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A1 Underdominance

A1.1 Model8

We consider a population of size N reproducing with partial selfing in proportion

σ. The effective size of the population is [1, 2]:10

Ne = N

1 + F
(A1)

where F is the Wright’s fixation index which neutral expectation is:

F = σ

2 − σ
(A2)

We consider a single bi-allelic locus, with the ancestral allele A1 that can mutate

in the derived allele A2 at rate µ. We note the fitness of genotypes A1A1, A1A2,

and A2A2, 1, 1 − su, and 1 + s, respectively, and x the frequency of allele A2. The

change in allelic frequencies in one generation is given by:

∆x = x(1 − x)
(
(1 − F )(sx − su(1 − 2x) + Fs

)
/W̄

≈ x(1 − x)
(
(1 − F )(sx − su(1 − 2x) + Fs

)
(A3)

where W̄ is the mean fitness of the population. Under weak selection W̄ ≈ 1

(second line of A3) and F can be equated to its neutral expectation (A2). Equation
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(A3) can also be written as:

∆x = (1 − F )Sx(1 − x)(x − xeq) if F < 1

= sx(1 − x) if F = 1 (A4)

where S = s + 2su, representing the total amount of selection (su between A1A112

and A1A2 and su + s between A1A2 and A2A2), and xeq is the internal (unstable)

equilibrium:14

xeq = (1 − F )su − Fs

(1 − F )(2su + s) (A5)

This internal equilibrium exist (0 ≤ xeq ≤ 1) if F ≤ s/(s + su). Above this

threshold, selection becomes directional and positive, and for F exactly equal to16

this threshold, equation (A3) becomes:

∆x = s

s + su

(s + 2su)x2(1 − x) (A6)

which is equivalent to selection on a fully recessive allele with selective advantage18

s(s + 2su)/(s + su).

A1.2 Probability and time to fixation20

Noting Mδx = ∆x the expected infinitesimal change in allelic frequency and Vδx =
x(1−x)

2Ne
is the infinitesimal variance we define the so-called Green function as:22

G(x) = e−
∫

2Mδx/Vδxdx (A7)
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The probability of fixation of a single A2 mutant is then given by Kimura 1962 [3]:

Pfix =

∫ 1/2N

0
G(x)dx∫ 1

0
G(x)dx

(A8)

This solves to:24

Pfix =
erf

(
xeq

√
2NeS(1 − F )

)
− erf

((
xeq − 1

2N

) √
2NeS(1 − F )

)
erf

(
(1 − xeq)

√
2NeS(1 − F )

)
+ erf

(
xeq

√
2NeS(1 − F )

) (A9)

where erf is the error function. Under recurrent mutations, fixation is certain and

we are interested in the time to ultimate fixation. It can be obtained using Kimura26

1980 [4]. The infinitesimal mean change is now given by Mδx = ∆x + µ(1 − x)

where the additional term corresponds to recurrent mutation. We then plug Mδx28

into the Green function (A7) and the time to ultimate fixation under recurrent

mutation is given by:30

Tfix =
∫ 1

0

∫ x

0
4Ne

G(z)
(1 − z)z dz

1
G(x)dx (A10)

No close form solution exist for (A10) so numerical integration must be carried out

(see Mathematica notebook). However, we can obtain an approximation as follows32

(see also [5]). The time to ultimate fixation can be decomposed into two parts:

the waiting time for the appearance of the mutation destined to be fixed plus the34

time to fixation conditioned on the fact that fixation will occur. Because of under-

dominance the waiting time is expected to be much longer than the conditioned36

fixation time, which can be neglected. The time to ultimate fixation can thus be
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approximated by:38

Tfix ≈ 1
2NuPfix

(A11)

For most parameters, (A11) is very accurate.

A1.3 Thresholds for near-neutrality40

Assuming x << 1 in equation (A3) shows that a rare underdominant mutation

behaves almost like a deleterious allele with a deleterious heterozygote effect (1 −42

F )Sxeq if xeq > 0. For xeq < 0 the mutation is positively selected for and can easily

fix, which corresponds to the threshold F ≥ su/(s + su) (see above). Alternatively,44

for a given selfing rate, mutations with an heterozygote effects lower than the

following threshold can easily fix:46

slim
u = s

F

1 − F
(A12)

This threshold vanishes to 0 when s = 0 and all mutants initially behave as

deleterious.48

When s = 0 we can consider a less stringent threshold as follows. When a

mutant arises, x << 0 so:50

∆x ≈ −(1 − F )sux (A13)

This is equivalent to negative genic selection with an effective selection coefficient

se = (1 − F )su. We can consider that the mutation behaves almost neutraly when52

2Nese ≤ 1, which can be expressed as: 2N(1 − σ)su ≤ 1. So the nearly neutral
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threshold is simply given by:54

snn
u = 1

2N(1 − σ) (A14)

A1.4 Distribution of deleterious effects

We now consider that the scaled heterozygote effects, 2Nsu are not fixed but follow56

a gamma distribution with mean γ = 2Nsu and shape β, with pdf given by:

