Supplementary Material for

metaPR²: a database of eukaryotic 18S rRNA metabarcodes with an emphasis on protists.

Daniel Vaulot¹ [№][●], Clarence Wei Hung Sim², Denise Ong²[●], Bryan Teo², Charlie Biwer³, Mahwash Jamy³, Adriana Lopes dos Santos²[●]

¹ UMR 7144, ECOMAP, CNRS, Sorbonne Université, Station Biologique de Roscoff, 29680 Roscoff, France

² Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798

³ Department of Organismal Biology (Systematic Biology), Uppsala University, Uppsala, Sweden

ORCID

- Daniel Vaulot: 0000-0002-0717-5685
- Adriana Lopes dos Santos: 0000-0002-0736-4937
- Denise Ong: 0000-0001-6053-6948
- Clarence Wei Hung Sim: 0000-0003-2190-7261
- Mahwash Jamy: 0000-0002-2930-9226

[™] Corresponding author: vaulot@gmail.com

Submitted to Molecular Ecology Resources

Date: May 26, 2022

Keywords: 18S rRNA, metabarcodes, database, R, shiny, PCR, protists

Short title: metaPR² - a database of eukaryotic metabarcodes

Table S1: Ecological function of taxa according to Table S1 of Sommeria-Klein et al. (2021). Taxa present in the PR2 database for which ecological function was not present in Table S1 were assigned an ecological function based on the literature. Ecological function was propagated to all taxa below the taxon for which it was defined using an R script.

Taxon	Taxonomic level	Function	Reference
Acantharea	class	phagotrophs	Sommeria-Klein et al. 2021
Annelida	class	metazoans	Sommeria-Klein et al. 2021
Apicomplexa	class	parasites	Sommeria-Klein et al. 2021
Arthropoda	class	metazoans	Sommeria-Klein et al. 2021
Endomyxa-Ascetosporea	class	parasites	Sommeria-Klein et al. 2021
Ascomycota	class	phagotrophs	Sommeria-Klein et al. 2021
Bacillariophyta	class	phototrophs	Sommeria-Klein et al. 2021
Basidiomycota	class	phagotrophs	Sommeria-Klein et al. 2021
Bicoecea	class	phagotrophs	Sommeria-Klein et al. 2021
Bolidophyceae	class	phototrophs	Sommeria-Klein et al. 2021
Bryozoa	class	metazoans	Sommeria-Klein et al. 2021
Chaetognatha	class	metazoans	Sommeria-Klein et al. 2021
Chlorarachniophyceae	class	phototrophs	Sommeria-Klein et al. 2021
Chlorophyceae	class	phototrophs	Sommeria-Klein et al. 2021
Chloropicophyceae	class	phototrophs	Sommeria-Klein et al. 2021
Choanoflagellatea	class	phagotrophs	Sommeria-Klein et al. 2021
Chrompodellids	division	phagotrophs	Sommeria-Klein et al. 2021
Chrysophyceae	class	phototrophs	Sommeria-Klein et al. 2021
Chytridiomycota	class	parasites	Sommeria-Klein et al. 2021
Ciliophora	division	phagotrophs	Sommeria-Klein et al. 2021
Cnidaria	class	metazoans	Sommeria-Klein et al. 2021
Cryomonadida	class	phagotrophs	Sommeria-Klein et al. 2021
Cryptophyta	division	phototrophs	Sommeria-Klein et al. 2021
Ctenophora	class	metazoans	Sommeria-Klein et al. 2021
Dactylopodida	order	parasites	Sommeria-Klein et al. 2021
Dictyochophyceae	class	phototrophs	Sommeria-Klein et al. 2021
Dinophyceae	class	dinoflagellates	Sommeria-Klein et al. 2021
Diplonemida	order	phagotrophs	Sommeria-Klein et al. 2021
Ebriida	order	phagotrophs	Sommeria-Klein et al. 2021
Echinodermata	class	metazoans	Sommeria-Klein et al. 2021
Eucyrtidium	genus	phagotrophs	Sommeria-Klein et al. 2021
Euglenida	class	phagotrophs	Sommeria-Klein et al. 2021

