Polymeric microneedles enable simultaneous delivery of cancer immunomodulatory drugs and detection of skin biomarkers

Pere Dosta^{1,2,6}*, Núria Puigmal^{1,2,6}*, Alexander M. Cryer^{1,2,6}, Alma L. Rodríguez^{1,2}, Ella Scott³, Ralph Weissleder^{3,4,5}, Miles A. Miller^{3,4}, Natalie Artzi^{1,2,6}

¹Institute for Medical Engineering and Science Massachusetts Institute of Technology Cambridge, MA 02139

²Department of Medicine Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School Boston, MA 02115 *E-mail: nartzi@mit.edu; nartzi@bwh.harvard.edu

³Center for Systems Biology Massachusetts General Hospital Research Institute Boston, MA 02114 *E-mail: miles.miller@mgh.harvard.edu

⁴Department of Radiology Massachusetts General Hospital Harvard Medical School Boston, MA 02114

⁵Department of Systems Biology Harvard Medical School

⁶Wyss Institute for Biologically Inspired Engineering Harvard University Boston, MA, 02115

Keywords: microneedles, immunotherapy, cancer, poly(beta-amino ester)s, theranostics

Figure S1: A, Synthesis, and chemical structure of HA-SS-NH₂ polymer. **B**, ¹H-NMR of unmodified HA and HA-SS-NH₂ polymer (400MHz, DMSO-*d6*, TMS) (ppm)

Figure S2: HA-based MN platform for simultaneous transdermal drug delivery and Interstitial fluid Sampling for cancer treatment. HA-based MN fabrication was performed by casting an aqueous amine-modified HA (HA-SS-NH₂) solution into the PDMS mold by centrifugation and crosslinked using the NHS-terminated 8-arm PEG crosslinker. CpG Nanoparticles were loaded and a PLGA back layer was added (bottom scheme).

Figure S3: On-demand degradation of the MNs under reducing conditions for subsequent ISF recovery. A, Chemical structure of the HA-SS-NH₂ modified with a disulfide bond for ondemand degradation when incubated with the reducing agent TCEP. **B**, Digestion times of MNs using varying concentrations of the reducing agent TCEP. **C**, Microscopy images of the hydrogelbased MNs before (top) and after (bottom) incubation for 5 minutes with a 10 mM TCEP solution (Scale bar left = 2 mm, right = 300 μ m). **D**, Fluorescence evaluation of AF647-conjugated HA that has been released into the supernatant after incubation of MNs with PBS (negative control) or ondemand digestion with TCEP (10 mM TCEP) for 5 min (n = 5).

Figure S4: Synthesis of arginine modified poly (beta-amino) formulation. A, Synthesis of pBAE polymer. A mixture of 5-amino-1-pentanol, hexylamine, and 1,4-butanediol diacrylate (0.5:0.5:1.2) were used for the synthesis of pBAE C6 polymer. **B,** Arginine-modified pBAE are formulated mixing acrylate-terminate pBAE polymer with polyarginine peptide containing a cysteine amino acid (Cys-Arg-Arg-Arg).

Figure S5: A, Chemical structure of C6-CR3 Polymer. **B**, ¹H-NMR of C6-CR3 Polymer (400MHz, Methanol-*d*₄, TMS) (ppm): $\delta = 4.41-4.33$ (br, NH₂-C(=O)-C<u>H</u>-NH-C(=O)-C<u>H</u>-NH-C(=O)-C<u>H</u>-NH-C(=O)-C<u>H</u>-CH₂-, 4.16 (t, CH₂-C<u>H</u>₂-O), 3.58 (t, CH₂-C<u>H</u>₂-OH), 3.25 (br, NH₂-C(=NH)-NH-C<u>H</u>₂-, OH-(CH₂)₄-C<u>H</u>₂-N-), 3.04 (t, CH₂-C<u>H</u>₂-N-), 2.82 (dd, -C<u>H</u>₂-S-C<u>H</u>₂), 2.48 (br, -N-CH₂-C<u>H</u>₂-C(=O)-O), 1.90 (m, NH₂-C(=NH)-NH-(CH₂)₂-C<u>H</u>₂-CH-), 1.73 (br, -O-CH₂-C<u>H</u>₂-C<u>H</u>₂-CH₂-O), 1.69 (m, NH₂-C(=NH)-NH-CH₂-C<u>H</u>₂-CH₂-), 1.56 (br, -C<u>H</u>₂-CH₂-CH₂-OH), 1.39 (br, -N-(CH₂)₂-C<u>H</u>₂-(CH₂)₂-OH), 0.88 (t, CH₂-CH₂-C<u>H</u>₃).

