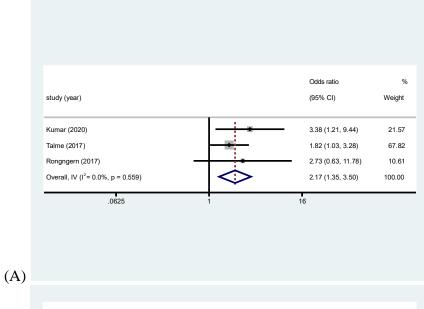
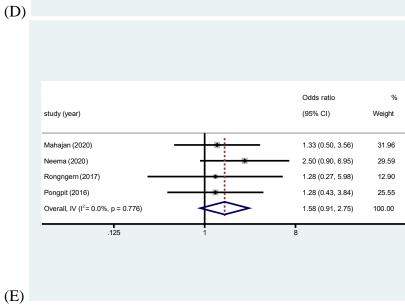

Supplementary Figure 1: Forrest plots for pooled prevalence psoriasis of high risk of advanced liver fibrosis subgrouped based on (A) continent, (B) non-invasive tests, and (C) methotrexate user percentage

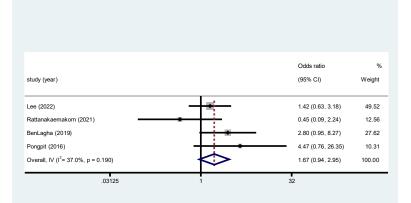
Study or Subgroup		Prevalence (95% CI)	Weight (%
MTX cohorts (100%)		11 10 (5 07 01 01)	
Lee (MTX) (2022)		11.48 (5.67, 21.84)	4.42 5.30
Rattanakaemakorn (2021) Brunner (2021)		5.30 (2.59, 10.54) 26.92 (16.77, 40.25)	5.30 4.19
			3.76
Yim (2020) Koch (2020)		2.56 (0.45, 13.18) 34.85 (24.48, 46.89)	4.52
Talme (MTX > 24 months) (2017)			
Talme (MTX < 24 months) (2017)	_	9.02 (5.11, 15.43) 6.38 (2.19, 17.16)	5.23 4.05
Rongngern (2017)		7.32 (2.52, 19.43)	3.84
Bray (2012)			1.76
Subtotal (1^2 = 82,34%, p = 0.00)		30.00 (10.78, 60.32) 12.25 (6.02, 20.08)	37.06
Subtotal (1*2 = 82.34%, p = 0.00)	\sim	12.25 (6.02, 20.08)	37.06
MTX cohorts (50–99%)			5.04
Mahajan (2020)		11.94 (7.48, 18.52)	5.31
Maybury (2019)		14.11 (10.78, 18.26)	5.92
Pongpit (2016)		6.67 (3.76, 11.54)	5.49
Subtotal (1^2 = .%, p = .)	\sim	10.88 (6.68, 15.92)	16.72
MTX cohort (1-49%) Magdaleno-Tapial (2020)		8.45 (3.93, 17.24)	4.62
vanderVoort (without PsA) (2017)	· · · · · ·	21.01 (14.65, 29.18)	5.20
vanderVoort (PsA) (2017)	<u></u>	13.25 (8.74, 19.57)	5.42
Subtotal (I^2 = .%, p = .)	\sim	14.21 (8.23, 21.43)	15.23
MTX-naive cohorts			
Lee (MTX-naive) (2022)		7.41 (2.92, 17.55)	4.25
Mahajan (2022)	• i	0.00 (0.00, 5.92)	4.42
Kumar (2020)		7.84 (4.03, 14.72)	5.04
Talme (biologics) (2017)	• · · · · · · · · · · · · · · · · · · ·	3.12 (0.55, 15.74)	3.46
Gisondi (2016)		7.27 (2.86, 17.26)	4.27
Subtotal (I^2 = 59.34%, p = 0.04)	\diamond	4.44 (1.17, 9.22)	21.44
Data not provided			
BenLagha (2019)		5.68 (2.45, 12.62)	4.88
vanderVoort (2016) Subtotal (1^2 = .%, p = .)		8.11 (3.77, 16.58) 6.74 (3.24, 11.26)	4.67 9.55
Subtotal (P2 = .%, p = .)	\sim	6.74 (3.24, 11.26)	9.55
Heterogeneity between groups: p = 0.069	1		
Overall (I^2 = 76.34%, p = 0.00);	\diamond	9.66 (6.92, 12.75)	100.00
-50	0	50	


Supplementary Figure 2: Forrest plots for pooled prevalence psoriasis of low risk of advanced liver fibrosis subgrouped based on (A) continent, (B) non-invasive tests, and (C) methotrexate user percentage


(B)