Taxon	Taxonomic level	Function	Reference
Foraminifera	division	phagotrophs	Sommeria-Klein et al. 2021
Haptophyta	division	phototrophs	Sommeria-Klein et al. 2021
Katablepharidophyta	division	phagotrophs	Sommeria-Klein et al. 2021
Kinetoplastea	class	parasites	Sommeria-Klein et al. 2021
Labyrinthulomycetes	class	phagotrophs	Sommeria-Klein et al. 2021
Dino-Group-I	order	parasites	Sommeria-Klein et al. 2021
Dino-Group-II	order	parasites	Sommeria-Klein et al. 2021
Dino-Group-III	order	parasites	Sommeria-Klein et al. 2021
Dino-Group-IV	order	parasites	Sommeria-Klein et al. 2021
Dino-Group-V	order	parasites	Sommeria-Klein et al. 2021
Mamiellophyceae	class	phototrophs	Sommeria-Klein et al. 2021
MAST-1	class	phagotrophs	Sommeria-Klein et al. 2021
MAST-10	class	phagotrophs	Sommeria-Klein et al. 2021
MAST-11	class	phagotrophs	Sommeria-Klein et al. 2021
MAST-12	class	phagotrophs	Sommeria-Klein et al. 2021
MAST-3	class	phagotrophs	Sommeria-Klein et al. 2021
MAST-4	class	phagotrophs	Sommeria-Klein et al. 2021
MAST-6	class	phagotrophs	Sommeria-Klein et al. 2021
MAST-7	class	phagotrophs	Sommeria-Klein et al. 2021
MAST-8	class	phagotrophs	Sommeria-Klein et al. 2021
MAST-9	class	phagotrophs	Sommeria-Klein et al. 2021
Mesomycetozoa	division	parasites	Sommeria-Klein et al. 2021
MOCH-1	class	phototrophs	Sommeria-Klein et al. 2021
MOCH-2	class	phototrophs	Sommeria-Klein et al. 2021
Mollusca	class	metazoans	Sommeria-Klein et al. 2021
Nassellaria	order	phagotrophs	Sommeria-Klein et al. 2021
Nemertea	class	metazoans	Sommeria-Klein et al. 2021
Oomycota	class	parasites	Sommeria-Klein et al. 2021
Pelagophyceae	class	phototrophs	Sommeria-Klein et al. 2021
Platyhelminthes	class	metazoans	Sommeria-Klein et al. 2021
Porifera	class	metazoans	Sommeria-Klein et al. 2021
Pyramimonadophyceae	class	phototrophs	Sommeria-Klein et al. 2021
RAD-A	class	phagotrophs	Sommeria-Klein et al. 2021
RAD-B	class	phagotrophs	Sommeria-Klein et al. 2021
RAD-C	class	phagotrophs	Sommeria-Klein et al. 2021

Table S1: (continued)

Taxon	Taxonomic level	Function	Reference
Rhodophyta	division	phototrophs	Sommeria-Klein et al. 2021
Spumellaria	order	phagotrophs	Sommeria-Klein et al. 2021
Streptophyta	division	phototrophs	Sommeria-Klein et al. 2021
Telonemia	division	phagotrophs	Sommeria-Klein et al. 2021
Trebouxiophyceae	class	phototrophs	Sommeria-Klein et al. 2021
Vannellida	order	phagotrophs	Sommeria-Klein et al. 2021
Amoebozoa	supergroup	parasites	Literature
Perkinsea	division	parasites	Literature
Alveolata_X	division	parasites	Literature
Dinoflagellata	division	phagotrophs	Literature
Apusozoa	supergroup	phagotrophs	Literature
Chlorophyta	division	phototrophs	Literature
Glaucophyta	division	phototrophs	Literature
Prasinodermophyta	division	phototrophs	Literature
Centroheliozoa	division	phagotrophs	Literature
Metamonada	division	parasites	Literature
Picozoa	division	phagotrophs	Literature
Choanoflagellida	division	phagotrophs	Literature
Fungi	division	parasites	Literature
Metazoa	division	metazoans	Literature
Cercozoa	division	phagotrophs	Literature
Aurearenophyceae	class	phototrophs	Literature
Chrysomerophyceae	class	phototrophs	Literature
Eustigmatophyceae	class	phototrophs	Literature
MOCH-3	class	phototrophs	Literature
MOCH-4	class	phototrophs	Literature
MOCH-5	class	phototrophs	Literature
Phaeophyceae	class	phototrophs	Literature
Ochrophyta	division	phototrophs	Literature
Pinguiophyceae	class	phototrophs	Literature
Raphidophyceae	class	phototrophs	Literature
Synchromophyceae	class	phototrophs	Literature
Synurophyceae	class	phototrophs	Literature
Xanthophyceae	class	phototrophs	Literature
MAST-16	class	phagotrophs	Literature