Figure S6: A, Agarose retardation assay of arginine-modified pBAE. Nanoparticles were formed using CpG and arginine-modified pBAE at different w/w ratios and loaded onto an agarose gel to assess CpG mobility by electrophoresis. **B**, Stability study of CpG-NPs in PBS (determined by DLS).

Figure S7: Cryo-Transmission electron microscopy (TEM) images of the CpG-NPs. Scale bar = 200 nm.

Table S1: Biophysical characterization of CpG- and CpC-containing nanoparticles as determined by dynamic light scattering (DLS).

Particle	Size (nm)	Surface charge (mV)	Polydispersity Index (PDI)
CpG-NPs	62.51 ± 0.59	23.1 ± 2.04	0.115 ± 0.02
CpC _{Ctrl} -NPs	59.72 ± 3.8	21 ± 2.24	0.207 ± 0.02

Concentration (nM)

Figure S8: Dose-response of the NF-kB response produced by CpG-NP and CpC-Crt-NP released from the MNs in mouse TLR9 Reporter HEK293 cell line (n = 4 biologically independent samples).

Figure S9: Cell viability profile of different concentrations of CpG-NPs and CpC-Crt-NP were analyzed 24 h post treatment. Samples were normalized to untreated cells. Data are represented as mean \pm SD (n = 3).

Figure S10: Characterization of the mechanical properties of HA-based MNs. **A**, A compression test was performed to compare the mechanical strength of empty MNs versus CpG-NP-loaded MNs and CpC_{Ctrl}-NP-loaded MNs. Data are means \pm s.e.m. (n = 4). **B**, Analysis of the swelling ability *in vitro* by weight measurement. Data are means \pm s.e.m. (n = 4).

Table S2: Assessment of CpG-NP release profile in vivo when delivered with HA-based MNs by
tracking the fluorescence intensity of labeled NPs over time. Data are means \pm s.e.m. (n = 4).

MN administration time (H)	% CpG-NPs released	
3	-	
6	57±18%	
24	52 ±12%	

Figure S11: Mice body weight following Empty MNs, CpC_{Ctrl} -NP MNs, and CpG-NP MNs therapy in melanoma B16-F10 model (**A**) and colon MC38 model (**B**). Mice with 20-40 mm³ tumors were treated five times, 3 days apart. Body weight was measured every other day.

Figure S12: A, IVM of MC38-mApple tumors (yellow) injected fluorescent CpG-NPs intratumorally (magenta) (left, scale bar: 1 mm; right, scale bar: 100 μ m). **B**, Quantification of the fluorescence intensity of CpG-NPs within tumor tissue, following intratumoral injection. Data are normalized to fluorescence levels observed immediately after injection (day 0). Data are means \pm std. dev. (n = 3).

Figure S13: Macrophages gating strategy by flow cytometry when analyzing cells recovered from ISF using microneedles.

Figure S13: Representative flow cytometry density plot of activated dendritic cells (CD80^{hi} CD11c⁺MHCII⁺CD45⁺) in tdLNs (**A**) and tumors (**B**) 48 h post transdermal delivery of CpG-NPs. **c,d,** Representative flow cytometry density plot of activated macrophages (CD86^{hi} F4/80⁺CD11b⁺CD45⁺) in tdLNs (**C**) and tumors (**D**) 48 h post transdermal delivery of CpG-NPs. **E**, Representative flow cytometry density plot of natural killer cells in tumor lysates 48 h post-treatment with CpG-NPs.

Figure S14: Macrophages gating strategy by flow cytometry.

Figure S15: Dendritic Cells gating strategy by flow cytometry.

Figure S16: T Cells gating strategy by flow cytometry.