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AMPAR replacement with GIuA1-TARPy-8 TRP15
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Figure S1: Expression of GIuA1-TARP y-8 TRP15 does not affect NMDAR EPSCs in AMPAR-null cells.
Related to Figure 2. (A) Simultaneous dual whole-cell recordings were made from a transfected CA1 pyramidal
neuron (green trace) and from a neighboring wild-type one (black trace). GIuA1-TARP y-8_TRP15 replacement
has no effect on NMDAR EPSCs. Scatterplots showing amplitudes of NMDAR EPSCs for single pairs (open
circles) and mean + SEM (filled circle) of control and GIuA1-TARP y-8 TRP15 replacement neurons. Insets
show representative EPSC traces (scale bars, 50 pA, 20 ms, n = 7 paired recordings). (B) Dot-plots showing
amplitudes of NMDAR EPSCs for single pairs of control (black) and GIuA1l-TARP vy-8 TRP15 (green)
replacement neurons. (C) AMPAR replacement with either GIuA1-TARP v-8 or GIuA1-TARP y-8_TRP15 does
not affect NMDAR EPSCs (n = 7 paired recordings, reproduced from (Zeng et al., 2019) for comparison). Bar
graphs showing the log,, transfected/control EPSC ratio + SEM. Statistical significance was analyzed using the
Wilcoxon signed-rank test in (B). Unpaired t-test with Welch’s correction was used to compare relevant groups
in (C). ns, not significant.



PSD-95_INAD PDZ3 OE HIGH expression
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Figure S2: Overexpressing PSD-95 INAD PDZ3 does not affect NMDAR synaptic transmission. Related to Figure 3.
(A) Overexpression of pCAGGS PSD-95 INAD PDZ3 does not affect NMDAR EPSC size. Scatterplots showing
amplitudes of NMDAR EPSCs for single pairs (open circles) and mean £ SEM (filled circle) of control (black trace) and
pCAGGS PSD-95_INAD PDZ3 overexpression (green trace) neurons. Insets show representative EPSC traces (scale bars,
50 pA and 20 ms). n = 8 paired recordings. (B) Dot-plots showing amplitudes of NMDAR EPSCs for single pairs of
control (black) and pCAGGS PSD-95 INAD PDZ3 (green) overexpression neurons. (C) Overexpressing WT PSD-95 (h =
8 paired recordings, reproduced from (Fukata et al., 2021) for comparison) or pPCAGGS PSD-95_ INAD PDZ3 OE does not
affect NMDAR EPSCs. Bar graphs showing the log,, transfected/control EPSC ratio + SEM. (D) Overexpression of IRES
PSD-95 INAD PDZ3 does not affect NMDAR EPSC size. Scatterplots showing amplitudes of NMDAR EPSCs for single
pairs (open circles) and mean + SEM (filled circle) of control (black trace) and IRES PSD-95_INAD PDZ3 overexpression
(green trace) neurons. Insets show representative EPSC traces (scale bars, 50 pA and 20 ms). n = 7 paired recordings. (E)
Dot-plots showing amplitudes of NMDAR EPSCs for single pairs of control (black) and IRES PSD-95 INAD PDZ3
(green) neurons. (F) Overexpression of IRES PSD-95 INAD PDZ3 does not affect NMDAR EPSCs. Bar graphs showing
the log,, transfected/control EPSC ratio = SEM. Statistical significance was analyzed using the Wilcoxon signed-rank test
in (B, E). Unpaired t-test with Welch’s correction was used to compare relevant groups in (C). ns, not significant.



Artificial PDZ-PBM reconstitution
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Figure S3: Co-expression of GIUAL-TARP y-8 TRP15 and PSD-95_INAD PDZ3 in AMPAR-null neurons does not
affect NMDAR transmission. Related to Figure 4. (A) Simultaneous dual whole-cell recordings were made from a
transfected CALl pyramidal neuron (green trace) and a neighboring wild-type one (black trace). Insets show
representative EPSC traces (scale bars: 50 pA, 20 ms). Scatterplots showing amplitudes of NMDAR EPSCs for single
pairs (open circles) and mean = SEM (filled circle) of control and Cre + GIuUA1-TARP y-8 TRP15 + IRES PSD-
95_INAD PDZ3 (Reconstitution) transfected neurons. n = 8 recorded pairs. (B) Dot-plots showing amplitudes of
NMDAR EPSCs for single pairs of control (black) and Reconstitution (green) neurons. (C) Co-transfection of Cre,
GIuAL1-TARP y-8 TRP15, and IRES PSD-95_INAD PDZ3 in Grial-3%"f neurons does not affect NMDAR EPSCs. Bar
graphs showing the log,, transfected/control EPSC ratio £ SEM. Statistical significance was analyzed using the Wilcoxon
signed-rank test in (B). n.s., not significant.



TARP y-8 deletion
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Figure S4: Acute CRISPR deletion of TARP v-8 in slice culture reduces AMPAR EPSCs but does not affect NMDAR
EPSCs. Related to Figure 2 and 4. (A) TARP y-8 CRISPR deletion is effective in 293T cells. 293T cells were
simultaneously transfected for 48 hours with TARP v-8 overexpression (OE) plasmid and Cas9 alone (left) or TARP vy-8
OE plasmid with TARP y-8 CRISPR and Cas9 (right). Western blot comparison of protein levels demonstrates effective
deletion of TARP y-8, with B-Actin used as a loading control. This experiment contained 2 technical replicates. The
experiment was repeated once, and the results were repeatable. (B) Simultaneous dual whole-cell recordings were made
from a transfected CAL pyramidal neuron (green trace) and a neighboring wild-type one (black trace). Scale bars: 50 pA,
20 ms. Scatterplots showing amplitudes of AMPAR EPSCs for single pairs (open circles) and mean + SEM (filled circle)
of control and TARP y-8 CRISPR + Cas9 transfected neurons. n = 19 recorded pairs. (C) Dot-plots showing amplitudes
of AMPAR EPSCs for single pairs of control (black) and TARP y-8 CRISPR + Cas9 (green) neurons. (D) Bar graphs
showing the log,, transfected/control AMPA EPSC ratio + SEM. (E) Simultaneous dual whole-cell recordings were made
from a transfected CAL pyramidal neuron (green trace) and a neighboring wild-type one (black trace). Scale bars: 50 pA,
20 ms. Scatterplots showing amplitudes of NMDAR EPSCs for single pairs (open circles) and mean £ SEM (filled circle)
of control and TARP y-8 CRISPR + Cas9 transfected neurons. n = 17 recorded pairs. These are from the same recordings
made in A, minus two cells which were lost before the NMDAR response could be recorded. (F) Dot-plots showing
amplitudes of NMDAR EPSCs for single pairs of control (black) and TARP y-8 CRISPR + Cas9 (green) neurons. (G)
Bar graphs showing the log,, transfected/control NMDA EPSC ratio £ SEM. Statistical significance was analyzed using
the Wilcoxon signed-rank test in (C, F). *** P < 0.001; n.s. not significant.