MTX cohors (2021)	Study or Subgroup		Prevalence (95% CI)	Weight (
Ratinakaemakaema (2021)		I		
Bunner (201) Yin (2020) Rivera (2020) Rivera (2020) Rivera (2020) Rivera (2020) Rivera (2020) Rivera (2020) Rivera (2020) Rivera (2020) Rivera (2020) Tahen (MTX > 24 months) (2017) Tahen (MTX > 24 months) (2016) Tahen (2020) Mantajan (2020)				
Ymr (220) 65 (20.69, 27, 73) 3.78 Rivera (2020) 78.80 (60.25, 77.31) 3.78 Bauer (2017) 74.80 (60.25, 77.31) 3.78 Talme (MTX = 24 months) (2017) 62.30 (66.84, 70.40) 3.50 Talme (MTX = 24 months) (2017) 72.40 (60.95, 81-61) 3.24 Talme (MTX = 24 months) (2017) 72.80 (60.86, 81.71) 2.81 Talme (MTX = 24 months) (2017) 72.80 (60.86, 81.71) 2.81 Talme (MTX = 24 months) (2017) 75.81 (60.66, 81.71) 2.81 Selit (TNF) (2010) 75.81 (70.19, 82.83) 3.60 Selit (TNF) (2010) 75.81 (70.19, 82.83) 4.44 Subtotal (P2 = 83.74%, p = 0.00) 75.81 (74.81, 89) 5.59 Mahajan (220) 75.81 (74.81, 89) 5.59 Mahajan (220) 75.81 (74.81, 89) 5.59 Markajan (220) 75.81 (74.81, 89) 5.59 Markajan (222) 75.81 (75.86, 89.41) 7.32 Markajan (222) 75.81 (75.86, 89.41) 7.32 Markajan (222) 75.81 (75.86, 89.41) 7.32 Markajan (222) 7.33 (71.18, 87.71) 3.48 Markajan (222) 7.33 (75.18, 8				
Rivera (2020) 73.80 (69.22, 77.91) 3.78 Neema (2020) 72.84 (69.23, 77.91) 3.78 Bauer (2020) 72.84 (69.27, 71.9) 3.78 Tahre (MTX > 24 months) (2017) 72.84 (69.27, 73.9) 3.78 Tahre (MTX > 24 months) (2017) 88.99 (63.87, 76.60) 3.01 Rongnem (2017) 75.61 (60.66, 66.71) 2.91 Lynch (2014) 80.00 (81.27, 78.18) 1.67 Statz (Thr / (2010) 75.61 (60.66, 66.71) 2.91 Statz (Thr / (2010) 75.61 (60.66, 66.71) 2.91 Wandyain (2020) 75.85 (77.01, 98.22) 2.44 National (2020) 75.85 (77.01, 98.22) 2.44 National (2020) 75.85 (77.01, 98.22) 2.44 Statiotal (1/2 = 3.5.4%), p = 0.00) 75.85 (75.01, 98.22) 2.44 Statiotal (1/2 = 3.5.4%), p = 0.00) 75.85 (75.01, 98.22) 2.44 Mahajan (2020) 75.85 (75.01, 98.22) 3.10 Mahajan (2020) 75.85 (75.01, 98.23) 3.10 Mattain (2020) 75.85 (75.88, 99.41) 77.35 (75.74, 88.48) Matajan (2020) 75.85 (75.	Brunner (2021)		48.08 (35.10, 61.31)	3.08
Noch (2020) 75 56 (4.0 & 67 37) 2.2 Nermi (2020) 75 56 (4.1 & 80.52) 3.3 Bauer (2017) 72 48 (60.9 58 16 1) 3.4 Tahen (MTX > 24 months) (2017) 75 56 (14.0 & 67 37) 3.22 Tahen (MTX > 24 months) (2017) 75 56 (14.0 & 67 37) 3.20 Bary (2014) 95 80 (3.4 7.04.0) 3.50 Bary (2012) 75 56 (16.0 & 68 0.7) 2.91 Uprich (2014) 95 85 (70.0 (9.8.2) 2.44 Static (TMF-naive) (2010) 55 85 (70.0 (9.8.2) 2.44 Static (16.0 - 69%) 75 36 (16.0 (9.8.1) 2.44 Cervon (2020) 75 37 (67.44, 81.89) 3.64 Marbian (2020) 75 37 (67.41, 81.82) 3.10 Marbian (2020) 76 37 (67.10, 88.22) 3.10 Marbian (2020) 76 37 (67.10, 88.22) 3.10 M	Yim (2020)	•	66.67 (50.98, 79.37)	2.88
Noch (2020) 75 56 (64.0e, 67.37) 2.2 Nema (2017) 72.46 (60.95, 81.61) 3.33 Bauer (2017) 72.48 (60.95, 81.61) 3.44 Tahen (MTX > 24 months) (2017) 68.39 (53.8, 79.60) 3.01 Tahen (MTX > 24 months) (2017) 68.39 (53.8, 79.60) 3.01 Bauer (2014) 75.61 (60.66, 86.17) 2.91 Lynch (2014) 75.61 (60.66, 86.17) 2.91 Selatz (TMF-naive) (2010) 56.67 (70.17, 86.18) 1.67 Selatz (TMF-naive) (2020) 75.85 (60.66, 86.17) 2.91 Mahajan (2020) 75.85 (60.26, 86.17) 2.94 Subtotal (V2 = 83.54%, p = 0.00) 75.85 (60.26, 86.17) 3.04 Mahajan (2020) 75.85 (60.26, 80.71) 3.48 Marbian (2020) 75.85 (60.26, 80.71) 3.48 Marbian (2020) 75.85 (60.80, 71) 3.48 Marbian (2020) 75.85 (60.80, 71) 3.48 Marbian (2020) 65.97 (75.98, 92.17) 3.26 Marbian (2022) 76.97 (75.98, 92.17) 3.26 Marbian (2022) 76.97 (75.98, 92.17) 3.26 <	Rivera (2020)		73.80 (69.23, 77.91)	3.76
Nermin (2020) 7, 45; (6:1,41; 80:52) 3.3 Buer (2017) 7, 46; (6:0,60; 86; 16:1) 3.24 Tahne (MTX > 24 months) (2017) 68:09 (5:33; 7:66) 3.01 Borgnern (2017) 80:00 (3:1,27; 85; 16:1) 80:00 (3:1,27; 85; 18) 16:1 Figure (2016) 90:00 (3:1,27; 85; 18) 16:0 16:00 (3:1,27; 85; 18) 16:0 Figure (2016) 90:00 (3:1,27; 85; 18) 16:0 16:00 (3:1,27; 85; 18) 16:0 Figure (2016) 90:00 (3:1,27; 85; 18) 16:0 16:00 (3:1,27; 85; 18) 16:0 Figure (2016) 90:50 (7:1,2; 95:59) 3.04 77:55 (6:7, 48; 819) 5.33 Mahajan (2020) 75:57 (7:4, 81:58) 3.34 16:0 17:35 (6:7, 48; 819) 5.35 Mitz cohort (1-49%) 90:00 (6:1,18,023) 3.10 16:00 (6:0,000) 17:35 Mitz cohort (1-49%) 90:00 (6:1,18,023) 3.10 10:00 (6:0,000,001) 3.10 Mitz cohort (1-49%) 90:00 (6:1,18,023) 3.10 10:00 (6:0,000,001) 14:0 Mitz cohort (1-49%) 90:00 (6:1,18,023) 3.10 10:00 (6:0,000,001)				3.22
