Cell Reports, Volume 41

Supplemental information

Long-term potentiation reconstituted

with an artificial TARP/PSD-95 complex

Anagh Sinha Ravi, Menglong Zeng, Xudong Chen, Gerardo Sandoval, Javier Diaz-Alonso, Mingjie Zhang, and Roger A. Nicoll

Figure S1: Expression of GluA1-TARP γ -8_TRP15 does not affect NMDAR EPSCs in AMPAR-null cells. Related to Figure 2. (A) Simultaneous dual whole-cell recordings were made from a transfected CA1 pyramidal neuron (green trace) and from a neighboring wild-type one (black trace). GluA1-TARP γ -8_TRP15 replacement has no effect on NMDAR EPSCs. Scatterplots showing amplitudes of NMDAR EPSCs for single pairs (open circles) and mean \pm SEM (filled circle) of control and GluA1-TARP γ -8_TRP15 replacement neurons. Insets show representative EPSC traces (scale bars, 50 pA, 20 ms, n = 7 paired recordings). (B) Dot-plots showing amplitudes of NMDAR EPSCs for single pairs of control (black) and GluA1-TARP γ -8_TRP15 (green) replacement neurons. (C) AMPAR replacement with either GluA1-TARP γ -8 or GluA1-TARP γ -8_TRP15 does not affect NMDAR EPSCs (n = 7 paired recordings, reproduced from (Zeng et al., 2019) for comparison). Bar graphs showing the log₁₀ transfected/control EPSC ratio \pm SEM. Statistical significance was analyzed using the Wilcoxon signed-rank test in (B). Unpaired t-test with Welch's correction was used to compare relevant groups in (C). ns, not significant.

PSD-95_INAD PDZ3 OE HIGH expression

PSD-95_INAD PDZ3 OE LOW expression

Figure S2: Overexpressing PSD-95_INAD PDZ3 does not affect NMDAR synaptic transmission. Related to Figure 3. (A) Overexpression of pCAGGS PSD-95_INAD PDZ3 does not affect NMDAR EPSC size. Scatterplots showing amplitudes of NMDAR EPSCs for single pairs (open circles) and mean \pm SEM (filled circle) of control (black trace) and pCAGGS PSD-95_INAD PDZ3 overexpression (green trace) neurons. Insets show representative EPSC traces (scale bars, 50 pA and 20 ms). n = 8 paired recordings. (B) Dot-plots showing amplitudes of NMDAR EPSCs for single pairs of control (black) and pCAGGS PSD-95_INAD PDZ3 (green) overexpression neurons. (C) Overexpressing WT PSD-95 (n = 8 paired recordings, reproduced from (Fukata et al., 2021) for comparison) or pCAGGS PSD-95_INAD PDZ3 OE does not affect NMDAR EPSCs. Bar graphs showing the log₁₀ transfected/control EPSC ratio \pm SEM. (D) Overexpression of IRES PSD-95_INAD PDZ3 does not affect NMDAR EPSCs for single pairs (open circles) and mean \pm SEM (filled circle) of control (black trace) and IRES PSD-95_INAD PDZ3 overexpression (green trace) neurons. Insets show representative EPSC traces (scale bars, 50 pA and 20 ms). n = 7 paired recordings. (E) Dot-plots showing amplitudes of NMDAR EPSCs for single pairs (open circles) and mean \pm SEM (filled circle) of control (black trace) and IRES PSD-95_INAD PDZ3 overexpression (green trace) neurons. Insets show representative EPSC traces (scale bars, 50 pA and 20 ms). n = 7 paired recordings. (E) Dot-plots showing amplitudes of NMDAR EPSCs for single pairs of control (black) and IRES PSD-95_INAD PDZ3 (green) neurons. (F) Overexpression of IRES PSD-95_INAD PDZ3 does not affect NMDAR EPSCs. Bar graphs showing the log₁₀ transfected/control EPSC ratio \pm SEM. Statistical significance was analyzed using the Wilcoxon signed-rank test in (B, E). Unpaired t-test with Welch's correction was used to compare relevant groups in (C). ns, not significant.

Figure S3: Co-expression of GluA1-TARP γ -8_TRP15 and PSD-95_INAD PDZ3 in AMPAR-null neurons does not affect NMDAR transmission. Related to Figure 4. (A) Simultaneous dual whole-cell recordings were made from a transfected CA1 pyramidal neuron (green trace) and a neighboring wild-type one (black trace). Insets show representative EPSC traces (scale bars: 50 pA, 20 ms). Scatterplots showing amplitudes of NMDAR EPSCs for single pairs (open circles) and mean \pm SEM (filled circle) of control and Cre + GluA1-TARP γ -8_TRP15 + IRES PSD-95_INAD PDZ3 (Reconstitution) transfected neurons. n = 8 recorded pairs. (B) Dot-plots showing amplitudes of NMDAR EPSCs for single pairs of control (black) and Reconstitution (green) neurons. (C) Co-transfection of Cre, GluA1-TARP γ -8_TRP15, and IRES PSD-95_INAD PDZ3 in *Gria1-3^{II/II}* neurons does not affect NMDAR EPSCs. Bar graphs showing the log₁₀ transfected/control EPSC ratio \pm SEM. Statistical significance was analyzed using the Wilcoxon signed-rank test in (B). n.s., not significant.

Figure S4: Acute CRISPR deletion of TARP γ-8 in slice culture reduces AMPAR EPSCs but does not affect NMDAR EPSCs. Related to Figure 2 and 4. (A) TARP γ -8 CRISPR deletion is effective in 293T cells. 293T cells were simultaneously transfected for 48 hours with TARP γ -8 overexpression (OE) plasmid and Cas9 alone (left) or TARP γ -8 OE plasmid with TARP γ-8 CRISPR and Cas9 (right). Western blot comparison of protein levels demonstrates effective deletion of TARP γ -8, with β -Actin used as a loading control. This experiment contained 2 technical replicates. The experiment was repeated once, and the results were repeatable. (B) Simultaneous dual whole-cell recordings were made from a transfected CA1 pyramidal neuron (green trace) and a neighboring wild-type one (black trace). Scale bars: 50 pA, 20 ms. Scatterplots showing amplitudes of AMPAR EPSCs for single pairs (open circles) and mean \pm SEM (filled circle) of control and TARP γ -8 CRISPR + Cas9 transfected neurons. n = 19 recorded pairs. (C) Dot-plots showing amplitudes of AMPAR EPSCs for single pairs of control (black) and TARP γ -8 CRISPR + Cas9 (green) neurons. (D) Bar graphs showing the log₁₀ transfected/control AMPA EPSC ratio ± SEM. (E) Simultaneous dual whole-cell recordings were made from a transfected CA1 pyramidal neuron (green trace) and a neighboring wild-type one (black trace). Scale bars: 50 pA, 20 ms. Scatterplots showing amplitudes of NMDAR EPSCs for single pairs (open circles) and mean \pm SEM (filled circle) of control and TARP γ -8 CRISPR + Cas9 transfected neurons. n = 17 recorded pairs. These are from the same recordings made in A, minus two cells which were lost before the NMDAR response could be recorded. (F) Dot-plots showing amplitudes of NMDAR EPSCs for single pairs of control (black) and TARP γ -8 CRISPR + Cas9 (green) neurons. (G) Bar graphs showing the log₁₀ transfected/control NMDA EPSC ratio ± SEM. Statistical significance was analyzed using the Wilcoxon signed-rank test in (C, F). *** P < 0.001; n.s. not significant.