 Table S1: (continued)

Taxon	Taxonomic level	Function	Reference
MAST-22	class	phagotrophs	Literature
MAST-24	class	phagotrophs	Literature
Opalozoa	division	parasites	Literature
Pseudofungi	division	parasites	Literature
Sagenista	division	phagotrophs	Literature
Stramenopiles	supergroup	phagotrophs	Literature
Discoba	division	parasites	Literature
Archaeplastida	supergroup	phototrophs	Literature
Eukaryota_X	supergroup	parasites	Literature
Malawimonadidae	division	parasites	Literature
Radiolaria	division	phagotrophs	Literature
Protalveolata	supergroup	phagotrophs	Literature

 Table S1: (continued)

Name	Sequence	Region	Directio	n Reference	DOI	Ν
TAReuk454FWD1	CCAGCASCYGCGGTAATTCC	V4	fwd	Stoeck et al (2010)	10.1111/j.1365-294X.2009.04480.x	:21
E572F	CYGCGGTAATTCCAGCTC	V4	fwd	Comeau et al. (2011)	10.1371/journal.pone.0027492	7
3NDf	GGCAAGTCTGGTGCCAG	V4	fwd	Cavalier-Smith et al. (2009)	10.1016/j.protis.2009.03.003	2
528F	GCGGTAATTCCAGCTCCAA	V4	fwd	Cheung et al. (2010)	10.1038/ismej.2010.26	2
NSF573	CGCGGTAATTCCAGCTCCA	V4	fwd	Mangot et al. (2013)	10.1111/1462-2920.12065	2
1380F	CCCTGCCHTTTGTACACAC	V9	fwd	Amaral Zettler et al (2009)	10.1371/journal.pone.0006372	1
1389F	TTGTACACACCGCCC	V9	fwd	Amaral Zettler et al (2009)	10.1371/journal.pone.0006372	1
515F	GTGCCAGCMGCCGCGGTAA	V4	fwd	Parfrey et al. (2014)	10.3389/fmicb.2014.00298	1
528F	CCGCGGTAATTCCAGCTC	V4	fwd	Zhu et al. (2005)	10.1016/j.femsec.2004.10.006	1
EK-565F	GCAGTTAAAAAGCTCGTAGT	V4	fwd	Simon et al. (2015)	10.1111/1462-2920.12591	1
EuF-V4	CCAGCASCCGCGGTAATWCC	V4	fwd	Boscaro et al. (2017)	10.1007/s00248-016-0912-8	1
EuF-V4	CCAGCASCCGCGGTAATWCC	V4	fwd	Belevich et al. (2017)	10.1007/s00248-017-1076-x	1
TAReukFWD1	CCAGCASCYGCGGTAAT	V4	fwd	Annenkova et al. (2020)	10.3390/microorganisms8040543	1
TAReukREV3	ACTTTCGTTCTTGATYRA	V4	rev	Stoeck et al (2010)	10.1111/j.1365-294X.2009.04480.x	:15
V4 18S Next.Rev	ACTTTCGTTCTTGATYRATGA	V4	rev	Piredda et al. (2017)	10.1093/femsec/fiw200	7
E1009R	AYGGTATCTRATCRTCTTYG	V4	rev	Comeau et al. (2011)	10.1371/journal.pone.0027492	6
1055R	ACGGCCATGCACCACCACCAT	V4	rev	Alves-de-Souza et al (2011)	10.5194/bg-8-2125-2011	2
1510R	CCTTCYGCAGGTTCACCTAC	V9	rev	Lopez-Garcia et al. (2003)	10.1073/pnas.0235779100	2
NSR951	TTGGYRAATGCTTTCGC	V4	rev	Mangot et al. (2013)	10.1111/1462-2920.12065	2
V4_euk_R2	ACGGTATCTRATCRTCTTCG	V4	rev	Brate et al. (2010)	10.1038/ismej.2010.39	2
1119r	GGTGCCCTTCCGTCA	V4	rev	Parfrey et al. (2014)	10.3389/fmicb.2014.00298	1
897R	TCYDAGAATTYCACCTCT	V4	rev	Hugerth et al. (2014)	10.1371/journal.pone.0095567	1
EUK1134-R	TTTAAGTTTCAGCCTTGCG	V4	rev	Carnegie et al. (2003)	10.3354/dao054219	1
Nex_18S_0964_F	R GATCCCYYAACTTTCGTTCTTGA	V4	rev	Kim et al. (2016)	10.1111/1462-2920.13523	1
picoR2	AKCCCCYAACTTTCGTTCTTGAT	V4	rev	Belevich et al. (2017)	10.1007/s00248-017-1076-x	1

Table S2: Eukaryotic 18S rRNA primers used for metaPR2 datasets with the number of datasets (N) where used (Table 1).