Buuer (2017) 7.46 (00.95, 61.0) 3.24 Tahine (MTX > 24 months) (2017) 62.30 (65.48, 70.40) 3.50 Tahine (MTX > 24 months) (2017) 75.61 (60.68, 68.17) 2.81 Lynch (2014) 50.00 (65.20, 50.23) 3.60 Bary (2012) 50.00 (65.20, 50.23) 3.50 Satiz (TMF-raine) (2010) 50.00 (65.20, 50.23) 3.50 Satiz (TMF-raine) (2010) 50.50 (76.12, 85.18) 1.67 Satiz (TMF-raine) (2020) 75.61 (60.68, 86.17) 2.91 Mahajari (2020) 75.65 (60.50, 90.23) 3.04 Markain (2020) 75.65 (60.50, 90.23) 3.04 Mahajari (2020) 75.65 (60.50, 90.19, 92.3) 3.04 Mahajari (2020) 75.65 (60.50, 90.10) 3.74 Markain (2020) 90.50 (77.12, 95.96) 3.04 Mahajari (2020) 90.50 (77.10, 98.23) 3.10 Mahajari (2020) 90.50 (77.10, 98.23) 3.10 Markaine (2020) 90.50 (77.10, 88.29) 3.10 Mahajari (2020) 90.50 (77.10, 88.29) 3.10 Mahajari (2020) 90.50 (77.10, 88.29) <				
Takine (MTX > 24 months) (2017) 58.09 (53.41, 70.40) 5.00 5.01 Prongen (2017) 58.09 (53.41, 70.40) 5.00 5.01 Prongen (2017) 50.00 (53.17, 82.0) 5.01 5.00 (53.17, 82.0) 5.01 Prongen (2017) 75.01 (60.66, 86.17) 2.91 5.00 (53.17, 82.0) 5.01 Static (ThF) (2010) 5.00 (53.27, 85.10) 5.02 7.00 (44.01, 86.45) 2.32 Static (ThF) (2010) 5.05 (75.12, 95.98) 0.04 7.95 (67.48, 81.80) 3.31 Mahajan (2020) 7.95 (74.4, 81.80) 3.33 3.46 Mahajan (2020) 7.95 (75.48, 92.80) 3.46 Subtrait (I*2 = 77.20%, p = 0.00) 7.95 (75.48, 92.80) 3.47 Mahajan (2020) 7.95 (75.48, 92.81) 3.10 Mahajan (2020) 7.95 (75.48, 92.81) 3.46 MitX-nahov cohomt 1.90 (96.33, 98.40) 3.10 Mahajan (2022) 7.95 (75.48, 92.81) 3.10 Mahajan (2022) 7.95 (75.48, 92.81) 3.10 Mahajan (2022) 7.95 (75.48, 92.81) 3.10 Mahajan (2021)				
Talen (MTX < 24 months) (2017)				
Program (2017) 75.61 (60.66, 86.17) 2.61 Bray (2012) 82.00 (69.20, 90.23) 3.05 Startz (ThF) (2010) 70.50 (41.0, 86.45) 2.32 Marging (1016) 70.50 (41.0, 86.45) 2.32 Marging (2010) 70.50 (41.0, 86.45) 2.32 Marging (2010) 70.50 (41.0, 86.45) 2.32 Marging (2010) 70.50 (71.2, 95.89) 3.04 Marging (2016) 70.50 (71.0, 95.29) 3.46 Subtolal (1/2 = 77.20%, p = 0.00) 70.50 (71.0, 95.23) 3.10 Marging (2020) 70.50 (60.46, 90.000) 3.17 Marging (2021) 70.50 (60.46, 90.000) 3.17 Marging (2020) 70.50 (67.10, 98.23) 3.10				
Lynch (2014) Bray (2012) Seltz (TNF-naive) (2010) Seltz (TNF-naive) (2010) Seltz (TNF-naive) (2010) Seltz (TNF-naive) (2010) Seltz (TNF-naive) (2010) Seltz (TNF-naive) (2010) MTX cohort (50-99k) Cervon (12020) MAbajan (2020) MAbajan (2020) MA				
Bing (2012) 00.00 (si 27, 85, 10) 16 Seliz (TNP (2010) 5.812 (TNP (2010) 75.813 (FA, 81, 80) 2.32 Seliz (TNP (2010) 75.85 (FA, 01, 98.23) 2.44 Subtotal (122 = 85.4%) 75.85 (FA, 01, 98.23) 2.44 Cerron (2020) 75.85 (FA, 77.44, 81.80) 3.63 Markgain (2020) 75.85 (FA, 74.4, 81.80) 3.63 Markgain (122 = 77.20%, p = 0.00) 75.85 (F7.44, 81.80) 3.63 Markgain (2020) 84.57 (F3.66, 92.42) 3.60 Markgain (2022) 84.57 (F3.66, 92.43) 3.10 Lee (MTX-naive c)chorts 10.00 (94.81, 00.00) 3.17 Lee (MTX-naive (2021) 95.82 (F7.80, 92.41) 3.83 Markgain (2022) 10.00 (94.81, 00.00) 3.17 Markgain (2022) 10.00 (94.81, 00.00) 3.17 Taken (2021) 95.82 (F7.80, 72.8, 27.7) 3.48 Subtotal (122 = 80.8%, p = 0.00)				
Size (TNF-maive) (2010) 70.00 (48.10, 85.45) 2.82 Size (TNF-maive) (2010) 75.55 (67.01, 99.23) 2.44 Subtotal (V2 = 83.54%, p = 0.00) 75.37 (67.44, 81.89) 3.54 Mahajan (2020) 79.58 (17.42, 85.56) 3.04 Mahajan (2020) 79.58 (17.42, 81.89) 3.53 Mature (2010) 79.58 (17.42, 81.89) 3.54 Mature (2010) 79.58 (17.42, 81.89) 3.74 Poppil (2016) 90.98 (32.29.28) 3.69 Mature (2010) 85.92 (75.98, 92.17) 3.46 Mature cohorts 85.92 (75.98, 92.17) 3.28 MTX-naive cohorts 85.92 (75.98, 92.17) 3.28 MTX-naive cohorts 85.92 (75.98, 92.17) 3.28 MTX-naive cohorts 85.92 (75.98, 92.17) 3.28 Mature (202) 85.92 (75.98, 92.17) 3.28 Mature (2010) 85.92 (75.98, 92.17) 3.28 Mature (2010) 85.92 (75.98, 92.17) 3.28 Mature (2010) 85.92 (75.98, 92.17) 3.28 Mature (202) 85.92 (75.98, 92.17) 3.28	Lynch (2014)		— 82.00 (69.20, 90.23)	
