Supplementary Materials

Wastewater Surveillance of SARS-CoV-2 and Chemical Markers in

Campus Dormitories in an Evolving Pandemic COVID -19

Sanjeeb Mohapatra^{1,2, #}, Sumedha Bhatia^{1#}, Kavindra Yohan Kuhatheva Senaratna¹, Mui-

Choo Jong¹, Chun Min Benjamin Lim¹, G Reuben Gangesh¹, Jia Xiong Lee, Goh Shin Giek¹,

Callie Cheung^{1,3}, Lin Yutao¹, You Luhua^{1,2}, Ng How Yong³, Lim Cheh Peng⁴, Judith Chui Ching Wong⁵, Ng Lee Ching^{5,6}, Karina Yew-Hoong Gin^{1,2,3*}

¹NUS Environmental Research Institute, T-Lab Building, 5A Engineering Drive 1, National University of Singapore, Singapore 117411

²Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for

Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore

³Department of Civil & Environmental Engineering, National University of Singapore, Engineering Drive 2, Singapore 117576

⁴Office of Risk Management and Compliance, National University of Singapore,

Singapore 119077

⁵Environmental Health Institute, National Environment Agency, 11 Biopolis Way, #06-

05/08, Singapore 138667

⁶School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive,

Singapore 637551

[#]Both the authors contributed equally

*Corresponding author, Tel: +65 6516 8104, email: ceeginyh@nus.edu.sg

Site (n=7)	Final discharge ID (n=28)	Number of block (n=89)	Estimated total population (n=9090)	
	A1	2	450	
	A2	2	420	
	A3	2	470	
	A4	2	460	
	A5_n	3	450	
	A5_s	3	510	
	A6_a	1		
А	A6_b	1		
	A6_c	1		
	A6_d	1	200	
	A6_e	1	300	
	A6_f	1		
	A6_g	1		
	A6_h	1		
В	B1	6	485	
С	C1	5	650	
D	D1	6	490	
	D2	6	470	
Б	E1	6	510	
E	E2	6	520	
F	F1	8	400	
	G1_a	4	350	
G	G1_b	4	555	
	G1_c	1	90	
	G1_d	2	210	
	G1_e	3	300	
	G1_f	5	470	
	G1_g	5	530	

Table S1. Campus wastewater sampling sites comprisisng 14 residential facilities, 28 final discharge chambers servicing 9090 students from 89 blocks.

Table S2. Primer/Probe sets and PCR conditions used in this study.

Primer/Probe	Sequence	Number of cycles	Annealing temperature (°C)	Reference
SARS-CoV-2_N1- Forward	5'-GACCCCAAAATCAGCGAAAT-3'	45	55	1,2,3
SARS-CoV-2_N1- Reverse	5'-TCTGGTTACTGCCAGTTGAATCTG-3'			
SARS-CoV- 2_N1_Probe	5'-ACCCCGCATTACGTTTGGTGGACC- FAM-3'			
PMMoV FP1 - Forward	5'-GAGTGGTTTGACCTTAACGTTGA-3'	45	55	4
PMMoV-RP1 - Reverse	5'-TTGTCGGTTGCAATGCAAGT-3'			
PMMoV-Probe	5'-CCTACCGAAGCAAATG-FAM-3'	1		

References

- Hirotsu, Y., Mochizuki, H., Omata, M., 2020. Double-Quencher Probes Improved the Detection Sensitivity of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) by One-Step RTPCR. medRxiv 2020.03.17.20037903.
- Jung, Y.J., Park, G.-S., Moon, J.H., Ku, K., Beak, S.-H., Kim, S., Park, E.C., Park, D., Lee, J.-H., Byeon, C.W., Lee, J.J., Maeng, J.-S., Kim, S.J., Kim, S.I., Kim, B.-T., Lee, M.J., Kim, H.G., 2020. Comparative analysis of primer-probe sets for the laboratory confirmation of SARS-CoV-2. bioRxiv 2020.02.25.964775. <u>https://doi.org/10.1101/2020.02.25.964775</u>
- 3. <u>https://www.cdc.gov/coronavirus/2019-ncov/lab/rt-pcr-panel-primer-probes.html</u>
- Zhang T, Breitbart M, Lee WH, Rum JQ, Wei CL, Soh SW, Hibberd ML, Liu ET, Rohwer F, Ruan Y. 2006. RNA viral community in human feces: prevalence of plant pathogenic viruses. PLoS Biol. 4:e3.10.1371/journal.pbio.0040003

Name	Abbreviation	Transition	Surrogate isotope- labelled standards
Acetaminophen	ACT	152.1 -> 110.1	ACT-D4
Azithromycin	AZT	749.5 -> 158.0	AZT-D3
Benzethonium Cl	BCL	413.3 -> 91.0	Nevirapine-d3
Benzyldimethyldodecylammonium chloride	BAC-12	305.0 -> 58.1	CF-D9
Caffeine	CF	195.1 -> 138.1	CF-D9
Clarithromycin	CLAR	748.5 -> 158.2	CLAR-D3
Clindamycin	CLI	425.2 -> 126.0	CLAR-D3
Chlortetracycline	СТС	479.1 -> 444.1	TET-D6
Didecyldimethylammonium chloride	DADMAC-10	327.4 -> 43.2	TMP-D3
Doxycycline	DXC	446.2 -> 429.1	ACT-D4
Erythromycin-H ₂ O	ERY-H20	716.5 -> 158.0	ERY-D6
Lincomycin	LIN	407.2 -> 126.2	LIN-D3
Oxybenzone	OXB	229.1 -> 151.1	DEET-D10
Oxytetracycline	OXY	461.1 -> 426.1	TET-D6
Sulpiride	SUL	342.2 -> 112.2	CBZ-D8
Triclocarban	TCC	313.0 -> 160.0	TCC-13C6
Triclosan	TCS	286.9 -> 35.0	TCS-D3
Tetracycline	TET	445.2 -> 410.3	TET-D6
Tylosin	TYL	916.5 -> 174.0	AZT-D3

Table S3. List of target emerging contaminants, MS transition and surrogate isotopelabelled standards.