Table S3: 18S rRNA primer sets used for metaPR2 datasets with the number of datasets (N) where used (Table 1). Refer to Table S2 for sequence and reference of primers.

Primer fwd	Primer rev	Region	Ν
TAReuk454FWD1	TAReukREV3	V4	14
TAReuk454FWD1	V4 18S Next.Rev	V4	7
E572F	E1009R	V4	6
3NDF	V4_euk_R2	V4	2
528F	1055R	V4	2
NSF573	NSR951	V4	2
1380F	1510R	V9	1
1389F	1510R	V9	1
E572F	897R	V4	1
EK-565F	UNonMet	V4	1
EuF-V4	picoR2	V4	1
F515	R119	V4	1
Nex_18S_0587_F	Nex_18S_0964_R	V4	1
TAReukFWD1	TAReukREV3	V4	1

A - MAS	Т8																										
Identity	<u> </u>	2,0	40		60	80	100	120	140)	160	180	200	220	240	2	ço.	280	300	320	340	3	<u>50</u>	380	400	420	434
acb168004 1999d53b1a 1003301b23 9855c7761b 9855c7761b 9855e27761 4fed2aef7d5 4fed2aef7d5 4fed2aef7d5 6f8b38d119 528ed20c51 df8fed707eb B - Ciliatt																									ľ	1	
Identity	1	2,0	40	60	80	100	120	140	160	180	200	220	240	260	280	300	320	340	360	380	400	420	440	450	480	500	517
4775decdf1b 130e5ce3a47 96ce1aa016 a5dbfd6e78a f9836f4f818 fc26735b160 57ccb66b2b 476bd3bf98 7f19b482a0e																											

Figure S1: Two examples of V4 sequence clusters ASV (cASV) for Stramenopiles MAST 8 (A) and ciliates (B).

Figure S2: Amplicon size and position on the 18S rRNA gene (yeast), with the number of datasets for each V4 primer pair on the right side.

Number of samples

Figure S3: Distribution of samples by latitude, temperature and salinity ranges. NA corresponds to samples for which the data are not available.

Figure S4: Treemaps of most abundant taxa (supergroup and division) for all datasets (V4 and V9) based on number of reads after normalization (left) or number of cASVs (right).

Figure S5: Protist V4 cASVs. Relationships between frequency and abundance of cASVs. Colours correspond to supergroups.

Figure S6: Protist genus analysis for the V4 dataset after normalization. A. Most abundant genera. B. Most frequent genera. C. Genera with most cASVs.

Figure S7: Protist V4 ASVs. Shannon's diversity index as a function of the environment with significance (** p-value < 0.01, *** p-value < 0.001).

- · Website: https://shiny.metapr2.org/
- Docker: https://hub.docker.com/repository/docker/vaulot/metapr2
- Source code: https://github.com/pr2database/metapr2-shiny

Maintainer

· Daniel Vaulot: vaulot@gmail.com

Contributors

- Daniel Vaulot, CNRS Roscoff, NTU-ASE Geek lab
- Adriana Lopes dos Santos, NTU-ASE Geek lab
 Clarence Sim, NTU-ASE Geek lab
- Denise Ong, NTU-ASE Geek lab
- Bryan Teo, NTU-ASE Geek lab
- Charlie Biwer, Uppsala University Sweden
- · Mahwash Jamy, Uppsala University Sweden

Figure S8: Shiny panel "About".