Setz (TNP) (2010) 95.66 (75.01) (92.23) 2.4 Subticul (IV:2 = 83.54%), p = 0.00) 75.37 (67.44, 81.80) 35.3 Matajan (2020) 75.37 (67.44, 81.80) 35.3 Matajan (2020) 75.37 (67.44, 81.80) 35.3 Matajan (2020) 75.37 (67.46, 81.80) 35.3 Matajan (2020) 95.92 (75.96, 92.17) 3.46 Mit Central (1-49%) 99.09 (82.65, 80.94) 17.35 Mit Central (1-49%) 99.09 (82.67, 91.83) 3.10 Matajang (2020) 99.09 (82.67, 91.23, 87.74) 3.43 Orbain (without FA4) (2019) 70.00 (80.66, 100.00) 3.17 Matajang (2020) 99.09 (85.82, 97.13, 3.14 99.09 (85.82, 80.22) Matajang (2014)	Bray (2012)		60,00 (31,27, 83,18)	1,67
Satz (TKF) (2010) 95.65 (70.01) 92.53 (70.				
Subtotal (^{1/2} = 83.54%, p = 0.00) MTX cohorts (50-99%) Gerovini (2020) Matajan (2020) Matajan (2020) My Cohorts (50-99%) Gerovini (2019) Poss (77-12, 95.99) 77.85 (74.4, 81.89) 89.99 (83.42, 92.89) Subtotal (^{1/2} = 7.57, 67.44, 81.89) 99.09 (83.42, 92.89) Subtotal (^{1/2} = 7.57, 67.44, 81.89) 99.09 (83.42, 92.89) Subtotal (^{1/2} = 7.57, 85.89, 94) 17.35 MTX cohort (1-49%) Magdateme-Tappal (2020) Matajan (202) Chevini (P2-80.79%, p = 0.00) Matajan (202) Chevini (P2-80.79%, p = 0.00) Matajan (202) Chevini (P2-80.79%, p = 0.00) Dotation (P2-80.99%, p = 0.00) Dotation (P2-80.				
$\frac{MTX \operatorname{cohorts} (50-39\%)}{\operatorname{Garvon} (2020)} \\ \operatorname{Metajan} (2020) \\ \operatorname{Markajan} (2020) \\ \operatorname{Markajan} (2020) \\ \operatorname{Markajan} (2016) \\ \operatorname{Lataric} (2016) \\ \operatorname{Markajan} (2020) \\ \operatorname{Markajan} (2021) \\ \operatorname{Markajan} (2020) \\ \operatorname{Markajan} (20$		\sim		
Cervon (2020) 90.00 (79.12, 96.59) 3.04 Mahqiau (2020) 75.37 (67.44, 81.89) 3.53 Maybury (2019) 75.38 (74.22, 82.56) 3.74 Ponppi (2016) 49.09 (82.62, 92.99) 3.69 Laharie (2010) 9.09 (79.12, 95.99) 3.69 Subtotal (1/2 = 77.20%, p = 0.00) 9.09 (79.12, 95.99) 3.69 Margadaeno-Tapial (2020) 9.09 (84.22, 92.99) 3.69 Margadaeno-Tapial (2020) 85.92 (75.98, 92.17) 3.28 Margadaeno-Tapial (2020) 9.09 (87.10, 88.23) 3.10 Mahajain (2022) 79.63 (67.10, 88.23) 3.10 Mahajain (2022) 79.63 (67.10, 88.23) 3.10 Orolain (PA) (2019) 72.20 (75.38, 92.17) 3.43 Orolain (Vinto PA) (2019) 72.20 (75.38, 92.17) 3.43 Subtotal (1/2 = 0.89%, p = 0.00) 9.00 (54.11, 80.79) 3.11 Madaraagotalane (2012) 9.00 (54.11, 80.79) 3.14 Subtotal (1/2 = 0.89%, p = 0.00) 9.00 (55.39, 85.47) 3.21 Beinchon-Romero (2021) 9.00 (55.39, 85.47) 3.21 Beinchon-Romero (2021)	Subtotal (1*2 = 83.54%, p = 0.00)	~	71.95 (64.70, 78.69)	45.09
Mahajan (2020) 75 af (ir 7.4, is 160) 5.3 af (ir 7.4, is 160)<			-	
Maybury (2019) 79.88 (74.22, 85.69) 3.74 Proppi (2016) 89.09 (82.42, 92.99) 3.59 Laharia (2010) 99.19 (82.62, 93.67) 3.48 Subtotal (1°2 = 77.20%, p = 0.00) 85.92 (75.98, 92.17) 3.26 MTX-cnaive cohorts 95.99 (82.62, 93.77) 3.26 MTX-naive cohorts 79.63 (67.10, 88.23) 3.10 Lae (MTX-naive) (3022) 79.63 (67.10, 88.23) 3.10 Manjain (2022) 79.63 (67.10, 88.23) 3.10 Totain (P6A) (2019) 72.00 (55.08, 84.39) 2.75 Taime (biologics) (2017) 72.00 (55.08, 84.39) 2.75 Gioond (12'2') 79.89 (67.38, 84.39) 2.75 Taime (biologics) (2017) 72.00 (55.08, 84.39) 2.75 Taime (biologics) (2017) 79.99 (65.78, 92.93) 3.11 Madamagobalane (2012) 79.99 (65.78, 82.93) 3.14 Subtotal (1'2'= 80.8%, p = 0.00) 77.99 (73.23, 82.95) 3.36 Beinchon-Romero (2021) 80.86 (71.22, 87.57) 3.36 Beinchon-Romero (2021) 80.86 (71.22, 87.57) 3.36 Beinchopanal (2019)				
Pongint (2016) 90.9 (83.42, 92.99) 35.9 Laharia (2010) 96.9 (83.42, 92.99) 35.9 Subtotal (1*2 = 77.20%, p = 0.00) 96.9 (83.42, 92.99) 35.9 MTX cohort (1-19%) 96.9 (83.42, 92.99) 35.9 Magdalence Tapali (2020) 96.9 (83.42, 92.99) 35.9 Magdalence Tapali (2020) 96.9 (96.25, 96.71) 3.46 Malagian (2022) 96.9 (96.25, 96.71) 3.28 Ontain (%hoot PA4) (2019) 79.83 (67.10, 89.23) 3.10 Tatien (biologi) (2017) 96.9 (96.25, 96.71) 3.48 Madamagobalane (2012) 96.99 (96.25, 97.91) 3.14 Subtotal (1*2 = 90.89%, p = 0.00) 77.98 (65.70, 91.23) 3.14 Tatamura (2022) 96.99 (96.25, 97.91.23) 3.14 Beinchon-Romero (2021) 96.99 (85.9, 89.20) 3.14 Beinchon-Romero (2021) 96.98 (71.22, 87.77) 3.86 Beinchon-Romero (2021) 96.98 (71.22, 87.77) 3.86 Beinchon-Romero (2021) 97.98 (65.70, 91.23) 3.93 Beinchon-Romero (2021) 97.98 (65.70, 91.23) 3.93 Beinchon-Ro			75.37 (67.44, 81.89)	
