | Gm |
| DH5α pDONRPEX18Gm::Δ <i>siaC</i> <sub>7-121</sub>                                    | This work  | Gm |
| DH5α pDONRPEX18Gm::Δ <i>siaD</i>                                                     | (48)       | Gm |
| DH5α pDONRPEX18Gm:: <i>siaD</i> E142A                                                | This work  | Gm |
| DH5α pJN105                                                                          | (55)       | Gm |
| DH5α pJN105::P <sub>BAD</sub> - <i>psID</i>                                          | This work  | Gm |
| DH5α pJN105::P <sub>BAD</sub> - <i>siaA</i>                                          | This work  | Gm |
| DH5α pJN105::P <sub>BAD</sub> - <i>siaB</i>                                          | This work  | Gm |
| DH5α pJN105::P <sub>BAD</sub> - <i>siaC</i>                                          | This work  | Gm |
| DH5α pJN105::P <sub>BAD</sub> - <i>siaD</i>                                          | This work  | Gm |
| DH5α pJN105::P <sub>BAD</sub> - <i>siaD</i> -his                                     | This work  | Gm |
| DH5α pJN105::P <sub>BAD</sub> - <i>siaD</i> <sup>E142A</sup> -his                    | This work  | Gm |
| DH5α pJN105::P <sub>BAD</sub> - <i>ml1419c</i>                                       | (43)       | Gm |
| DH5α pBT270 (pUC18-miniTn7T2-PA1/04/03-GFP)                                          | (56)       | Gm |
| DH5a pTNS1                                                                           | (57)       | Cb |

| Primers                           | Function                                           | Sequence 5'-3'                 |
|-----------------------------------|----------------------------------------------------|--------------------------------|
| siaB-UP-F                         | Creation of                                        | ATCCGGAAGCTTCTGCCAGTCGCCCTGGA  |
|                                   | pDONRPEX18Gm <sup>··</sup> AsiaB <sub>26,128</sub> | T                              |
| siaB-UP-R                         | Creation of                                        | TGCTTCAACGGACCGTACAAGGAGCAGCT  |
|                                   | pDONRPEX18Gm:: $\Delta siaB_{26-128}$              | ACGCCG                         |
| siaB-DN-F                         | Creation of                                        | TAGCTGCTCCTTGTACGGTCCGTTGAAGCA |
|                                   | pDONRPEX18Gm::∆ <i>siaB</i> <sub>26-128</sub>      | GAGC                           |
| siaB-DN-R                         | Creation of                                        | ATCCGGCCCGGGACTGACGGTTTCCTCGA  |
|                                   | pDONRPEX18Gm::∆ <i>siaB</i> <sub>26-128</sub>      | CCA                            |
| siaC-UP-F                         | Creation of                                        | ATCCGGCTGCAGGCCAATCTCAAGGGCTA  |
|                                   | pDONRPEX18Gm∷∆ <i>siaC</i> <sub>7-121</sub>        | С                              |
| siaC-UP-R                         | Creation of                                        | CGGCTACTCGTCGTGGGCCTGTATGTGCA  |
|                                   | pDONRPEX18Gm∷∆ <i>siaC</i> <sub>7-121</sub>        | GGTCACTCATG                    |
| siaC-DN-F                         | Creation of                                        | CAGGCCCACGACGAGTCAGGCCCACGACG  |
|                                   | pDONRPEX18Gm∷∆ <i>siaC</i> <sub>7-121</sub>        | AGT                            |
| siaC-DN-R                         | Creation of                                        | ATCCGGGAATCCCGCGGATCGAGGCTTC   |
|                                   | pDONRPEX18Gm::Δ <i>siaC</i> <sub>7-121</sub>       |                                |
| PBAD - <i>siaA</i> -F             | Creation of pJN105::P <sub>BAD</sub> - <i>siaA</i> | ATCCGGTCTAGACTAGTCGAATCGGAAGG  |
|                                   |                                                    | ACAGGATGG                      |
| PBAD - <i>siaA</i> -R             | Creation of pJN105::P <sub>BAD</sub> - <i>siaA</i> | CCGGATCCCGGGGGGATAGCCATGGCGGC  |
|                                   |                                                    | GAAC                           |
| PBAD - <i>siaB-</i> F             | Creation of pJN105::P <sub>BAD</sub> -siaB         | ATCCGGTCTAGATCAGATCACGGCGCGCA  |
|                                   |                                                    | G                              |
| P <sub>BAD</sub> - <i>siaB</i> -R | Creation of pJN105::P <sub>BAD</sub> - <i>siaB</i> | CCGGATCCCGGGGGGATAGCCATGGAAACG |
|                                   |                                                    | CTAGACCTGCTGG                  |
| Рвад <i>-siaC</i> -F              | Creation of pJN105::PBAD-siaC                      | ATCCGGTCTAGACTACTCGTCGTGGGCCT  |
|                                   |                                                    | GGAI                           |
| PBAD -SIAC-R                      | Creation of pJN105::PBAD-SIAC                      |                                |
|                                   |                                                    | AGIGACUI                       |
| PBAD -SIAD-F                      |                                                    |                                |
| PBAD -SIAD-R                      | Creation of pJN105::PBAD-SIAD                      |                                |
| Dava <i>aia</i> D hia             | Creation of a IN10EuDate aioD his                  |                                |
| PBAD -SIAD-NIS-                   | Creation of pJIN 105.1PBAD-SIAD-NIS                |                                |
| L L                               |                                                    |                                |
| Paus nelD E                       | Creation of a N105::Paus as/D                      |                                |
| гвар <b>-рзід-</b> г              | Creation of poin rosFBAD-psid                      | TCCT                           |
| Paus nelD R                       | Creation of p IN105::Pass ps/D                     |                                |
|                                   | Creation of point too BAD-point                    | GGT                            |
| siaDE142A_F                       | For sited directed mutagenesis                     | GGCGGCGAGGcATTCCTCCTG          |
| siaD <sup>E142A</sup> -R          | For sited directed mutagenesis                     |                                |
| ps/A RT-F                         | For aPCR                                           | TGCACAAGATCAAGAAACGCGTGG       |
| ps/A RT-R                         | For aPCR                                           | ACGGAACAGGATGTAGAGGTCGAA       |
| rpoD RT-F                         | For aPCR                                           | GAACAGGCGCAGGAAGTCGG           |
| rnoD RT-R                         | For aPCR                                           | GCCGAGCTGTTCATGCCGAT           |
|                                   |                                                    |                                |

