SUPPORTING INFORMATION

Role of the CrcB transporter of *Pseudomonas putida* in the multi-level stress response elicited by mineral fluoride

Patricia Calero, Nicolás Gurdo, and Pablo I. Nikel

Table S1. Oligonucleotides used in this study.

Name	Sequence $(5' \rightarrow 3')$	Purpose		
rarA_up_U_fw	AGATCCUTCGCATGCTGTTGGTTTC			
rarA_up_U_rv	ATGGCAUGGCGAGCTCTGGTTACTC	Opstream region of rarA amplification		
rarA_dw_U_fw	ATGCCAUGATTGCACTCATCGCCGC	Downstroom ragion of rarA amplification		
rarA_dw_U_rv	AGGTCGACUTTCGTTGGCCATGCGCTC	Downstream region of rarA amplification		
prtR_up_U_fw	AGATCCUAAAGTTATTCCCTGATCGGGAAT	Unstream region of artP amplification		
prtR_up_U_rv	ATCGTCAUTTCAGTCTCCGCAAGGCC	opstream region of price amplification		
prtR_dw_U_fw	ATGACGAUCAGCTCAACTCCAGCCAGATCGG	Downstroom ragion of prtP amplification		
prtR_dw_U_rv	AGGTCGACUACCGCCGCTGAGCCTGCACAA	Downstream region of price amplification		
lapA_up_U_fw	AGATCCUATTCATCTATAGAGTGCGGATTC	Unstroom ragion of land amplification		
lapA_up_U_rv	ATTGGACUCTCCGTGTGACCCGATGG	Opstream region of <i>TapA</i> amplification		
lapA_dw_U_fw	AGTCCAAUGTGACAGACCACCGGGGGCC	Downstroom racion of land amplification		
lapA_dw_U_rv	AGGTCGACUTCGATTGGTCGACGGGTACG	Downstream region of <i>TapA</i> amplification		
lapD_up_U_fw	AGATCCUCGGATTGGGATTTCTCCC	Unstroom region of lonD smallfastion		
lapD_up_U_rv	ATTCACATCUGTGCTCCTTCAGTAAACCG	Opstream region of <i>lapD</i> amplification		
lapD_dw_U_fw	AGATGTGAAUGGCCTCTCGCGTGCCGCT	Downstream racion of (onD amplification		
lapD_dw_U_rv	AGGTCGACUACGCGGTATCGTCAAGCAACTGC	Downstream region of <i>TapD</i> amplification		
flhA_up_U_fw	AGATCCUCTTACCGGCATACGACTCA	Lington an end of file A granification		
flhA_up_U_rv	ACCGCGAGUCCTCTTGATGCAAAACTTTGA	Opstream region of IIIA amplification		
flhA_dw_U_fw	ACTCGCGGUGTGAGGTAGGGGATAATGCAAGTTA	Downstroom racion of flb 4 complification		
flhA_dw_U_rv	AGGTCGACUGCGCCAGGCCTGGCGCGG	Downstream region of IIIA amplification		
yijP_up_U_fw	AGATCCUTCCTGGCGCATGATGACGAT	Linetropy region of till providention		
yijP_up_U_rv	ATTACACGUATGCCTCGTCGTACCTTGGC	opstream region of <i>yijP</i> amplification		
yijP_dw_U_fw	ACGTGTAAUCAGGCCAAGGTTCATGCAGGG			
yijP_dw_U_rv	AGGTCGACUCGCCACCCCGAGTCGCTG	Downstream region of <i>yijP</i> amplification		
orn_up_U_fw	AGATCCUTACCAGATAGCGGTCGATCA	Lipstroom ragion of an amplification		
orn_up_U_rv	ACTCACAUGCAGGGGGCTCCTCATATAG	opsiteant region of om amplification		
orn_dw_U_fw	ATGTGAGUCGAAACGGCGCAGATATTGTA	Downstroom region of an amplification		
orn_dw_U_rv	AGGTCGACUATCGCCTGTTCTGCCGGC	Downstream region of orn amplification		
dusB_up_U_fw	AGATCCUAATGGCCCGGCAGGACCA	Upstream region of dusB amplification		
dusB_up_U_rv	ATGCCAUAGGTGATCCCTGTTGTGGGGC			
dusB_dw_U_fw	ATGGCAUGACGATGATGACCGAGAA			
dusB_dw_U_rv	AGGTCGACUCATCCATCATTTCGGCGA	Downstream region of <i>dusis</i> amplification		

vacB_up_U_fw	AGATCCUGGCACATAAATCGCAGGCAAGA	Unstream region of weath amplification		
vacB_up_U_rv	ATGACAUCAGAAGGGGTTCACCTTGGGGTAT	opsilean region of vacb amplification		
vacB_dw_U_fw	ATGTCAUGAGTCAGCTGGAAAAAATCT	Downstroom region of weath amplification		
vacB_dw_U_rv	AGGTCGACUGATCATCACCAGTGGCCC	Downstream region of vace amplification		