Laharie (2010) Subtotal (1 ¹² = 77.20%, p = 0.00) MTX cohort (1-49%) Magdalano-Tapial (2020) MTX cohort (1-49%) Madanagobalane (2022) Tame (biologics) (2017) Gison (124) (2019) Tata not provided Takamura (2022) Data not provided Takamura (2022) Balanot provided Takamura (2022)	Maybury (2019)		79.58 (74.92, 83.56)	3.74
Subtoral (1*2 = 77,26%, p = 0.00) 94.67 (78.56, 69.94) 17.35 MTX cohor(1 (-19%) Magdatem-Tapial (2020) 85.92 (75.98, 92.17) 3.26 MTX-naive cohorts Lee (MTX-naive) (2022) 90.63 (67.10, 88.23) 3.10 Maddatem-Tapial (2020) 90.63 (67.10, 88.23) 3.10 Orbian (reA) (2019) 90.06 (41.10, 07.8) 2.95 Orbian (reA) (2019) 72.73 (87.4) 3.48 Orbian (reA) (2019) 72.73 (87.4) 3.48 Tame (blocks) (2017) 62.20 (45.27, 70.7) 2.72 Genomic (2016) 82.97 (77.24, 87.7) 3.48 Mabutal (r'2 = 00.98%, p = 0.00) 79.98 (65.70, 91.23) 2.437 Tatamura (2022) 88.64, 77.24, 87.91 2.41 Beinchon-Romero (2021) 80.64 (71.22, 87.77) 3.48 Beinchon-Romero (2021) 80.64 (71.22, 87.77) 3.48 <tr< td=""><td>Ponapit (2016)</td><td>_</td><td>89.09 (83.42, 92.99)</td><td>3.59</td></tr<>	Ponapit (2016)	_	89.09 (83.42, 92.99)	3.59
Subtoal (1*2 = 77.20%, p = 0.00) 94.67 (78.56, 89.94) 17.35 MTX cohor(1 - 49%) Magdalence Taplal (2020) 85.92 (75.98, 92.17) 3.26 MTX-naive cohorts Lee (MTX-naive) (2022) 90.63 (67.10, 88.23) 3.10 Orbian (r4A) (2019) 100.00 (94.08, 100.00) 3.17 Transer (2020) 90.00 (54.08, 100.00) 3.17 Subtoal (r2 = 90.89%, p = 0.00) 90.00 (51.11, 80.78) 2.95 Transer (2021) 90.00 (51.11, 80.78) 2.93 Tataer (2022) 79.63 (67.10, 88.23) 3.10 Tataer (2022) 79.63 (67.10, 88.23) 3.10 Tataer (2022) 79.63 (67.10, 88.23) 3.10 Tataer (2022) 79.63 (67.10, 88.23) 3.11 Tataer (2022) 79.63 (67.10, 88.23) 3.11 Tataer (2022) 79.63 (67.10, 88.23) 3.14 Subtotal (r2 = 90.89%, p = 0.00) 79.98 (65.79, 91.23) 24.37 Tataer (2022) 80.64 (7.12, 87.57) 3.36 Beinchon-Romero (2021) 80.64 (7.12, 87.57) 3.36 Beinchon-Romero (2021) 80.64 (7.12, 87.57) 3.36 Beinchon-Rom				
Magdalenc-Tapial (2020) 85.92 (75.98, 92.17) 3.28 MTX-maive cohorts 79.63 (67.10, 89.23) 3.10 Lee (NTX-maive) (2022) 100.00 (94.08, 100.00) 3.17 Mahajan (2022) 100.00 (94.08, 100.00) 3.17 Kumar (2021) 90.00 (4.11, 80.73) 243 Orbitaln (Mitvul P&A) (2019) 72.00 (55.08, 94.38) 2.75 Tatine (biologics) (2017) 64.55 (71.08, 92.93) 3.11 Madanagobalane (2012) 93.98 (65.79, 91.23) 24.37 Data not provided 75.90 (65.38, 85.47) 3.26 Takamura (2022) 93.98 (65.79, 91.23) 24.37 Beinchon-Romero (2021) 80.68 (71.28, 67.97) 3.36 Beinchon-Romero (2021) 80.68 (71.28, 67.97) 3.36 Beinchon-Romero (2021) 80.68 (71.28, 67.97) 3.36 Beinchon-Romero (2021) 75.93 (65.33, 85.47) 3.36 Beinchon-Romero (2021) 77.79 (73.23, 82.05) 100.00 Heterogeneity between groups: p = 0.036 77.79 (73.23, 82.05) 100.00		\sim		
Lee ((ITX-raive) (2022) Mahajan (2022) Kumar (2020) Crotain ((#hout Pak) (2019) Orbain ((#hout Pak) (2019) Data on optication ((%) (%) Data on optication (%) (%) D			85.92 (75.98, 92.17)	3.26
Mahajan (2022) Image: Constraint of the cons		-	70.00 (07.40.00.00)	
Kumar (2020) 137 (72.78, 87.74) 3.43 Orbian (vehout PsA) (2019) 91.37 (72.78, 87.74) 3.43 Orbian (vehout PsA) (2019) 91.37 (72.78, 87.74) 3.43 Tame (biologis) (2017) 92.95 97.01 Giscondi (2016) 92.95 97.01 Mata net provided 145.95 (415.26.69.77) 3.44 Subtotal (1 ^{1/2} = 90.89%, p = 0.00) 76.80 (65.33, 85.47) 3.24.37 Data net provided 148.07 (65.33, 85.42) 3.24.37 Data net provided 148.07 (65.33, 85.47) 3.24.37 Belinchon-Romarc (2021) 149.97 (65.33, 85.47) 3.26 Subtotal (1 ^{1/2} = .%, p = .) 80.88 (71.22, 87.57) 3.86 Heterogeneity between groups: p = 0.036 77.79 (73.23, 82.05) 100.00		M		
Orbian (#sA) (2019) 72,00 (55,03, 84,38) 2,75 Orbian (#ixitour 1sA) (2019) 72,00 (55,03, 84,38) 2,75 Talme (biologies) (2017) 54,55 (41,52, 66, 97) 2,72 Gison (12) 54,55 (41,52, 66, 97) 2,73 Subtal (1/2 = 80,8%, p = 0.0) 79,90 (55,33, 85,47) 3,11 Madamagobalane (2012) 79,90 (55,33, 85,47) 3,21 Beinchon-Romero (2021) 82,76 (74,88, 80,28) 3,36 Beinchon-Romero (2021) 80,87 (75,14, 86,31) 9,39 Heterogeneity between groups: p = 0.036 77,79 (73,23, 82,05) 100,00				
