
Supplementary Material: Application in R

In this supplementary document, we outline the application of both the
pooled variance and the simulation-based approach using published R packages.
In a first section, we describe some R functions that are necessary for running
the tests before showing their application in a second section, where we will
reproduce the results of the empirical application in the main text. Throughout
this text, we assume that the R packages mirt and strucchange have been
installed and loaded. After their installation, these packages can be loaded via:

> library(mirt)

> library(strucchange)

1 R Functions for Running the Tests

1.1 The Pooled Variance Approach

This method can be implemented quite easily by building upon the existing R
packages mirt and strucchange. It is still necessary to define a function that
centers the individual score contributions. In strucchange, these functions
are typically named estfun, and we will also use a similar name here to stay
consistent. A centering of the score contributions can be achieved via:

> estfun_PooledVariance <- function(x){

+ ### Obtain the score contributions from a model estimated by

+ ### the mirt package

+ scores <- mirt::estfun.AllModelClass(x)

+

+ ### Center the score contributions

+ corrector <- apply(scores, 2, mean)

+ scores <- t(apply(scores, 1, function(x) x - corrector))

+

+ return(scores)

+ }

1.2 The Simulation-based Approach

The simulation-based approach is more difficult to implement. We have to 1)
center the score contributions and carry out the group-wise decorrelation, 2)
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simulate stochastic processes that serve as reference models, and 3) calculate a
suitable test statistic for all stochastic processes to finally obtain p-values. We
start by defining another estfun function for the first step of the calculation,
that is, the centering and decorrelation the individual score contributions:

> estfun_groupwise <- function(x){

+ ### Obtain the score contributions from a model estimated by

+ ### the mirt package

+ scores <- mirt::estfun.AllModelClass(x)

+

+ ### Center the individual score contributions

+ corrector <- apply(scores, 2, mean)

+ scores <- t(apply(scores, 1, function(x) x - corrector))

+

+ ### Decorrelate the score contributions

+ # Get the groups from the mirt object

+ group <- extract.mirt(x, what = "group")

+

+ # Get the number of items

+ i <- ncol(extract.mirt(x, what = "data"))

+

+ # Create a matrix for the decorrelated scores -

+ # since the score contributions obtained from mirt contain

+ # two columns for score contributions related to the group

+ # parameters, we have to subtract two columns if we consider

+ # two groups and model the mean and variance in the 2nd group.

+ newscores <- matrix(nrow = nrow(scores), ncol = ncol(scores)-2)

+

+ # Repeat for each group

+ for (a in levels(group)) {

+ # Obtain the group-wise score contributions

+ subset <- scores[group == a,1:ncol(newscores)]

+

+ # Obtain the number of respondents in this group

+ n <- nrow(subset)

+

+ # Decorrelate the score contributions, based on code from strucchange

+ subset <- subset/sqrt(n)

+ J <- crossprod(subset)

+

+ J12 <- root.matrix(J)

+

+ subset <- t(chol2inv(chol(J12)) %*% t(subset))

+

+ subset <- subset * sqrt(n)

+
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+ newscores[group == a,1:ncol(newscores)] <- subset

+ }

+

+ return(newscores)

+ }

We still need a function for the remaining steps of the calculation. A suit-
able function for the unordered Lagrange Multiplier statistic and a categorical
covariate, saved by a factor, is provided by the following function. Please see
the main text for a definition of this statistic.

> LMuo_p <- function(score, covariate, sims = 1000){

+

+ # Function for calculating the test statistic using

+ # a matrix of individual score contributions and a categorical covariate

+ LMuo <- function(scores = score, covariates = covariate){

+ # A helper matrix that includes the sums of score contributions ordered

+ # for each category of the covariate

+ helper <- matrix(nrow = length(levels(covariates)), ncol = ncol(scores))

+ for (a in levels(covariates)) {

+ helper[which(levels(covariates) == a),] <- apply(scores[covariates == a,]

+ , 2, sum)

+ }

+ # Calculation of the test statistic

+ LMuo <- 0

+ for (a in 1:nrow(helper)) {

+ if (a == 1) {

+ LMuo <- sum(helper[a,]^2)

+ } else {

+ LMuo <- LMuo + sum((helper[a,] - helper[a-1,])^2)

+ }

+ }

+ return(LMuo)

+ }

+

+ # Calculation of the test statistic for the observed process

+ LM_obs <- LMuo()

+

+ # We define a vector to store the reference distribution

+ LMuo_ref <- vector(length = sims)

+

+ # The column-wise mean of scores for calibration

+ mean_scores <- apply(score, 2, mean)

+

+ # Repeat sims times

+ for (a in 1:sims) {

+
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+ # Create a matrix for an artificial stochastic process

+ scores_sims <- matrix(nrow=nrow(score), ncol = ncol(score))