Gene	Locus	Insertions	log(FC)	P-value	Description	References	Comments
orn	PP_4902	2	3.21	4.39×10 ⁻¹²	Oligoribonuclease	(Yeom, et al., 2010, Escapa, et al., 2012)	Involved in PHA metabolism in <i>P. putida.</i> Exoribonuclease activity, produces 5'-phosphomonoesters. Changes in expression reported in the presence of ampicillin.
dusB	PP_4820	6	2.68	2.77×10 ⁻¹¹	NifR3 family TIM-barrel protein	(Steen, et al., 2013, Lahesaare, et al., 2016)	tRNA dihydrouridine synthase DusB. Differentially regulated in strain KT2440 after 30 min of O ₂ depletion. Forms an operon with <i>PP_4821</i> (encoding Fis). Fis is involved in the regulation of LapF and cell surface hydrophobicity.
vacB/mr	PP_4880	15	2.81	2.51×10 ⁻⁷	Ribonuclease R	(Reva, et al., 2006, Fonseca, et al., 2011, Frank, et al., 2011)	Essential for growth of strain KT2440 at 4°C. Exoribonuclease activity, digests RNA with extensive secondary structure. Its absence leads to increased levels of many mRNAs (among them, <i>fleQ</i> and other flagella genes).
argD	PP_4481	1	2.52	2.47×10 ⁻⁶	Bifunctional <i>N</i> - succinyldiaminopimelate- aminotransferase/acetylo rnithine transaminase	_	Involved in L-arginine biosynthesis.
kdsA-1	PP_1611	2	2.65	2.88×10-6	2-Dehydro-3- deoxyphosphooctonate aldolase	(Walsh, et al., 1999)	Involved in lipopolysaccharide biosynthesis.

Table S2. Beneficial insertions in the tolerance of *P. putida* towards F⁻ stress.^a

^a *FC*, fold-change; *TIM-barrel*, triose phosphate isomerase barrel. The references in the table indicate reports of the corresponding gene or function in either *P. putida* KT2440 or related species.

SUPPLEMENTARY FIGURES

Figure S1 · **Effect of KF on bacterial growth.** Growth of *P. putida* KT2440 in M9 minimal medium containing 5 g L⁻¹ glucose as the sole carbon source and supplemented with KF at the different concentrations indicated. Dots represent individual data per experiment with at least three independent cultures analyzed per condition. OD₆₀₀, optical density measured at 600 nm.

Figure S2 · **Metabolomic analysis of sugar phosphates.** Relative change in the metabolite concentration over time of metabolites of the upper glycolysis pathway in presence of NaF compared to control conditions in *P. putida* KT2440 and *P. putida* \triangle *crcB.* Error bars correspond to standard deviations of two biological replicates. g6p, glucose 6-phosphate; f6p, fructose 6-phosphate; r5p, ribose 5-phosphate; and s7p, sedoheptulose 7-phosphate.

Figure S3 · **Metabolomic analysis of intermediates of the lower glycolysis.** Relative change in the concentration over time of metabolites of the lower glycolysis pathway in presence of NaF compared to control conditions in *P. putida* KT2440 and *P. putida* \triangle *crcB.* Error bars correspond to standard deviations of two biological replicates. dhap, dihydroxyacetone phosphate; g3p, glyceraldehyde 3-phosphate; pyr, pyruvate; pep, phosphoenol pyruvate; and accoa, acetyl-coenzyme A.

Figure S4 · **Metabolomic analysis of intermediates of the tricarboxylic acid cycle.** Relative change in the concentration over time of metabolites of the tricarboxylic acid cycle in presence of NaF compared to control conditions in *P. putida* KT2440 and *P. putida* \triangle *crcB.* Error bars correspond to standard deviations of two biological replicates. OAA, oxaloacetate.

Figure S5 • **Metabolomic analysis of redox cofactors and related metabolites.** Relative change in the concentration over time of metabolites involved in redox balance in presence of NaF compared to control conditions in *P. putida* KT2440 and *P. putida* \triangle *crcB.* Error bars correspond to standard deviations of two biological replicates. Gthrd, reduced glutathione.

Figure S6 · **Metabolomic analysis of intracellular amino acids.** Relative change in the concentration over time of amino acids in presence of NaF compared to control conditions in *P. putida* KT2440 and *P. putida* $\Delta crcB$. Error bars correspond to standard deviations of two biological replicates.

Figure S7 · **Metabolomic analysis of intracellular (aromatic and sulphur-containing) amino acids.** Relative change in the concentration over time of amino acids in presence of NaF compared to control conditions in *P. putida* KT2440 and *P. putida* \triangle *crcB.* Error bars correspond to standard deviations of two biological replicates.