Ortokan (without P-8/k) (2019) 72.00 (55.03, 84.36) 27.57 Tatime (biogocie) (2017) 62.50 (45.25, 77.07) 27.27 Gisondi (2016) 62.50 (45.25, 77.07) 27.27 Jasona (1/2 = 90,89%, p = 0.00) 74.59 (45.57, 97.123) 24.37 Data not provided 78.80 (65.33, 85.47) 32.11 Takamiru (2022) 76.80 (65.33, 85.47) 32.11 BenLagiru (2012) 76.80 (65.33, 85.47) 32.11 BenLagiru (2022) 76.80 (75.33, 85.47) 32.61 BenLagiru (2012) 76.80 (75.33, 85.47) 32.61 BenLagiru (2019) 10.00 80.88 (77.12, 82.65) 33.66 BenLagiru (2019) 10.00 80.88 (77.12, 82.65) 33.66 BenLagiru (2019) 10.00 80.88 (77.13, 85.31) 9.83 Hotorogeneily between groups: p = 0.036 77.79 (73.23, 82.05) 100.00				
Taime (biologies) (2017) 62.50 (45.25, 77.07) 27.22 Gisond (2016) 64.56 (41.52, 66.97) 3.11 Madanagobalane (2012) 94.09 (85.95, 9e.20) 3.14 Subtola ((12 = 96.89%, p = 0.00) 79.89 (65.78, 91.23) 24.37 Data not provided 78.99 (65.38, 88.47) 3.21 Takamura (2022) 88.47, 75.99 (65.38, 85.47) 3.36 Beinchon-Romero (2021) 89.87 (75.14, 88.28) 3.36 Subtola ((12 = 36, p = .)) 9.93 80.47 (75.14, 85.31) 9.93 Heterogeneity between groups: p = 0.036 77.79 (73.23, 82.05) 100.00	Ortolan (PsA) (2019)		69.00 (54.11, 80.78)	2.95
Gisond (2016) 4.65 (41 52, 66 97) 3.11 Madamagolahar (2012) 4.99 (85.79, 91.23) 24.37 Subtotal (1 ¹² = 90.89%, p = 0.00) 76 80 (65 33, 85 47) 3.21 Takamura (2022) 76 80 (65 33, 85 47) 3.21 Beinchon-Romaro (2021) 100 80 88 (21 22, 87 57) 3.26 Subtotal (1 ¹² = .%, p = .) 100 80 88 (17 22, 87 57) 3.86 Heterogeneity between groups: p = 0.036 77.79 (73 23, 82 05) 100.00	Ortolan (without PsA) (2019)	•	72.00 (55.03, 84.38)	2.75
Gisond (2016) 4.65 (41 52, 66 97) 3.11 Madamagolahar (2012) 4.99 (85.79, 91.23) 24.37 Subtotal (1 ¹² = 90.89%, p = 0.00) 76 80 (65 33, 85 47) 3.21 Takamura (2022) 76 80 (65 33, 85 47) 3.21 Beinchon-Romaro (2021) 100 80 88 (21 22, 87 57) 3.26 Subtotal (1 ¹² = .%, p = .) 100 80 88 (17 22, 87 57) 3.86 Heterogeneity between groups: p = 0.036 77.79 (73 23, 82 05) 100.00				
Madanapobalane (2012) 44.90 (85.9; 98.26) 3.14 Subtotal (1°2 = 08.9%; e.00) 79.98 (65.79, 91.23) 24.37 Data not provided 78.98 (65.79, 91.23) 24.37 Takamura (2022) 88.98 (62.79, 91.23) 24.37 Belinkon-Romero (2021) 80.78 (74.88, 82.99) 3.36 Bendapha (2019) 80.88 (71.22, 87.57) 3.36 Subtotal (1°2 = .%, p = .) 9.39 9.29 (75.28, 82.99) 3.44 Heterogeneity between groups: p = 0.036 77.79 (73.23, 82.05) 100.00				
Subtotal (I*2 = 90.89%, p = 0.00) 79.98 (65.79, 91.23) 24.37 Data not provided 76.80 (65.33, 85.47) 3.21 Takamur (2022) 76.80 (65.33, 85.47) 3.21 Beinchon-Romero (2021) 76.80 (65.33, 85.47) 3.6 Beinchon-Romero (2021) 76.80 (65.33, 85.47) 3.6 Beinchon-Romero (2021) 76.80 (65.33, 85.47) 3.6 Beinchon-Romero (2021) 77.80 (75.14, 85.31) 3.8 Hoterogeneity between groups: p = .0.36 77.79 (73.23, 82.05) 100.00				
Data not provided 76.90 (65.33, 85.47) 3.21 Takamura (2022) 82.76 (73.48, 89.26) 3.36 Beinchon-Romaro (2021) 82.78 (73.48, 89.26) 3.36 Bendagha (2019) 80.68 (71.22, 87.57) 3.36 Subtotal (l*2 = %, p = .) 9.38 80.47 (75.14, 85.31) 9.38 Heterogeneity between groups: p = 0.036 77.79 (73.23, 82.05) 100.00				
Takamura (2022) 76.90 (65.32, 85.47) 3.21 Belinchon-Romero (2021) 82.76 (74.84, 89.26) 3.36 Bort.agha (2019) 80.86 (71.22, 87.57) 3.36 Subtolal (172 = .%, p = .) 80.47 (75.14, 85.31) 9.33 Heterogeneily between groups: p = 0.036 77.79 (73.23, 82.05) 100.00	Subtotal (1/2 = 90.89%, p = 0.00)		/9.96 (65./9, 91.23)	24.37
Beinchon-Romer (2021) The second		1		
BenLapha (2019) 80.98 (71.22, 67.57) 3.36 Subtotal (*2 = %, p = .) 80.447 (75.14, 85.31) 9.38 Heterogenety between groups: p = 0.036 77.79 (73.23, 82.05) 100.00				
Subtrail (I ⁴ 2 = .%, p = .) Heteropeneity between groups: p = 0.036 Overall (I ⁴ 2 = .65, 72%, p = 0.00); 77.79 (73.23, 82.05) 100.00			 82.76 (73.48, 89.26) 	
Heterogeneity between groups: p = 0.036 Overall (H2 = 85.72%, p = 0.00); 77.79 (73.23, 82.05) 100.00	BenLagha (2019)	•	 80.68 (71.22, 87.57) 	3.36
Overall (1/2 = 85.72%, p = 0.00); 77.79 (73.23, 82.05) 100.00	Subtotal (I^2 = .%, p = .)	\diamond	80.47 (75.14, 85.31)	9.93
-50 0 50 100			77.79 (73.23, 82.05)	100.00
		1	1	
	 0	30	100	

