Supporting Information

Defect-Induced Dense Amorphous/Crystalline Heterophase Enables High-Rate and Ultra-Stable Sodium Storage

Sahar Osman, Chao Peng*, Fangkun Li, Haoliang Chen, Jiadong Shen, Zeming Zhong, Wenjie Huang, Dongfeng Xue, and Jun Liu*

S. Osman, F. Li, H. Chen, J. Shen, Z. Zhong, W. Huang, Prof. J. Liu

School of Materials Science and Engineering and Guangdong Provincial

Key Laboratory of Advanced Energy Storage Materials

South China University of Technology

Guangzhou, Guangdong 510641, China

Email: msjliu@scut.edu.cn

Dr. C. Peng, Prof. D. Xue

Multiscale Crystal Materials Research Center

Shenzhen Institute of Advanced Technology

Chinese Academy of Science, Shenzhen 518055, China

Email: chao.peng@siat.ac.cn

Figure S1. Schematic illustration of the synthesis of A/C-V₂O₃@C-CS and A/C-V₂O₃@C-WCS.

Figure S2. (a, b) Low/high magnification SEM images of vanadium-glycerate precursor.

Figure S3. XRD pattern of V-glycerate spheres.

Figure S4. High/low-magnification SEM images of (a, b) A/C-V₂O₃@C-CS and (c, d) A/C-V₂O₃@C-WCS.

Figure S5. Morphology and characterizations of $A/C-V_2O_3@C-CS$ and $/C-V_2O_3@C-WCS$ (a, d) TEM, (b, e) HRTEM images. (b₁, e₁) FFT patterns are taken from the corresponding yellow square and (b₂, e₂) violet square areas in (b, e), and (c, f) EDS mapping images of coreshell $A/C-V_2O_3@C-CS$ and $A/C-V_2O_3@C-WCS$, respectively.

Figure S6. Schematic illustration of the synthesis of A/C-V₂O₃@C-HCS and A/C-V₂O_{3-x}@C-HMCS.

Figure S7. (a, b) Low/high magnification SEM images of vanadium hydrate-glycerate precursor. c) its XRD pattern.

Figure S8. (a, b) High/low-magnification SEM images of A/C-V₂O₃@C-HCS.

Figure S9. TEM image of A/C-V₂O₃@C-HCS.

Figure S10. HTEM image of A/C-V₂O₃@C-HCS.

Figure S11. (a, b) High/low-magnification SEM images of A/C-V₂O_{3-x}@C-HMCS.

Figure S12. TEM image of A/C-V₂O_{3-x}@C-HMCS.

Figure S13. HTEM image of A/C-V₂O_{3-x}@C-HMCS.

Figure S14. Structural characterizations of $A/C-V_2O_3@C-CS$ and $A/C-V_2O_3@C-WCS$: (a) XRD patterns, (b) Raman spectra, high-resolution spectra of :(c) V 2p, (d) O 1s, (e) C 1s. (f) N₂ adsorption-desorption isotherms and their pore size distributions (inset).

Figure S15. C 1s high-resolution spectra of A/C-V₂O₃@C-HCS and A/C-V₂O_{3-x}@C-HMCS.

Figure S16. Thermogravimetric analysis (TGA) curve for the A/C-V₂O₃@C-CS, A/C-V₂O₃@C-WCS, A/C-V₂O₃@C-HCS, and A/C-V₂O_{3-x}@C-HMCS.

Figure S17. Structure models of Na diffusion in (a) $C-V_2O_3$, (b) $C-V_2O_{3-x}$, (c) $C-V_{2-x}O_3$, (d) $A-V_2O_3$, (e) $A-V_2O_3$, and (f) their corresponding Na adsorption energies).

S1:	Adsorption	energy	of	Na
------------	------------	--------	----	----

structures.