Select datasets

Select All Deselect All	
Antarctic_Fieldes_Bay_2013	
Antarctic_Fieldes_Bay_2015_18S_V4	
Antarctic_Fieldes_Bay_2015_18S_V4_sorted	
Arctic_Baffin_Bay_2013	
Arctic_Beaufort_Sea_MALINA_2014	
Arctic_Nansen_Basin_2012	
Arctic_Nares_Strait_2014	
Arctic_Ocean_Central_2012	
Arctic_Ocean_PS80_2012	
Arctic_Ocean_Survey_2005_2011	
Arctic_White_Sea_2013_2015	
Baltic_Sea_2012_2013	
Baltic_Sea_Gdansk_2012	
Chukchi_Sea_ICESCAPE_2010	
European_coast_Biomarks_2009	
Italy_Naples_2011	
Lake_Baikal_2013	
Lake_Chaohu_2014_2015	
Lake_Chevreuse_2012	
Lake_Fuxian_2015	
Lake_Garda	
Lakes_Argentina	
Lakes_mountain_2013	
Lakes_Scandinavia	
Malaspina_surface_2010_2011	
Malaspina_vertical_2010_2011	
Mariana_Trench_2016_1	
Naniana_rrenci_2010_2	
OSD_2014_V4_EGC	
OSD 2015 V4	
Diver Parana	
River Saint Charles 2016 2017	
Soils Global 2012	
Soils Neotronical	
Soils Swiss	
Spain Blanes 2004 2013	
Tara Arctic V4	
Tara Ocean V4	
Tara Oceans V9	

About Da	tasets Treemap	Мар	Barplot Diversity Query Dov	vnload Help			
ick datase aset groups	t selection.	coastal 🗆	rivers □ lakes □ soils □ arctic □	antarctic	□ tropical □ time	a series	
w 10 v e	ntries				Sear	rch:	
lataset_id ≑	dataset_name 👙	region 🝦	paper_reference	sample_number (asv_number 🛊	n_reads_mean 🛊	selected
11	Antarctic Fieldes Bay- 2013	Southern Ocean	Luo, W. et al. Molecular diversity of microbial eukaryotes in sea water from Fildes Peninsula, King George Island, Antarctica. Polar Biol. (2015)	10	69	13631	true
16	Antarctic Fieldes Bay 2015 18S V4	Southern Ocean	Trefault, N., De la Iglesia, R., Moreno- Pino, M., Lopes dos Santos, A., G-e8-rikas Ribeiro, C., Parada-Pozo, G Cristi, A., Mare, D., & Vaulot, D. (2021). Annual phytoplankton dynamics in coast waters from Fildes Bay, Western Antard Peninsula. Scientific Reports, 11(1), 136	., 123 al 6.	685	48261	true
18	Antarctic Fieldes Bay 2015 18S V4 sorted	Southern Ocean	Trefault, N., De la Iglesia, R., Moreno- Pino, M., Lopes dos Santos, A., G-e8-rikas Ribeiro, C., Parada-Pozo, G. Cristi, A., Marie, D., & Vaulot, D. (2021). Annual phytoplankton dynamics in coast waters from Fildes Bay, Western Antarct Peninsula. Scientific Reports, 11(1), 138	-, 60 al 6.	280	31615	true
9	Arctic Nansen Basin - 2012	Arctic Ocean	Metfies, K., von Appen, WJ., Kliias, E., Nicolaus, A. & N-r6b-thig, EM. Biogeography and Photosynthetic Biomass of Arcit Manne Pico-Eukaroyte during Summer of the Record Sea Ice Minimum 2012. PLoS One 11, 20 pp. (2016)	es 17	328	13700	true
42	Arctic Nares Strait - 2014	Arctic Ocean	Kalenitchenko D., Joli N., Potvin M., Tremblay J <c9-, 2019.<br="" c.="" lovejoy="">Biodiversity and Species Change in the Arctic Ocean: A View Through the Lens of Nares Strait Frontiers in Marine Science 6:1</c9-,>	of 247	1510	36626	true
6	Arctic Ocean Central - 2012	Arctic Ocean	Stecher, A., Neuhaus, S., Lange, B., Frickenhaus, S., Beszteri, B., Kroth, P.G. Valentin, K. 2015. rRNA and rDNA base assessment of sea ice protist biodiversit from the central Arctic Ocean. Eur. J. Phycol. 1<96>16.	& j 8 y	182	36628	true
40	Arctic Ocean Survey - 2005- 2011	Arctic Ocean	Thaler M., Lovejoy C., Sea B. 2015. Biogeography of Heterotrophic Flagellatt Populations Indicates the Presence of Generalist and Specialist Taxa in the Arc Ocean. Applied and Environmental Microbiology 81:2137<96>2148	ə tic 36	467	7136	true
5	Arctic Ocean, Beaufort Sea, MALINA cruise - 2009	Arctic Ocean	Monier, A., Terrado, R., Thaler, M., Comeau, A., Medrinal, E. & Lovejoy, C. 2013. Upper Arctic Ocean water masses hadror distinct communities of heterotrophic flageliates. Biogeoscience 0.4273-69-68. Monier, A., Comte, J., Babin, M., Forest, A., Matsuoka, A. & Lovejoy, C. 2014. Oceanographic struct drives the assembly processes of microbial eukaryotic communities. ISME 9:905-69-1002	5. 24 rre J.	270	6704	true
39	Arctic Polarstern expedition ARK- XXVII/3 - 2012	Arctic Ocean	Rapp JZ., Fern-e1>ndez-M-e9>ndez M Bienhold C., Boelius A. 2018. Effects of Ice-Algal Aggregate Export on the Connectivity of Bacterial Communities in the Central Arctic Ocean. Frontiers in Microbiology 9:1035	 45	978	73933	true
38	Arctic White Sea - 2013-2015	Arctic Ocean	Belevich TA., Ilyash L V., Milyutina IA., Logacheva MD., Goryunov D V., Troitsky V. 2017. Photosynthetic Picoeukaryotes the Land-Fast Ice of the White Sea, Russia. Microbial Ecology:1<96>16.	/A in 17	380	23990	true
wing 1 to 10	of 41 entries				Previous 1	2 3 4	5 Next