Supplementary Figure 3: Forrest plots of pooled odds ratios for the association of variables with liver fibrosis; (A) age (B) male (C) PASI > 10 (D) Psoriatic arthritis (E) Cumulative MTX dose > 1500 mg (F) BMI>30 (G) DM (H) HT (I) DLP (J) Metabolic syndrome



	Odds ratio	
study (year)	(95% CI)	Weię
Lee (2022)	1.67 (0.73, 3.82	7.
Rattanakaemakorn (2021)	2.38 (0.84, 6.79	4.
Rivera (2020)	1.09 (0.67, 1.77	22.
Koch (2020)	1.26 (0.48, 3.34	5
Mahajan (2020)	- 0.39 (0.17, 0.90	8
Kumar (2020)	0.84 (0.30, 2.35	5
Neema (2020)	0.78 (0.27, 2.26	4
BenLagha (2019)	0.88 (0.27, 2.82	4
Maybury (2019)	1.49 (0.78, 2.87	12
Talme (2017)	1.02 (0.56, 1.84	15
Rongngern (2017)	1.08 (0.25, 4.63	2
Pongpit (2016)	1.58 (0.59, 4.22	5
Overall, IV (I ² = 3.2%, p = 0.413)	1.10 (0.87, 1.39	100

	Odds ratio	%
study (year)	(95% CI)	Weight
Lee (2022)	1.71 (0.69, 4.27)	25.33
Rivera (2020)	0.82 (0.42, 1.58)	48.87
Koch (2020)	3.65 (0.65, 20.36)	7.09
Pongpit (2016)	2.03 (0.70, 5.88)	18.70
Overall, IV (I ² = 30.6%, p = 0.228)	1.30 (0.82, 2.06)	100.00
	1	
.0625 1	16	