-					
in	various	V_2O_3	Structure	E _{ads} (eV)	- st
			C-V ₂ O ₃	-0.77	
			$A-V_2O_3$	-2.81	
			$C-V_2O_{3-x}$	-3.19	
			$C-V_{2-x}O_3$	-4.09	
			$A-V_2O_{3-x}$	-4.43	
			A/C-V ₂ O ₃ @C-HMCS	-1.77	
			A/C-V ₂ O _{3-x} @C-HMCS	-4.77	

Theorectical discussion of Na in various V₂O₃ structures

The adsorption energy (E_{ads}) of the Na atom at amorphous structure is calculated to be -2.81 eV which is much lower than that of crystalline structure (-0.77 eV), indicating that porous isotropic amorphous phase is favorable for Na intercalation (Figure S17a,d). In addition, the Eads of C- V_2O_{3-x} is even lower -3.19 eV (Figure S17b), which should be ascribed to oxygen vacancies, suggesting that the O-defective is highly beneficial for Na insertion. Distinctly, vanadiumdeficient crystalline structure $C-V_{2-x}O_3$ displays lower Eads -4.09 eV than crystalline, amorphous, and O-deficient crystalline structure, resulting in higher adsorbing ability and faster kinetics of Na storage (Figure S17c). This enhancement is attributed to a higher coordination number and radius of the vanadium atom compared to the oxygen atom, which leads to enlarged Na⁺ diffusion channels in the crystalline phase, thereby optimizing its kinetics. Further by combining the porous amorphous structure and oxygen-deficient, the A-V₂O_{3-x} possesses a much lower Na⁺ adsorption energy of -4.43 eV compared to all single structures counterparts (Figure S17e), suggesting A-V₂O_{3-x} is the most energetically favorable for Na insertion. This result suggests that tailoring unsaturated coordination sites is an effective strategy to enhance the adsorption of Na⁺ (Figure S17f, Table S1).

Figure S18. Discharge/charge profiles of (a) A/C-V₂O₃@C-HCS, (b) A/C-V₂O₃@C-WCS, and (c) A/C-V₂O₃@C-CS electrodes at 0.1 A g^{-1} .

Cathode description	Capacity Retention	Rate	Average voltage (V)	Ref
		performance		
	(%, cycles	$(mAh g^{-1})/(A g^{-1})$		
	No)			
A/C-V ₂ O ₃ @C-CS core-shell	93%,6000	92/10	2.6	
A/C-V ₂ O ₃ @C-WCS core-shell	100%,6000	123/10	2.7	This
A/C-V ₂ O ₃ @C-HCS core-shell	100%,6000	155/10	2.8	work
A/C-V ₂ O _{3-X} @C-HMCS core-shell	100%,6000	192/10	2.8	
NaV ₆ O ₁₅ /MWCNTs nanotube	96%,500	123.7/10	2.7	[1]
A-V ₂ O ₅ /C-WCS core-shell	95%,3000	148/5.0	3.0	[2]
Bilayered V ₂ O ₅	85%,320	150/0.63	3.0	[3]
Additive-free V ₂ O ₅ thin film	100%,200	124/5.0	-0.25	[4]
$Co_{0.16}Zn_{0.09}V_2O_5 \cdot nH_2O$	97%,1000	90/3.0	0.7	[5]
cG/VO microspheres	73%,2000	214/4.0	1.0	[6]
VS ₄ Nanoparticles	84%,1200	188.1/4.0	1.2	[7]
NaV ₆ O ₁₅ nanotube	94%,3000	105/2.5	2.5	[8]
NaVOPO ₄ layered	67%, 1000	57/0.73	3.3	[9]
Na _{0.282} V ₂ O ₅ nanorods	99%,1000	80/0.3	2.7	[10]
Na _{1.25} V ₃ O ₈ nanowires	87%,1000	76/2.0	2.4	[11]
Na ₃ V ₂ (PO ₄) ₃ spheres	87.5%,1000	96/2.0	3.35	[12]
Na ₃ V ₂ (PO ₄) ₂ O ₂ F nanotetraprisms	81%,2000	84/5.2	3.8	[13]
Na ₃ V ₂ (PO ₄) ₂ O ₂ F carbon cloth	95%,1500	84/1.2	3.8	[14]
Na ₃ V ₂ (PO ₄) ₂ F ₃ microcubes	98%,2000	53/2.2	3.6	[15]
Na ₆ Fe ₅ (SO ₄) ₈ /CNTs nano- architectured	100.8%,1000	86.4/ 0.24	3.6	[16]

Supplemental Table 2: Comparison of the electrochemical performance with reported A/C-V2O3@C-M based electrodes.

Figure S19. XPS spectrum of V 2p with 100 cycles for A/C-V₂O_{3-x}@C-HMCS electrode.

Figure S20. Ex-situ XPS Na 1st spectra of A/C-V₂O_{3-x}@C-HMCS electrodes at full discharge–stage (1.5 V).

Figure S21. SEM images of A/C-V₂O_{3-x}@C-HMCS after 1000 cycles.