Showing 1 to 10 of 41 entries

Figure S9: Shiny panel "Datasets".

Select datasets
41 items selected -
Select Samples Gene regions
V4 -
DNA or RNA
DNA -
Ecosystems
oceanic, coastal, freshwater lakes, freshwater riv -
Substrates
water -
Size fractions
pico, total 🗸
Depth levels
surface •
Select ASVs
Minimum number of total reads per ASV
1000
Select Taxa
Supergroup
All
Division
All
Class
All
Order
All
Eamily
Genus
All
Species
All

Figure S10: Shiny sample and taxonomy selection sidebar.

Figure S11: Shiny panel "Treemap".

Figure S12: Shiny panel "Map".

Figure S13: Shiny panel "Barplot".

Figure S14: Shiny panel "Diversity".

Figure S15: Shiny panel "Query".

About	Datasets	Treemap	Мар	Barplot	Diversity	Query	Download	Help	
Selected	damples, o	datasets an	d taxa						
The followin big if you do	ng files are pro cownload all da	ovided. They ca atasets and all f	an be linke taxa. Phyle	d by key field oseq files wil	ds. They only I only be crea	contain the ted for less t	selected dataset than 1000 samp	s, sample type and taxa. The asv_reac les selected.	ls and phyloseq files can be very
file	conte	nt							key fields
datasets.xls	sx Inform	nation on the di	fferent dat	asets selecte	ed including re	eference and	d GenBank id		dataset_id
samples.xls	sx List of	samples selec	ted with m	nedadata					file_code
asv.xlsx	ASV s	elected with ta	xonomy a	nd sequence					asv_code
asv_reads.	tsv.gz Perce	nt of reads (no	rmalized to	o total numbe	er of eukaryot	ic reads in th	ne sample), for e	ach ASV and each sample (long form).	asv_code, file_code
phyloseq.ro	ds File to	use with phylo	seq R pad	ckage (https://	//joey711.gith	ub.io/phylos	eq/). Use readRl	DS() function to read	5000 samples max
Number of s	samples: 960								
🛓 Downlo	oad datasets,	samples and A	SVs (zip)		🛓 Downloa	d ASVs abu	ndance (tsv.gz)		

Make phylosog dope	
nhuloseq_class_evneniment_lev	
otu tablo() OTU Tablo;	[2009 tave and 000 camples]
otu_table() olo lable:	[2530 raxa and and samples]
sample_data() Sample Data:	[908 samples by 9 sample variables]
tax_table() Taxonomy Table:	[3298 taxa by 8 taxonomic ranks]
phyloseq-class experiment-lev	vel object
otu_table() OTU Table:	[3298 taxa and 908 samples]
sample_data() Sample Data:	[908 samples by 9 sample variables]
<pre>tax_table() Taxonomy Table</pre>	[3298 taxa by 8 taxonomic ranks]
Lead Download phyloseq file (rds)	