ϕ(z) =

(
γ
β

)−β
zβ−1e− βz

γ

Γ(β) (A15)

The proportion of symmetrical underdominant mutations (s = 0) that can fix

(with a reasonable chance), ρ, is thus given by:

p(σ) =
∫ 1/2N(1−σ)

0
ϕ(z)dz

= 1 −
Γ

(
β, β

γ−γσ

)
Γ(β) (A16)

Assuming that β << γ and taking Taylor expansion of (A16) in β/ρ close to 0 we58

get:

p(σ) ≈

(
β

γ(1−σ)

)β

Γ(β + 1) (A17)

The ratio ρ(σ) = p(σ)/p(0) gives the relative excess of the proportion of mutants60

that can fix compared to an outcrossing population:

ρ(σ) =
Γ(β) − Γ

(
β, β

γ−γσ

)
Γ(β) − Γ

(
β, β

γ

) (A18)
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Using the same approximation that β << γ we obtain the very simple formula:62

ρ(σ) ≈ (1 − σ)−β (A19)

Numerical and simulations results show that these two expressions also very ac-

curately approximate the excess of probability of fixation (or reduction in fixation64

time) compared to an outcrossing population:
∫ ∞

0 Pfixϕ(S)dS∫ ∞
0 Pfixϕ(S)dS

∣∣∣
σ=0

(or the inverse for

fixation time).66

A2 Compensatory mutations

A2.1 Model68

We now consider a model of compensatory mutations at two loci with two alleles,

where two haplotypes are equally fit, A1B1 (haplotype 1) and A2B2 (haplotype 4),

but the intermediate paths, A1B2 (haplotype 2) and A2B1 (haplotype 3) are de-

leterious. Alike in the single underdominant model described above, the evolution

of pairs of compensatory mutations requires to cross a fitness valley. For simplicity

we consider a symmetrical model and we set the fitness of the genotypes as follows:

w11 = w44 = 1

w22 = w33 = 1 − s

w12 = w13 = w24 = w34 = 1 − hs

w14 = w23 = 1 − hks (A20)

6



where the subscript ij denotes the genotype formed with haplotypes i and j, and

s ≥ 0 and 0 ≤ h ≤ 1 are respectively the strength and the coefficient of dominance70

of the deleterious effects of each mutation, and k is the coefficient of dominance

for the double heterozygote genotype A1A2B1B2. In the main text we added the72

subscript c to these coefficient to distinguish with the coefficients in the BDMi

model. Here we remove them to ease the reading.74

We build upon previous haploid models [6, 7] and extend it to diploidy with

partial selfing. Previous works have shown that little recombination strongly pre-

vent the fixation of compensatory mutations by breaking down double mutants.

Under the assumption of weak recombination, we can only follows the four haplo-

types and assume that genotype frequencies are obtained using multi-allelic single

locus theory. We note Xi the frequency of haplotype i, and Gij the frequency of

genotype ij. This makes the system more tractable than the general system of

ten equations presented in the main text. After meiosis, haplotype frequencies are

given by:

Xi = Gii + 1
2

∑
j ̸=i

Gij + rδi(G23 − G14)
 (A21)

where δi = 1 for i = 1, 4 and δi = −1 for i = 2, 3. We consider unidirectionnal
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mutation from A1 to A2 and B1 to B2 at the same rate, u, so after mutation:

Xu
1 = X1(1 − 2u) (A22a)

Xu
2 = X2(1 − u) + X1u (A22b)

Xu
3 = X3(1 − u) + X1u (A22c)

Xu
4 = X4 + (X2 + X3)u (A22d)

After syngamy, we assume that genotype frequencies directly equilibrate to:

Gr
ii = (Xu

i )2(1 − F ) + FXu
i (A23a)

Gr
ij = 2Xu

i Xu
j (1 − F ) for i ̸= j (A23b)

And finally, after selection:

G′
ij = wijG

r
ij/W (A24)

where W is the mean fitness of the population. To simplify the system further,

we can consider that intermediate haplotypes (A1B2 and A2B1) are maintained in

approximate equilibrium at low frequency. This is true if s >> u and s >> r. We

also assume weak selection s << 1. Given the symmetry of the model X2 = X3

and are noted χ and we note X4 = x, the frequency of the compensated haplotype,

for which we want to calculate the probability and time to fixation. We can write:

∆χ(χ, x) = ∆X2 = ∆X3

∆x(χ, x) = ∆X4

with the change of variables proposed above. We can use a separation of time76
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scale argument and consider that χ equilibrates much more rapidly than x.Thus

we first solve ∆χ(χ, x) = 0 for a given x and then plug the equilibrium χ value78

into ∆x(χ, x). We thus obtain a an equation with a single variable that can be

treated with classical diffusion theory. The full equation is not analytically tract-80

able, however, noting that χ must be small, we can perform a Taylor expansion of

∆χ(χ, x) in χ at the first order and solve the resulting linear equation in χ. With82

the help of Mathematica we obtained:

χeq(x) = (1 − x)(u + x(1 − F )(r − (h + F − hF )rs − hksu))
s(h(1 − 2kx(1 − x)) + F (1 − h + 2hkx(1 − x))) (A25)