Figure S22. CV profiles at different scan rates (0.2-1.0 mV s⁻¹) between 1.5-4.0 V (versus Na⁺/Na) of A/C-V₂O₃@C-CS, A/C-V₂O₃@C-WCS, and A/C-V₂O₃@C-HCS cathodes.

Figure S23. Calculated b-values from log (peak current) versus log (scan rate) plots for A/C- $V_2O_3@C-CS$, A/C- $V_2O_3@C-WCS$, A/C- $V_2O_3@C-HCS$, and A/C- $V_2O_{3-x}@C-HMCS$.

Figure S24. Diffusion coefficients calculated from the GITT during the desodiation process of A/C-V₂O₃@C-CS, A/C-V₂O₃@C-WCS, A/C-V₂O₃@C-HCS, and A/C-V₂O_{3-x}@C-HMCS.

REFERENCES*

- [1] S. Osman, S. Zuo, X. Xu, J. Shen, Z. Liu, F. Li, P. Li, X. Wang, J. Liu, *ACS Appl. Mater*. *Interfaces* **2021**, 13, 816.
- [2] S. Osman, C. Peng, J. Shen, F. Li, W. Huang, J. Liu, J. Liu, D. Xue, M. Zhu, *Nano Energy* 2022, 107481.
- [3] S. Tepavcevic, H. Xiong, V. R. Stamenkovic, X. Zuo, M. Balasubramanian, V. B.
- Prakapenka, C. S. Johnson, T. Rajh, ACS Nano 2012, 6, 530.
- [4] Y. Li, C. Liu, Z. Xie, J. Yao, G. Cao, J. Mater. Chem. A. 2017, 5, 16590.
- [5] H. Huang, T. Tian, L. Pan, X. Chen, E. Tervoort, C.-J. Shih, M. Niederberger, *J. Mater. Chem. A.***2019**, *7*, 16109.
- [6] B. Yan, X. Li, Z. Bai, L. Lin, G. Chen, X. Song, D. Xiong, D. Li, X. Sun, J. Mater. Chem. A. 2017, 5, 4850.
- [7] Q. Pang, Y. Zhao, Y. Yu, X. Bian, X. Wang, Y. Wei, Y. Gao, G. Chen, *ChemSusChem* 2018, 11, 735.
- [8] X. Song, J. Li, Z. Li, Q. Xiao, G. Lei, Z. Hu, Y. Ding, H. M. Kheimeh Sari, X. Li, ACS Appl. Mater. Interfaces 2019, 11, 10631.
- [9] Y. Fang, Q. Liu, L. Xiao, Y. Rong, Y. Liu, Z. Chen, X. Ai, Y. Cao, H. Yang, J. Xie, C. Sun,
 X. Zhang, B. Aoun, X. Xing, X. Xiao, Y. Ren, *Chem* 2018, 4, 1167.
- [10] Y. Cai, J. Zhou, G. Fang, G. Cai, A. Pan, S. Liang, J. Power Sources 2016, 328, 241.
- [11] Y. Dong, S. Li, K. Zhao, C. Han, W. Chen, B. Wang, L. Wang, B. Xu, Q. Wei, L. Zhang, X. Xu, L. Mai, *Energy Environ. Sci.* 2015, 8, 1267.
- [12] R. Gao, R. Tan, L. Han, Y. Zhao, Z. Wang, L. Yang, F. Pan, J. Mater. Chem. A. 2017, 5, 5273.
- [13] J.-Z. Guo, P.-F. Wang, X.-L. Wu, X.-H. Zhang, Q. Yan, H. Chen, J.-P. Zhang, Y.-G. Guo, *Adv. Mater.* **2017**, 29, 1701968.
- [14] J.-Z. Guo, A.-B. Yang, Z.-Y. Gu, X.-L. Wu, W.-L. Pang, Q.-L. Ning, W.-H. Li, J.-P. Zhang, Z.-M. Su, ACS Appl. Mater. Interfaces 2018, 10, 17903.
- [15] Y. Cai, X. Cao, Z. Luo, G. Fang, F. Liu, J. Zhou, A. Pan, S. Liang, Adv Sci (Weinh) 2018, 5, 1800680.
- [16] S. Li, X. Song, X. Kuai, W. Zhu, K. Tian, X. Li, M. Chen, S. Chou, J. Zhao, L. Gao, J. Mater. Chem. A. 2019, 7, 14656.