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Figure S1: A, Synthesis, and chemical structure of HA-SS-NH2 polymer. B, 1H-NMR of 

unmodified HA and HA-SS-NH2 polymer (400MHz, DMSO-d6, TMS) (ppm) 
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Figure S2: HA-based MN platform for simultaneous transdermal drug delivery and 

Interstitial fluid Sampling for cancer treatment.  HA-based MN fabrication was performed by 

casting an aqueous amine-modified HA (HA-SS-NH2) solution into the PDMS mold by 

centrifugation and crosslinked using the NHS-terminated 8-arm PEG crosslinker. CpG 

Nanoparticles were loaded and a PLGA back layer was added (bottom scheme).  
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Figure S3: On-demand degradation of the MNs under reducing conditions for subsequent 

ISF recovery. A, Chemical structure of the HA-SS-NH2 modified with a disulfide bond for on-

demand degradation when incubated with the reducing agent TCEP. B, Digestion times of MNs 

using varying concentrations of the reducing agent TCEP. C, Microscopy images of the hydrogel-

based MNs before (top) and after (bottom) incubation for 5 minutes with a 10 mM TCEP solution 

(Scale bar left = 2 mm, right = 300 µm). D, Fluorescence evaluation of AF647-conjugated HA that 

has been released into the supernatant after incubation of MNs with PBS (negative control) or on-

demand digestion with TCEP (10 mM TCEP) for 5 min (n = 5). 

 



5 

 
Figure S4: Synthesis of arginine modified poly (beta-amino) formulation. A, Synthesis of 

pBAE polymer. A mixture of 5-amino-1-pentanol, hexylamine, and  1,4-butanediol diacrylate 

(0.5:0.5:1.2) were used for the synthesis of pBAE C6 polymer. B, Arginine-modified pBAE are 

formulated mixing acrylate-terminate pBAE polymer with polyarginine peptide containing a 

cysteine amino acid (Cys-Arg-Arg-Arg).   
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Figure S5: A, Chemical structure of C6-CR3 Polymer. B, 1H-NMR of C6-CR3 Polymer 

(400MHz, Methanol-d4, TMS) (ppm): δ = 4.41-4.33 (br, NH2-C(=O)-CH-NH-C(=O)-CH-NH-

C(=O)-CH-NH-C(=O)-CH-CH2-, 4.16 (t, CH2-CH2-O), 3.58 (t, CH2-CH2-OH), 3.25 (br, NH2-

C(=NH)-NH-CH2-, OH-(CH2)4-CH2-N-), 3.04 (t, CH2-CH2-N-), 2.82 (dd, -CH2-S-CH2), 2.48 (br, 

-N-CH2-CH2-C(=O)-O), 1.90 (m, NH2-C(=NH)-NH-(CH2)2-CH2-CH-), 1.73 (br, -O-CH2-CH2-

CH2-CH2-O), 1.69 (m, NH2-C(=NH)-NH-CH2-CH2-CH2-), 1.56 (br, -CH2-CH2-CH2-CH2-OH), 

1.39 (br, -N-(CH2)2-CH2-(CH2)2-OH), 0.88 (t, CH2-CH2-CH3). 
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Figure S6: A, Agarose retardation assay of arginine-modified pBAE. Nanoparticles were formed 

using CpG and arginine-modified pBAE at different w/w ratios and loaded onto an agarose gel to 

assess CpG mobility by electrophoresis. B, Stability study of CpG-NPs in PBS (determined by 

DLS). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure S7: Cryo-Transmission electron microscopy (TEM) images of the CpG-NPs. Scale bar = 

200 nm. 
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Table S1: Biophysical characterization of CpG- and CpC-containing nanoparticles as determined 

by dynamic light scattering (DLS). 

Particle Size (nm) Surface charge 

(mV) 

Polydispersity 

Index (PDI) 

CpG-NPs 62.51 ± 0.59 23.1 ± 2.04 0.115 ± 0.02 

CpCCtrl-NPs 59.72 ± 3.8 21 ± 2.24 0.207 ± 0.02 
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Figure S8: Dose-response of the NF-kB response produced by CpG-NP and CpC-Crt-NP released 

from the MNs in mouse TLR9 Reporter HEK293 cell line (n = 4 biologically independent 

samples). 

 

 

 

 

 

 

 

 

 

 

 
Figure S9: Cell viability profile of different concentrations of CpG-NPs and CpC-Crt-NP were 

analyzed 24 h post treatment. Samples were normalized to untreated cells. Data are represented as 

mean ± SD (n = 3).  
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Figure S10: Characterization of the mechanical properties of HA-based MNs. A, A compression 

test was performed to compare the mechanical strength of empty MNs versus CpG-NP-loaded 

MNs and CpCCtrl-NP-loaded MNs. Data are means ± s.e.m. (n = 4). B, Analysis of the swelling 

ability in vitro by weight measurement. Data are means ± s.e.m. (n = 4). 
 

 

 

 

 

 

 

 

 

 
Table S2: Assessment of CpG-NP release profile in vivo when delivered with HA-based MNs by 

tracking the fluorescence intensity of labeled NPs over time. Data are means ± s.e.m. (n = 4).  
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6 57±18% 

24 52±12% 
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Figure S11: Mice body weight following Empty MNs, CpCCtrl-NP MNs, and CpG-NP MNs 

therapy in melanoma B16-F10 model (A) and colon MC38 model (B). Mice with 20-40 mm3 

tumors were treated five times, 3 days apart. Body weight was measured every other day. 
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Figure S12: A, IVM of MC38-mApple tumors (yellow) injected fluorescent CpG-NPs 

intratumorally (magenta) (left, scale bar: 1 mm; right, scale bar: 100 µm). B, Quantification of the 

fluorescence intensity of CpG-NPs within tumor tissue, following intratumoral injection. Data are 

normalized to fluorescence levels observed immediately after injection (day 0). Data are means ± 

std. dev. (n = 3). 
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Figure S13: Macrophages gating strategy by flow cytometry when analyzing cells recovered from 

ISF using microneedles.  
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Figure S13: Representative flow cytometry density plot of activated dendritic cells (CD80hi 

CD11c+MHCII+CD45+) in tdLNs (A) and tumors (B) 48 h post transdermal delivery of CpG-NPs. 

c,d, Representative flow cytometry density plot of activated macrophages (CD86hi 

F4/80+CD11b+CD45+) in tdLNs (C) and tumors (D) 48 h post transdermal delivery of CpG-NPs.  

E, Representative flow cytometry density plot of natural killer cells in tumor lysates 48 h post-

treatment with CpG-NPs. 
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Figure S14: Macrophages gating strategy by flow cytometry.   
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Figure S15: Dendritic Cells gating strategy by flow cytometry.   
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Figure S16: T Cells gating strategy by flow cytometry. 
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