For h = 0 and F = 0 the first order term in χ vanishes so we need expansion at84

the second order, which gives:

χeq(x) =
√

(1 − x)(rx + u)
s

(A26)

Then we plug either (A25) or (A26) into ∆x(χ, x). The full expression is rather86

cumbersome but it can be approximated as follows. As we assumed that all para-

meters are small: u, s, r = O(ϵ) with ϵ << 1, we can only kept first order terms,88

which correspond to terms in s, r, u and u2/s. With the help of Mathematica we

obtained for h > 0 or F > 0 :90

∆x = 2 u2

(F + (1 − F )h)s(1 − x)C1︸ ︷︷ ︸
Mutational input

+ x(1 − x) (2uC2 − (1 − F )(khs(1 − 2x) + rC3))︸ ︷︷ ︸
selection-like dynamics

(A27)
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where C1, C2 and C3 are expressions independent of s, r and u:

C1 = 1
(1 − 2kx(1 − x)))

C2 = 1 − (1 − F )hk(1 − 2x2)
F + (1 − F )h(1 − 2kx(1 − x))

C3 = 1 − 2x
(1 − F )(F + (1 − F )h(1 + k(1 − 2x)))

F + (1 − F )h(1 − 2kx(1 − x))

The first term in equation (A27) corresponds to the input of the second mutation

on the deleterious haplotypes, either A1B2 or A2B1 (hence the factor 2), which92

are both at mutation-selection balance equilibrium, u
(F +(1−F )h)s . The second term

corresponds to selection-like dynamics of the form Sx(1−x) where S has a complex94

form here. First, as the mean fitness of the population is of the order of 1−2u (see

classical load theory, ex [8]), the fitness of the double mutant is simply of the order96

of 2u (but also depends on k and F). The second term corresponds to selection

against double heterozygotes (1 − F )khs and breakdown of the double mutant by98

recombination r(1 − F ). When r = 0 and k = 0, the double mutant A2B2 simply

behaves as a beneficial mutations. On the contrary, the double mutant behaves as100

a deleterious mutations when recombination or selection overwhelm mutation:

(1 − F )(khs + rC3) > 2uC2 (A28)

So just a little recombination or selection against double heterozygotes greatly102

reduce the probability of fixation of the double mutant. From (A28) it is also clear

that selfing increases the conditions of fixation of the double mutant.104
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A2.2 Probability and time to fixation

Equation (A27) can be injected in a classical one dimensional diffusion equation106

and numerically solved to obtain the time to fixation as in Kimura 1980 [4]. There

is no analytical solution to the full equation but we can obtained a rather simple108

analytical approximation as follows. As in the main text, the time until ultimate

fixation can be decomposed into the waiting time of the mutation destined to110

fixate and the time to fixation, conditional to fixation. The first term is usually

much larger than the first one so we can only consider the waiting time and we112

can apply diffusion theory using (A7) and (A8) and modified version of (A11):

Tfix ≈ 1
4NuχeqPfix

(A29)

because we only consider mutation arising on deleterious haplotypes, whose num-114

ber is 2Nχeq in the population.

When r = 0 and k = 0, C1 = C2 = 1 and the selection-like term reduces to 2u.116

So we have:

T0,0 ≈ (F + h − hF )s
2u2

1 − e−8Nu/(1+F )

8Nu/(1 + F ) (A30)

which reduces to:118

T ∗
0,0 ≈ (F + h − hF )s

2u2 (A31)

when 4Nu < 1 as given in the main text.

When k = 0 but r > 0, we still have C1 = C2 = 1 and C3 = 1 − 2x if120

r > u we can neglect the mutation term so we obtain a simple selection like term:
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r(1 − F )x(1 − x)(1 − 2x). This leads to the following solution:122

Tr,0 ≈ (F + h − hF )s
2u2

1

N
(

1 − Erf((1−1/N)
√

R)
Erf(√

R)

) (A32)

with R = N(1 − σ)r. Similarly, when r = 0 and k > 0 the selection-like term

takes the same form, hks(1−F )x(1−x)(1−2x) hence the same result as equation

(A32) with R = N(1 − σ)hks. This illustrates that recombination and selection

against double heterozygotes play the same role. The general equation is more

difficult to solve but as recombination and selection have the same form, so a

heuristic argument is to use equation (A32) with R = N(1 − σ)(r + hks). Finally,

to simplify the expression we can take the limit o (A32) when N → ∞ (but

R → cte), which leads to:

Tr,k ≈ (F + h − hF )s
2u2

√
πeRErf(

√
R)

2
√

R

with R = N(1 − σ)(r + hks) (A33)

as given in the main text. Simulations show that this general approximation is

rather accurate and allows a clear interpretation of the effect of recombination,124

selection against heterozygotes and selfing. It is important to note that these res-

ults are valid when effective recombination is low (r(1 − F )). In the main text,126

simulations show that they quantitatively breakdown when recombination is too

high. However these approximations are useful to characterize the effect of selfing128

on the fixation of compensatory mutations.
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