## Supplementary Table 2. Primers used in this study.

## **Supplementary Figures**



Supplemental Figure 1: Attachment and biofilm formation of *sia* mutants and overexpression strains. (A) Raw values from the static biofilm formation assay shown in Figure 1B. Biofilm biomass produced by each strain was measured by crystal violet staining. Presented as mean and standard deviation. N = 3 biological replicates, \*p<0.05. (B) Growth curve of *sia* mutants in Lennox Broth. (C) Static biofilm formation by *sia* overexpression strains Biofilm biomass produced by each strain was measured by crystal violet staining and normalized to the wild-type vector control (PAO1 VC). (D) Pairwise statistical comparisons, p-values, of the initial attachment data presented in Fig 1C. (E) Adherence of *sia* overexpression strains. Cells were incubated on a glass coverslip, rinsed and attached cells were immediately quantified by microscopy. Normalized to the wild-type vector control (PAO1 VC), VC=vector control. Presented as mean and standard deviation. N = 3 biological replicates, \*p<0.05.



**Supplemental Figure 2:** PsI production of *sia* mutants and overexpression strains. (A) Adherence of the *psID* complementation strain. Cells were incubated on a glass coverslip, rinsed and attached cells were immediately quantified by microscopy. (B) Representative immunoblot for PsI from *sia* mutant overexpression strains, extracted from mid-log planktonic cells (OD<sub>600nm</sub>=0.5). RNAP served as a loading control. (C) Quantification of relative PsI production calculated using blots in S2B. PsI band intensity was normalized to RNAP levels and then compared to the wild-type vector control (PAO1 VC) cell-associated PsI. VC=vector control. (D) Quantification of PsI produced by *sia* mutants. Re-graphing of data presented in **Fig 2C**. Presented as mean and standard deviation. N = 3 biological replicates, \*p<0.05.





overexpression strains. (A) C-di-GMP levels of Δ*siaD* and *siaD*<sup>E142A</sup> when SiaD is overexpressed. C-di-GMP was extracted from mid-log planktonic cells (OD<sub>600nm</sub>=0.5). Presented as mean and standard deviation. N = 5 biological replicates, \*p<0.05. (B) Representative α-his immunoblot for SiaD-his and SiaD<sup>E142A</sup>-his to confirm protein expression and stability. (C) Adherence for *siaD*<sup>E142A</sup> when SiaD is overexpressed. Cells were incubated on a glass coverslip, rinsed, and attached cells were immediately quantified by microscopy. (D) Representative immunoblot for Psl from mid-log, planktonic cells  $(OD_{600nm}=0.5)$  for the *siaD*<sup>E142A</sup> when SiaD is overexpressed. RNAP served as a loading control. (E) Quantification of relative PsI production calculated using blots in S3D. PsI band intensity was normalized to RNAP levels and then compared to the wild-type vector control (PAO1 VC) cell-associated PsI. Presented as mean and standard deviation. N = 3 biological replicates, \*p<0.05. VC=vector control.



## Supplemental Figure 4: Separation of cell-free and cell-associated fractions.

Representative immunoblot for RNAP and LasB after separation into cell-free and cell-associated fractions by centrifugation. RNAP is only found in the cell-associated fraction, and the cell-free protease LasB is only found in the cell-free fraction. N = 3 biological replicates.