Table S4 Quality control data of the targets.

Target analytes	MDL (ng/L)	MQL (ng/L)	RR±SD (%)
ACT	2	9	101.7±4.4
AZT	0.15	0.5	107.3±8.9
BCL	2	9	85±19
BAC-12	2	9	78±12
CF	2.5	8	100.9±4.7
CLAR	0.15	0.5	97.6±5
CLI	0.1	0.3	101±4.8
CTC	2.5	7.5	101.1±2.5
DADMAC-10	2	9	79±8.9
DXC	2	5	105.8 ± 4.8
ERY-H ₂ 0	0.2	0.6	94.2±10.5
LIN	0.1	0.3	99±5.5
OXB	0.08	0.25	96.9±1.6
OXY	23	75	103.6±9.4
SUL	0.06	0.2	94.1±4.4
TCC	1.4	4.5	102.9±4.4

TCS	3	10	98.9±6.7
TET	15	50	104.1±1
TYL	0.5	1.5	87.7±3.4

RR: Relative recovery (RR) of individual analytes were performed on the wastewater samples (200 mL) spiked with 50 ng/L target analytes before and after the solid phase extraction (SPE), and then calculated using relative response with a corresponding labeled internal standard.

$$\% RR = \frac{C_{Pre-S} - C_N}{C_{Sp-Sol}} \times 100$$

Where C_{Pre-S} is the measured concentration of the analyte in the sample extract and the samples were spiked with the analytes and surrogate standards prior to the extraction, C_N is the measured concentration of the analyte in the corresponding sample extracts without spiking, C_{Sp-Sol} is the measured concentration of the analyte in the spiking solution.

MDL and MQL: Method detection limit (MDL) and method quantification limit (MQL) were defined to be the lowest observable concentration of analytes in spiked extracts of the samples giving a signal-to- noise (S/N) of 3 and 10, respectively.

Figure S1. Variations in the concentrations of disinfectants

CNFD, TBFD and USFD can be read as A2, A4 and A5, respectively.

Figure S2. Correlation analysis between disinfectants and (a) SARS-CoV-2 (copy/L), (b) normalized SARS-CoV-2 (Copy/L per PMMoV Copy/L), (c) number of reported COVID-19 cases, (d) student population

Figure S3. Variations in the concentrations of personal care products

Fig. S4. Correlation analysis between OXB and (a) SARS-CoV-2 (copy/L), (b) normalized SARS-CoV-2 (Copy/L per PMMoV Copy/L), (c) number of reported COVID-19 cases

Fig. S5. Correlation analysis between TCC and (a) SARS-CoV-2 (copy/L), (b) normalized SARS-CoV-2 (Copy/L per PMMoV Copy/L), (c) number of reported COVID-19 cases

Figure S6. Variations in the concentrations of antibiotics- tetracycline

Figure S7. Correlation analysis between tetracyclines and (a) SARS-CoV-2 (copy/L), (b) normalized SARS-CoV-2 (Copy/L per PMMoV Copy/L), (c) number of reported COVID-19 cases, and (d) student population

Figure S8. Variations in the concentrations of antibiotics-lincosamides

Figure S9. Correlation analysis between lincosamycin and (a) SARS-CoV-2 (copy/L), (b) normalized SARS-CoV-2 (Copy/L per PMMoV Copy/L), (c) number of reported COVID-19 cases, and (d) student population

Figure S10. Variations in the concentrations of antibiotics-macrolides

Figure S11. Correlation analysis between azithromycin and (a) SARS-CoV-2 (copy/L), (b) normalized SARS-CoV-2 (Copy/L per PMMoV Copy/L), and (c) number of reported COVID-19 cases

Figure S12. Variations in the concentrations of other pharmaceuticals

Figure S13. Correlation analysis between acetaminophen and (a) SARS-CoV-2 (copy/L), (b) normalized SARS-CoV-2 (Copy/L per PMMoV Copy/L), (c) number of reported COVID-19 cases, and (d) student population

Figure S14. Correlation analysis between caffeine and (a) SARS-CoV-2 (copy/L), (b) normalized SARS-CoV-2 (Copy/L per PMMoV Copy/L), (c) number of reported COVID-19 cases, and (d) student population

Correlation Analysis

The column "Variable" refers to the other variable against which the Antiviral concentration was correlated against

Variable	SpearmanCoeff	p_valueRho
SARS-CoV-2		
(Copy/L)	0.41	0.053
Normalised_SARS-		
CoV-2	0.38	0.077
No. of Covid cases	0.19	0.385
Covid cases per		
Population	0.17	0.435
Population	0.14	0.586

Table S5: Acetaminophen correlation analysis for various conditions

No statistically significant correlation

Table S6: Caffeine correlation analysis for various conditions

Variable	SpearmanCoeff	p_valueRho
SARS-CoV-2 (Copy/L)	0.22	0.32
Normalised_SARS- CoV-2	0.15	0.49
No. of Covid cases	0.12	0.59
Covid cases per Population	0.1	0.66
Population	0.15	0.54

No statistically significant correlation