+

+ # For each item parameter, draw from an univariate normal distribution

+ # to mimic a multivariate normal distribution

+ for(b in 1:ncol(scores_sims)){

+ scores_sims[,b] <- rnorm(n = nrow(scores_sims))

+ }

+

+ # Carry out a group-wise decorrelation

+ newscores <- matrix(nrow = nrow(scores_sims), ncol = ncol(scores_sims))

+

+ for (b in levels(covariate)) {

+ subset <- scores_sims[covariate == b,1:ncol(newscores)]

+

+ n <- nrow(subset)

+

+ subset <- subset/sqrt(n)

+ J <- crossprod(subset)

+

+ J12 <- root.matrix(J)

+

+ subset <- t(chol2inv(chol(J12)) %*% t(subset))

+

+ subset <- subset * sqrt(n) ### Leads to unity matrix

+

+ newscores[covariate == b,1:ncol(newscores)] <- subset

+ }

+ scores_sims <- newscores

+

+ # Adapt the mean so that it matches that of the

+ # observed stochastic process

+ for(b in 1:ncol(scores_sims)){

+ scores_sims[,b] <- scores_sims[,b] - mean(scores_sims[,b]) + mean_scores[b]

+ }

+

+ # Calculate the test statistic and store it

+ LMuo_ref[a] <- LMuo(scores = scores_sims, covariates = covariate)

+ }

+

+ # Calculate and return the p-value

+ return(mean(LM_obs < LMuo_ref))

+ }
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2 An Application with Empirical Data

In this section, we demonstrate the application of the functions presented in the
first section using the MathExam14W dataset from the psychotools package.
We start by loading the dataset:

> library(psychotools)

> data("MathExam14W")

For convenience, we store the responses and the group covariate as separate
objects:

> resp <- MathExam14W$solved

> group <- MathExam14W$group

Next, we want to define our estimation method. We want to compare a) an
MML estimator and b) an MAP estimator with flat prior distributions for the
slope, intercept and pseudo-guessing parameters. In mirt, both can be done by
defining suitable models by a special syntax. More information is provided in
the documentation of mirt. The model for the MML estimator is simply:

> model_ML <- 'F = 1-13'

In nontechnical terms, this syntax essentially states that items 1-13 are in-
tended to measure a single latent trait. For the MAP estimator, we want to
use a N(1,10) prior for the slope parameters, a N(0,10) prior for the intercept
parameters, and a B(1,1) prior, which is an uniform distribution, for the pseudo-
guessing parameters. This is defined via:

> model_MAP <- 'F = 1-13

+ PRIOR = (1-13, g, expbeta, 1, 1),

+ (1-13, a1, norm, 1, 10),

+ (1-13, d, norm, 0, 10)'

In our test, we want to check the hypothesis that the item parameters are
invariant accross both groups. First, we define constr, which allows us to
constrain all item parameters to be invariant for both groups (for more details,
see the documentation of the mirt package):

> n_params <- ncol(resp)*4

> constr <- c(lapply(seq(1, n_params, 4), function(x) c(x, x + n_params + 2)),

+ lapply(seq(2, n_params, 4), function(x) c(x, x + n_params + 2)),

+ lapply(seq(3, n_params, 4), function(x) c(x, x + n_params + 2)))

We are then able to estimate the parameters using both methods and to
carry out the tests. The item parameter estimation is done via:

> res_ML <- multipleGroup(data=resp, model=model_ML, itemtype='3PL',

+ group = factor(group),

+ invariance = c("free_means", "free_var"),
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+ constrain = constr,

+ TOL = 1e-7, technical = list(NCYCLES = 50000))

> res_MAP <- multipleGroup(data=resp, model=model_MAP, itemtype='3PL',

+ group = factor(group),

+ invariance = c("free_means", "free_var"),

+ constrain = constr,

+ TOL = 1e-7, technical = list(NCYCLES = 50000))

This code estimates a multiple group IRT model that assumes a normal dis-
tribution of the person parameters in each group, but allows their means and
variances to differ in each group. The TOL argument sets the threshold for a
convergence of the EM algorithm, which underlies the estimation algorithm, to
1e-7, whereas the NCYCLES arguments sets the maximum number of iterations
of the EM algorithm to 50000.

We can now apply the pooled variance approach via:

> sctest(res_ML, order.by = group,

+ parm = seq(1, ncol(resp)*3),

+ scores = estfun_PooledVariance, functional = "LMuo")$p.value

> sctest(res_MAP, order.by = group,

+ parm = seq(1, ncol(resp)*3),

+ scores = estfun_PooledVariance, functional = "LMuo")$p.value

The simulation-based approach is applied via:

> scores_ML <- estfun_groupwise(res_ML)

> scores_MAP <- estfun_groupwise(res_MAP)

> LMuo_p(score = scores_ML, covariate = factor(group))

> LMuo_p(score = scores_MAP, covariate = factor(group))

We get p-values close to 0, which indicates a violation of the tested null hy-
potheses, and thus a violation of parameter invariance.
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