(C)

(H)

study (year)	Odds ratio (95% Cl)	% Weight
Lee (2022)	2.32 (1.02, 5.27)	39.93
BenLagha (2019)	2.82 (0.94, 8.46)	22.36
Rongngern (2017)	1.82 (0.43, 7.70)	12.94
Pongpit (2016)	4.84 (1.71, 13.72)	24.78
Overall, IV (I ² = 0.0%, p = 0.659)	2.82 (1.68, 4.74)	100.00
.0625	1 16	

(G)

	Odds	ratio %
study (year)	(95%	CI) Weight
	-	
Lee (2022)	10.21	(3.98, 26.22) 13.78
Rattanakaemakorn (2021)	5.28 ((1.80, 15.50) 10.56
Rivera (2020)	→ 12.99	(6.66, 25.33) 27.43
Koch (2020)	5.57 ((1.10, 29.30) 4.55
BenLagha (2019)	1.86 (0.56, 6.20) 8.44
Talme (2017)	3.37 (1.52, 7.77) 18.40
Rongngern (2017)	4.17 (0.91, 19.18) 5.27
Pongpit (2016)	5.68 (2.03, 15.90) 11.56
Overall, IV (I ² = 42.4%, p = 0.095)	6.23 (4.39, 8.84) 100.00
03105	1 32	
.03125	1 32	

(F)

	(Odds ratio	9
study (year)		95% CI)	Weigh
Lee (2022)	a	3.33 (2.42, 28.66)	12.56
Rattanakaemakorn(2021)		2.56 (0.70, 9.30)	11.53
Koch (2020)		.52 (0.54, 4.22)	18.28
BenLagha (2019)		.68 (0.46, 6.11)	11.50
Talme (2017)	e	5.53 (2.94, 10.68)	46.13
Overall, IV (I ² = 48.8%, p = 0.099)		8.67 (2.37, 5.68)	100.00

	Odds ratio	%
tudy (year)	(95% CI)	Weight
.ee (2022)	3.85 (1.65, 8.94)	32.44
Rattanakaemakorn (2021)	4.70 (1.66, 13.33)	21.29
BenLagha (2019)	1.73 (0.56, 5.39)	18.00
Rongngern (2017)	1.64 (0.38, 6.97)	11.03
Pongpit (2016)	3.26 (1.02, 10.40)	17.25
Overall, IV (l ² = 0.0%, p = 0.622)	3.08 (1.90, 4.98)	100.00
	1 16	

(I)

		%
study (year)	Odds ratio (95% CI)	Weight
Rivera (2020)	8.49 (3.82, 18.89)	38.84
Neema (2020)	3.54 (1.30, 9.67)	24.62
BenLagha (2019)	6.84 (2.17, 21.54)	18.89
Rongngern (2017)	2.38 (0.55, 10.20)	11.70
Pongpit (2016)	20.86 (2.71, 160.91)	5.95
Overall, IV (I ² = 17.0%, p = 0.307)	5.98 (3.63, 9.83)	100.00
.0078125 1	128	

(J)